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We use the computer algebra system Magma to study graded rings of Fano 3-folds of
index ≥ 3 in terms of their Hilbert series.
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1. Introduction

Fano 3-folds are, typically, the complex (projective) solution spaces of homo-
geneous polynomial equations of low degree in 5 variables. A quartic hypersurface
is a classical example, for instance

X4 = (x4
0 + · · · + x4

4 = 0) ⊂ P4.

In this example, the canonical class KX4 is represented simply by a hyperplane
section A = (x0 = 0) ⊂ X4, and so X4 has index (as defined below) equal to 1. The
cubic hypersurface X3 = (x3

0 + · · ·+x3
4 = 0) ⊂ P4 is also a Fano 3-fold, with KX3 =

2A and so index 2. Of course, there are more complicated examples involving more
variables, including weighted variables; see [4] or [1] for an introduction to weighted
projective space in this context.

By Suzuki [10], the Fano index is bounded f ≤ 19 (and it does not take the
values 12, 14, 15, 16, 18). We study Fano 3-folds of index ≥ 3, especially the case
f = 3 generalising the conic hypersurface X2 = (x2

0 + · · · + x2
4 = 0) ⊂ P4; see, for

example, the lists of Iskovskikh and Prokhorov, [5], Table 12.2.
Furthermore, in notation explained in the following section, we list the number

of possible numerical types (more precisely, of possible Hilbert series) of Fano 3-folds
of each index f = 3, . . . , 19. (The case of index ≥ 9 is already proved in [10].) We
work over the complex number field C throughout.

Theorem 1. For each f = 3, . . . , 19, the number of power series that could
be the Hilbert series of some X,A with X a Fano 3-fold of Fano index f and A a
primitive ample divisor is:
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f 3 4 5 6 7 8 9 10 11 13 17 19
number of series 231 124 63 11 23 10 2 1 3 2 1 1
of which unstable 50 42 29 5 11 6 0 1 0 0 0 0

The second line of this table indicates the number of these series that cannot be
realised by the Hilbert series of some Bogomolov–Kawamata stable Fano 3-fold X,A.
(See Section 3, Step 1 (c)+, for a discussion of stability. There are no Fano 3-folds
of indices f = 12, 14, 15, 16, 18.)

Analogous methods for Fano 3-folds of index ≤ 2 work slightly differently: in
those cases there is another discrete invariant, the genus, which does not play a role
when f ≥ 3. This is why we stop here at f = 3. The following theorem is a result
of our classification; the proof is Step 2+ of Section 3.

Theorem 2. H0(X,O(−KX)) �= 0 for any Fano 3-fold X,A of index f ≥ 3.

A first analysis of the possible realisations of these Hilbert series in low co-
dimension is in section 4 below. As with all the results in this paper, we used
computer algebra—in our case, the Magma system [7]—in an essential way. But
this analysis, and the list in codimension 4 especially, should be regarded only as a
list of possible examples and not a proved classification. Tabulating these examples
by codimension gives the following (in which a blank entry is a zero); all of these
are stable.

f 3 4 5 6 7 8 9 10 11 13 17 19 total
codim 0 0 1 1 0 1 0 0 0 1 1 1 1 7
codim 1 7 2 5 1 4 3 2 0 2 1 27
codim 2 6 7 1 0 0 14
codim 3 0 0 2 0 0 2
codim 4 3 2 1 1 1 8

Text files with the Magma code to make the classification of Theorem 1 and with
all the proposed models is at the webpage [3].

2. Definitions and tools

Fano 3-folds
A Fano 3-fold is a normal projective 3-fold X such that (a) −KX is ample,

(b) ρ(X) := rankPic(X) = 1, and (c) X has Q-factorial terminal singularities. The
Fano index f = f(X) of a Fano 3-fold X is

f(X) = max{m ∈ Z>0 | −KX = mA for some Weil divisor A}

where equality of divisors denotes linear equivalence of some multiple. A Weil
divisor A for which −KX = fA is called a primitive ample divisor.
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Graded rings and Hilbert series
A Fano 3-fold X with primitive ample divisor A, which we denote by X,A

from now on, has a graded ring

R(X,A) =
⊕
n≥0

H0(X,OX(nA)).

This graded ring is finitely generated, and X ∼= ProjR(X,A). The Hilbert se-
ries PX,A(t) of X,A is defined to be that of the graded ring R(X,A): thus
dim H0(X,OX(nA)) is the coefficient of tn in PX,A(t).

A choice of homogeneous generators for R(X,A) determines a map

X ↪→ PN = P(a0, . . . , aN )

into some weighted projective space (wps) PN , where xi ∈ H0(X,OX(aiA)). With
this embedding for a minimal set of generators in mind, we say that X,A has
codimension N − 3.

Basket of singularities
We compute the Hilbert series of a Fano 3-fold X,A using the Riemann–Roch

formula of Theorem 3 below. The singularities of X make a contribution to this
formula in the following well-known sense (see Reid [8] (10.2)): for each singularity
of X, there is a finite collection of quotient singularities whose invariants appear
in the Riemann–Roch formula; the singularity itself does not appear explicitly in
this formula. Thus the contribution of the singularities of X to its Hilbert series is
computed using only a finite collection of quotient singularities. This collection is
known as the basket of singularities of X.

We describe the quotient singularities that can arise in this context. Let
the group Z/r of rth roots of unity act on C3 via the diagonal representation
ε · (x, y, z) 	→ (εax, εby, εcy). The (germ at the origin of the) quotient singularity
C3/(Z/r) is denoted 1

r (a, b, c). By Suzuki [10] Lemma 1.2, when we work with Fano
3-folds of index f below, we may assume that b = −a, c = f and that r is coprime
to a, b, c. We abbreviate the notation 1

r (a,−a, f) to [r, a]; the index f is always
clear from the context. Thus a basket of singularities is a collection (possibly with
repeats) of singularity germs [r, a].

There is an interesting question about baskets that we do not answer. If X

admitted a deformation to a Fano 3-fold with (suitably polarised) quotient sin-
gularities, then these singularities would be its basket. We do not know such a
deformation result in general, and so it is possible that there exists a Hilbert series
in our final classification that is realised by some Fano 3-fold but not by a Fano
3-fold having only quotient singularities. Because of this possibility, it is important
to emphasise again that, although our subsequent calculations use only quotient
singularities, we do list the Hilbert series of every Fano 3-fold, not only of those
having only quotient singularities.



244 G. Brown and K. Suzuki

The Riemann–Roch theorem
Suzuki proves the appropriate version of Riemann–Roch in this context, follow-

ing Reid’s plurigenus formula [8], to compute the dimensions of the graded pieces
of R(X,A).

For a singularity p = 1
r (a,−a, f), we define ip(n) = −n/f mod r. By ‘mod r’,

we always mean least residue modulo r, so that 0 ≤ ip(n) < r. Similarly, when r is
clear from the context, the notation c denotes the least residue of c modulo r.

Theorem 3 ([10] Theorem 1.4). Let X,A be a Fano 3-fold of index f ≥ 3
and with basket B. Then pn := dim H0(X,OX(nA)) for any n > −f is computed by

pn = 1 +
n(n + f)(2n + f)

12
A3 +

nAc2(X)
12

+
∑

p=[r,a]∈B
cp(n), (1)

where cp(k) = −ip(k) r2−1
12r +

∑ip(k)−1
j=1

bj(r−bj)
2r and ab ≡ 1 mod r.

Summing these as a Hilbert series gives

PX,A(t) =
1

1 − t
+

(f2 + 3f + 2)t + (8 − 2f2)t2 + (f2 − 3f + 2)t3

12(1 − t)4
A3

+
t

(1 − t)2
Ac2(X)

12
+

∑
p∈B

1
1 − tr

r−1∑
k=1

cp(k)tk. (2)

Kawamata computes Ac2(X) = (1/f)(−KXc2(X)) in terms of B:

Theorem 4 ([6]). Let X,A be a Fano 3-fold with basket B. Then

−KXc2(X) = 24 −
∑

[r,a]∈B

(
r − 1

r

)
.

3. The algorithm for 3 ≤ f ≤ 19

We explain our algorithm for arbitrary 3 ≤ f ≤ 19, and we give explicit results
only in the case f = 3.

Step 1. Assembling possible baskets: A basket B comprising germs [r, a] of a
Fano 3-fold must satisfy several conditions.

Step 1 (a). Positive Ac2(X): Finiteness of the number is assured by Kawa-
mata’s condition ([6], Theorem 2):

−KXc2(X) > 0 or equivalently
∑

[r,a]∈B

(
r − 1

r

)
< 24.

Result. 2813 baskets satisfy Kawamata’s condition. (Recall that results
listed during this description refer to the calculation in the case f = 3.)
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Step 1 (b). Positive degree: The degree A3 of X,A can be computed from its
basket B by setting n = −1 in equation (1) since H0(X,O(−A)) = 0. This degree
must be strictly positive.

Result. 1295 of these baskets have A3 > 0.

Step 1 (b)+. Excess vanishing: This condition can be strengthened since
furthermore H0(X,O(nA)) = 0 for each n = −2,−3, . . . ,−f + 1. Enforcing this in
equation (1) has a significant effect once f ≥ 5.

Step 1 (c). Bogomolov–Kawamata bound: By Suzuki [10] Proposition 2.4 and
a consideration of the stability of a tensor bundle in Kawamata [6] Proposition 1,

(4f2 − 3f)A3 ≤ 4fAc2(X).

Result. 231 of these baskets satisfy the Bogomolov–Kawamata bound.

Step 1 (c)+. Imposing stability: This is an optional step, and we do not in-
clude it in our full classification. It imposes the stronger condition

f2A3 ≤ 3Ac2(X).

Fano 3-folds (or their baskets) that satisfy this stronger bound are called
Bogomolov–Kawamata stable, being in the semistable part of Kawamata’s anal-
ysis [6]. While it is expected that stable Fano 3-folds are the main case of the
classification—in fact, we do not know any non-stable examples—this condition is
not known to hold for all Fano 3-folds. All the examples we construct here are
stable in this sense.

Result. 181 of these baskets are Bogomolov–Kawamata stable.

Step 2. Computing Hilbert series: For each basket in B, compute a rational
expression for P (t) according to the formula (2). Since we also use a power series
expression for P (t) later, we convert this rational expression into a power series and
record that (order 30 is sufficient for our calculations).

Step 2+. Sections of −KX : Theorem 2 follows at once from the list of Hilbert
series. We simply confirm that in each case the coefficient of tf is nonzero. Although
we don’t know that each of these Hilbert series is realised by a Fano 3-fold, certainly
every Fano 3-fold (with f ≥ 3) has Hilbert series among our list.

Step 3. Estimating the degrees of generators: Suppose P (t) = 1 + p1t +
p2t

2 + · · · is the Hilbert series of some graded ring R =
⊕

d≥0 Rd. The follow-
ing is a standard method of guessing the degrees of some generators of a minimal
generating set of R.

Certainly R must have p1 generators of degree 1. (Of course, this number may
be zero.) These generate at most a q2 = 1

2p1(p1 − 1)-dimensional subspace of R2.
If p2 − q2 < 0, then this routine stops. On the other hand, if p2 − q2 ≥ 0, then R



246 G. Brown and K. Suzuki

must have at least p2 − q2 generators in degree 2. And so we continue into higher
degree.

The calculation is made straightforward by the following observation. If
n1, . . . , nd are the numbers of generators so far in degrees 1 up to d, then the num-
ber of monomials in degree d + 1 they determine (and so the maximum dimension
space they could span in that degree) is the coefficient of td+1 in the expansion

1
(1 − t)n1(1 − t2)n2 · · · (1 − td)nd

= 1 + n1t +
(

1
2
(n1 + 1)n1 + n2

)
t2 + · · · .

Such type changing (from rational functions to power series) is included in most
computer algebra systems, so this algorithm is easy to implement.

There are three important remarks. First, the graded ring R(X,A) is certainly
finitely generated, so this algorithm will stop. Usually it stops with some negative
coefficient, but there is one special case. It can happen that after some point the
expected number of generators pi − qi in each degree i is zero. The power series
expansion method fails here. But this only happens when the Hilbert series is that
of a weighted projective space, and we can test this at the outset using the rational
expression for P (t).

Second, the assumption of generality (that the generators span a large space)
can fail, and this will change the degrees occurring in a minimal generating set
(although in small examples it will not reduce the number of generators). This is
the main reason why our analysis is not a complete proof, although it is compelling.

Third, in most cases this algorithm will not determine a complete set of degrees
for a minimal generating set. This is the main reason why we restrict our attention
to low codimension when proposing models, which we do next.

Step 4. Confirming small cases: When the number of generators is small, we
attempt to build a Fano 3-fold realising the given Hilbert series or prove that in
fact more generators are needed. The methods we use are variations on a theme,
and they can be automated after a few trial runs identify the behaviour that can
arise. We describe the method in an example.

The basket B = {[2, 1], [3, 1], [7, 3]} with index f = 5 determines the rational
function

P =
t8 + t5 + t4 + t3 + 1

t13 − t12 − t11 + t9 + t8 − t7 − t6 + t5 + t4 − t2 − t + 1
.

Expanded as a power series, this starts

1 + t + 2t2 + 4t3 + 6t4 + 9t5 + 13t6 + 18t7 + 24t8 + · · · .

The generator estimating routine above (called FindFirstGenerators(P) in
Magma) predicts degrees 1, 2, 3, 3, 4, 5. But P cannot be of the form

polynomial in t∏
d=1,2,3,3,4,5(1 − td)
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since the denominator of P still has a factor t6 + t5 + t4 + t3 + t2 + t + 1 that does
not occur in this denominator. The solution is clear: include 7 as the degree of
a generator. From the Hilbert series point of view, this absorbs the excess factor
in the denominator; from the basket point of view, this provides the cyclic group
action to generate the contribution of the quotient singularity [7, 3] = 1

7 (3, 8, 5) in
the basket.

The final form of the Hilbert series is thus

−t20 + t14 + t13 + t12 + t11 − t9 − t8 − t7 − t6 + 1∏
d=1,2,3,3,4,5,7(1 − td)

which suggests a variety defined by 5 equations of weights 6, 7, 8, 9, 10:

X6,7,8,9,10 ⊂ P6(1, 2, 3, 3, 4, 5, 7).

In fact, these equations can be written as the five maximal Pfaffians of a skew 5×5
matrix, as in [1] Remark 1.8 or [9] Section 4, and it can be checked that this X is
a Fano 3-fold with singularities equal to the basket.

4. Classification in low codimension

We distinguish between cases in codimension ≤ 3, where we can write down
equations of Fano 3-folds and check their properties explicitly, and codimension 4,
where calculations are more difficult. Tables of these results are given below, and
the webpage [3] contains these and all other Hilbert series as Magma output, as
well as the Magma code to generate them.

Examples in codimension at most 3
Only seven weighted projective spaces are themselves are Fano 3-folds. These

are: P3 with f = 4; P(1, 1, 1, 2) with f = 5; P(1, 1, 2, 3) with f = 7; P(1, 2, 3, 5) with
f = 11; P(1, 3, 4, 5) with f = 13; P(2, 3, 5, 7) with f = 17; P(3, 4, 5, 7) with f = 19.

For hypersurfaces or in codimension 2, listed in Tables 1 and 2, the equations
are simply generic polynomials of the indicated degrees. Table 3 lists those in co-
dimension 3; here one must build a 5×5 skew matrix of forms (as in [1] Remark 1.8),
and then the equations are its five 4× 4 Pfaffians. It is a mystery why there are so
few families here for f ≥ 3; by comparison, in the case f = 1 there are 70 families
in codimension 3.

Examples in codimension 4 are more subtle
The Hilbert series routines and guesses of additional weights work in exactly

the same way in codimension 4 as in lower codimension. But it is not easy to
write down an example of a ring with given generator degrees in codimension 4.
In other graded ring calculations, such as for K3 surfaces in [2], there is much
use of projection and unprojection methods. But (Gorenstein) projection of a
Fano of higher index does not result in another Fano. Nevertheless, the projection
construction of a K3 surface section S = (z = 0) ⊂ X, where z is a variable in
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Table 1. Fano 3-folds in codimension 1

f Fano 3-fold X ⊂ P4 A3 Ac2(X) Basket B

3

X2 ⊂ P4 2 8 no singularities
X3 ⊂ P(1, 1, 1, 1, 2) 3/2 15/2 [2, 1]
X4 ⊂ P(1, 1, 1, 2, 2) 1 7/12 2 × [2, 1]
X6 ⊂ P(1, 1, 2, 2, 3) 1/2 13/2 3 × [2, 1]
X12 ⊂ P(1, 2, 3, 4, 5) 1/10 49/10 3 × [2, 1], [5, 1]
X15 ⊂ P(1, 2, 3, 5, 7) 1/14 73/14 [2, 1], [7, 2]
X21 ⊂ P(1, 3, 5, 7, 8) 1/40 151/40 [5, 2], [8, 1]

4
X4 ⊂ P(1, 1, 1, 2, 3) 2/3 16/3 [3, 1]
X6 ⊂ P(1, 1, 2, 3, 3) 1/3 14/3 2 × [3, 1]

5

X4 ⊂ P(1, 1, 2, 2, 3) 1/3 11/3 2 × [2, 1], [3, 1]
X6 ⊂ P(1, 1, 2, 3, 4) 1/4 15/4 [2, 1], [4, 1]
X6 ⊂ P(1, 2, 2, 3, 3) 1/6 17/6 [2, 1]
X10 ⊂ P(1, 2, 3, 4, 5) 1/12 35/12 2 × [2, 1], [3, 1], [4, 1]
X15 ⊂ P(1, 3, 4, 5, 7) 1/28 75/28 [4, 1], [7, 3]

6 X6 ⊂ P(1, 1, 2, 3, 5) 1/5 16/5 [5, 2]

7

X6 ⊂ P(1, 2, 2, 3, 5) 1/10 21/10 3 × [2, 1], [5, 2]
X6 ⊂ P(1, 2, 3, 3, 4) 1/12 23/12 [2, 1], 2 × [3, 1], [4, 1]
X8 ⊂ P(1, 2, 3, 4, 5) 1/15 29/15 2 × [2, 1], [3, 1], [5, 1]
X14 ⊂ P(2, 3, 4, 5, 7) 1/60 71/60 3 × [2, 1], [3, 1], [4, 1], [5, 2]

8
X6 ⊂ P(1, 2, 3, 3, 5) 1/15 26/15 2 × [3, 1], [5, 2]
X10 ⊂ P(1, 2, 3, 5, 7) 1/21 38/21 [3, 1], [7, 2]
X12 ⊂ P(1, 3, 4, 5, 7) 1/35 54/35 [5, 1], [7, 3]

9
X6 ⊂ P(1, 2, 3, 4, 5) 1/20 31/20 [2, 1], [4, 1], [5, 2]
X12 ⊂ P(2, 3, 4, 5, 7) 1/70 61/70 3 × [2, 1], [5, 2], [7, 3]

11
X12 ⊂ P(1, 4, 5, 6, 7) 1/70 69/70 [2, 1], [5, 1], [7, 1]
X10 ⊂ P(2, 3, 4, 5, 7) 1/84 59/84 2 × [2, 1], [3, 1], [4, 1], [7, 2]

13 X12 ⊂ P(3, 4, 5, 6, 7) 1/210 89/210 [2, 1], 2 × [3, 1], [5, 1], [7, 3]

degree f , can be a guide. We propose the list of examples in Table 4, although none
has been constructed explicitly. As justification, we give an example to illustrate
what goes wrong with the possible codimension 4 models that we have rejected—the
proposals listed in Table 4 are exactly those candidates that do not suffer from this
obstruction.

Let index f = 4 and basket B = {[5, 2]}; these (stable) data determine a Hilbert
series P (t). Suppose we can construct a Fano 3-fold X,A having Hilbert series P .
Considerations as above suggest the degrees of a minimal set of eight generators
for the ring R(X,A) could be 1, 1, 1, 2, 2, 3, 4, 5 so that X is in codimension 4. And
indeed there is a family of codimension 4 K3 surfaces in P6(1, 1, 1, 2, 2, 3, 5) that
could be the K3 sections (z = 0) ⊂ X, where z is the variable on X of degree 4. Now
a typical such K3 surface S admits a projection to a K3 surface of codimension 3 in
P5(1, 1, 1, 2, 2, 3)—this is simply the elimination of the degree 5 variable w from the
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Table 2. Fano 3-folds in codimension 2

f Fano 3-fold X ⊂ P5 A3 Ac2(X) Basket B

3

X6,6 ⊂ P(1, 1, 2, 3, 3, 5) 2/5 32/5 [5, 2]
X6,6 ⊂ P(1, 2, 2, 3, 3, 4) 1/4 19/4 4 × [2, 1], [4, 1]
X6,9 ⊂ P(1, 2, 3, 3, 4, 5) 3/20 93/20 [2, 1], [4, 1], [5, 2]

X12,15 ⊂ P(1, 3, 4, 5, 6, 11) 1/22 85/22 [2, 1], [11, 5]
X9,12 ⊂ P(2, 3, 3, 4, 5, 7) 3/70 183/70 3 × [2, 1], [5, 2], [7, 3]
X12,15 ⊂ P(3, 3, 4, 5, 7, 8) 1/56 103/56 [4, 1], [7, 3], [8, 3]

4

X6,8 ⊂ P(1, 2, 3, 3, 4, 5) 2/15 52/15 2 × [3, 1], [5, 2]
X8,10 ⊂ P(1, 2, 3, 4, 5, 7) 2/21 76/21 [3, 1], [7, 2]
X8,12 ⊂ P(1, 3, 4, 4, 5, 7) 2/35 108/35 [5, 1], [7, 3]
X10,12 ⊂ P(1, 3, 4, 5, 6, 7) 1/21 62/21 2 × [3, 1], [7, 1]
X10,12 ⊂ P(2, 3, 4, 5, 5, 7) 1/35 66/35 2 × [5, 2], [7, 2]
X12,14 ⊂ P(2, 3, 4, 5, 7, 9) 1/45 86/45 [3, 1], [5, 2], [9, 2]
X18,20 ⊂ P(4, 5, 6, 7, 9, 11) 1/231 206/231 [3, 1], [7, 2], [11, 5]

5 X10,15 ⊂ P(2, 3, 5, 5, 7, 8) 1/56 87/56 [2, 1], [7, 2], [8, 3]

Table 3. Fano 3-folds in codimension 3

f Fano 3-fold X ⊂ P6 A3 Ac2(X) Basket B
5

X6,7,8,9,10 ⊂ P(1, 2, 3, 3, 4, 5, 7) 5/42 109/42 [2, 1], [3, 1], [7, 3]
X12,13,14,15,16 ⊂ P(1, 4, 5, 6, 7, 8, 9) 1/36 71/36 [2, 1], [4, 1], [9, 1]

Table 4. Proposals for Fano 3-folds in codimension 4

f Fano 3-fold X ⊂ P7 A3 Ac2(X) Basket B

3
X ⊂ P(1, 1, 1, 1, 1, 3, 3, 4) 9/4 27/4 [4, 1]
X ⊂ P(1, 1, 2, 2, 3, 3, 4, 5) 3/5 27/5 [2, 1], [2, 1], [5, 1]
X ⊂ P(1, 1, 2, 2, 3, 3, 5, 7) 4/7 40/7 [7, 2]

4
X ⊂ P(1, 1, 2, 2, 3, 3, 4, 5) 7/15 62/15 [3, 1], [5, 2]
X ⊂ P(1, 1, 2, 2, 3, 4, 5, 7) 3/7 30/7 [7, 2]

5 X ⊂ P(1, 1, 2, 3, 3, 4, 5, 7) 2/7 24/7 [7, 3]
6 X ⊂ P(1, 2, 3, 4, 5, 5, 6, 7) 3/35 72/35 [5, 2], [7, 2]

ideal defining S (using the Gröbner basis with respect to a standard lexicographic
monomial order with w big, for instance). The image is in codimension 3, and its
equations are the five Pfaffians of a skew 5 × 5 matrix of forms. Crucially, one
calculates that the forms appearing in this matrix each have degree ≤ 3. That
is not a problem at the level of the K3 surface, but the equations of the Fano
3-fold must involve the degree 4 variable: the analogous projection of X would
have equations that do not involve the degree 4 variable, and this would force a
non-terminal singularity onto X itself.
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