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In this paper, the anisotropic curvature flows with driving force are considered. The exis-

tence of traveling curved fronts is shown by constructing supersolutions and subsolutions.
By the advantage of this method, their global stability is also proved. In the last section
the profiles of the traveling fronts are discussed when the anisotropy becomes strong and
converges to a non-smooth function.
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1. Introduction

The dynamics of the phase boundaries is one of the interesting problems in
applied mathematics. The interface between the two physical states is mainly
controlled by the surface free energy and the energy difference between two bulk
phases. The surface free energy usually depends on the orientation: it is represented
by a function Ψ(θ) with period π and where θ is the angle between the x axis and
the normal vector (cf. [11, 14]). Let denote by Γt the interface at time t, Vn the
normal velocity of the interface and κ its curvature. In this paper we consider the
following moving boundary problem in two-dimensional space (N = 2):{

Vn = −Ψ(θ) (Ψ(θ) + Ψ ′′(θ)) κ + aΨ(θ)

Γt|t=0 = Γ0,
(1.1)

where a is a constant which corresponds to the energy difference between the two
states. This equation was considered by Angenent and Gurtin [1] (also see [3, 4, 11]
for instance). The anisotropic curvature flow (1.1) fits to a Finsler metric, see
Section 2 for more details.

Through this work, we assume that

(H1) Ψ ∈ C2(R) is π-periodic and Ψ ′′ is a globally Lipschitz function,

(H2) there exist positive constants λi (i = 1, 2, 3, 4) such that for all θ ∈ R

λ1 ≤ Ψ(θ) ≤ λ2, λ3 ≤ Ψ(θ) + Ψ ′′(θ) ≤ λ4.
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If the interface Γt is represented by the level set of U , that is,

Γt = {(x, y) | U(x, y, t) = 0},

then U satisfies the following degenerate parabolic equation:

Ut = −Φ0(∇U)

⎧⎨⎩−
∑
i,j

∂2Φ0

∂pi∂pj
(∇U)

∂2U

∂xi∂xj
+ a

⎫⎬⎭ (1.2)

where Φ0 is a function related to Ψ (see Section 2). Moreover, if Γt is a graph, then
we may set U(x, y, t) = y − u(x, t). Denoting the angle between the normal vector
(−ux, 1) and the x axis by θ(ux) and setting

G1(ux) := Ψ(θ(ux)) (Ψ(θ(ux)) + Ψ ′′(θ(ux))) , G2(ux) := aΨ(θ(ux))
√

1 + u2
x,

we see that u satisfies the following parabolic equation:⎧⎪⎨⎪⎩
ut =

G1(ux)
1 + u2

x

uxx + G2(ux) in R × (0,∞)

u(x, 0) = u0(x) in R.

(1.3)

In this work, we are mainly interested in traveling curved fronts of (1.3) when
a > 0 and the initial function enjoys linear growth conditions at x → ±∞. We
prove that for any pair of two asymptotic lines at infinity there exists a traveling
curved front solution of problem (1.3), which is a solution of the form ϕ(x−c1t)+c2t

with suitable constants c1 and c2. Then we prove that this solution is stable in the
following sense: if u is any solution possessing two asymptotic lines, it converges
for large time to the traveling curved front which has the same asymptotic lines
as u. The existence of the traveling curved fronts and the global stability for the
isotropic case Ψ ≡ 1 are studied in [8, 12].

The organization of this paper is as follows: in Section 2, we recall the definition
of a Finsler metric. Then, in Section 3, we derive an existence result for problem
(1.3) as well as a comparison principle. The main section of this paper is Section 4
where we prove the existence of a traveling curved front solution and study its
stability. In Sections 5 and 6, we give two applications of our main result: first we
prove a stability property of the traveling curved front in the class of non graph
solutions; then we prove existence of traveling curved front solution in the case of
non-smooth convex anisotropy.

2. A Short Overview on Finsler Geometry

We first recall the definition of a Finsler metric.

Definition. A continuous function Φ : R
N → [0,∞) is a Finsler metric if

(i) Φ ∈ C2(RN \ {0}) is convex and ∇2Φ is locally Lipschitz ;
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(ii) Φ2 is strictly convex ;
(iii) Φ is even and positively homogeneous of degree one:

Φ(sξ) = |s|Φ(ξ) for all s ∈ R and ξ ∈ R
N ; (2.1)

(iv) Φ is a bounded and coercive map:

λ|ξ| ≤ Φ(ξ) ≤ Λ|ξ|, (2.2)

for all ξ ∈ R
N and for two positive constants λ and Λ.

We recall that the dual function defined by Φ0(ξ) = sup{ξ∗ · ξ | Φ(ξ∗) ≤ 1} is
also a Finsler metric and it holds that for all ξ ∈ R

N

Φ0(sξ) = |s|Φ0(ξ), (2.3)

λ0|ξ| ≤ Φ0(ξ) ≤ Λ0|ξ|, (2.4)

with λ0 = 1/Λ and Λ0 = 1/λ.
In the particular case of dimension N = 2, (2.3) implies that for all ξ �= 0 we

have

Φ0(ξ) = |ξ|Φ0

(
ξ

|ξ|
)

,

and that there exists a π-periodic function Ψ satisfying

Φ0(ξ) = |ξ|Ψ(θ), (2.5)

where θ is the angle between ξ and the x axis. Moreover, the regularity properties
on Φ0 directly implies (H1) and (2.4) gives the first inequality in (H2). One proves
the second inequality in (H2), using

Φ0
ξξ(ξ) =

Ψ(θ) + Ψ ′′(θ)
|ξ|

(
sin2 θ − sin θ cos θ

− sin θ cos θ cos2 θ

)
. (2.6)

See [4] for more details.
Next we derive the parabolic equation for motion by anisotropic mean cur-

vature. If Γ is a smooth hypersurface of R
N and n its outer normal vector (in

the Euclidean sense), the Φ-normal vector and the Φ-mean curvature are defined
respectively by

nΦ = Φ0
ξ(n), κΦ =

1
N − 1

div nΦ.

The level set formulation is the following: if U is a smooth function with non
vanishing gradient such that Γ = {x ∈ R

N | U(x1, . . . , xN ) = 0}, and U changes of
sign along Γ , then

n =
∇U

|∇U | , nΦ = Φ0
ξ(∇U),

κ =
1

N − 1
div

∇U

|∇U | , κΦ =
1

N − 1
div Φ0

ξ(∇U),
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on Γ . If N = 2, (2.6) implies that

κΦ = (Ψ(θ) + Ψ ′′(θ)) κ. (2.7)

We also define the normal velocity and the anisotropic normal velocity by

Vn = − Ut

|∇U | , Vn,Φ = − Ut

Φ0(∇U)
, (2.8)

respectively. Then we can get the natural moving boundary problem

Vn,Φ = −(N − 1)κΦ + a,

especially, in dimension N = 2,

Vn,Φ = −κΦ + a. (2.9)

By (2.5) and (2.7), (2.9) is transformed into

Vn = −Ψ(θ) (Ψ(θ) + Ψ ′′(θ)) κ + aΨ(θ).

Using the level set formulation, we can also obtain (1.2).

3. Existence and Comparison Principle

In this section, we use a result of Barles, Biton, Bourgoing and Ley [2] to prove
the existence as well as a comparison principle for Problem (1.3) when the initial
function u0 has a limited growth at infinity (see condition (H3) below). To that
purpose, we use viscosity solutions of (1.3). We refer to [7, §8] for a definition of
such solutions. Note that a classical solution is a viscosity solution (see [7, §1] for
instance). The same remark holds for supersolutions and subsolutions.

First, let define the continuous function σ by

σ(p) =

√
G1(p)
1 + p2

,

and we check that the hypotheses of [2] are fulfilled. Namely, we prove that there
exist two positive constants C1, C2 such that for all p, q ∈ R

|σ(p) − σ(q)| ≤ C1|p − q|
1 + |p| + |q| , (3.1)

|G2(p) − G2(q)| ≤ C2|p − q|. (3.2)

Note that

θ(p) = Arccos

(
−p√
1 + p2

)
,
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is a globally Lipschitz continuous function. A simple computation shows that
θ′(p) = 1/(1 + p2). Then, by (H1), it holds that the function p 	→ G1(p) is globally
Lipschitz. Note also that p 	→ G2(p) is globally Lipschitz so that (3.2) is satisfies.

Proof of (3.1). First, by (H2), there exists c such that for all p ∈ R

λ1λ3 ≤ G1(p) ≤ λ2λ4. (3.3)

Then for all p, q ∈ R, it holds that

|
√

G1(p) −
√

G1(q)| =
|G1(p) − G1(q)|√
G1(p) +

√
G1(q)

≤ 1
2
√

λ1λ3

|G1(p) − G1(q)|, (3.4)

and we deduce from the fact that G1 is globally Lipschitz that

|
√

G1(p) −
√

G1(q)| ≤ C3|p − q| (3.5)

with some positive constant C3. Also remark that there is a positive constant C4

such that

|
√

1 + p2 −
√

1 + q2| ≤ C4|p − q|. (3.6)

Without lost of generality we may suppose that |p| ≥ |q|. By (3.5), (3.3) and (3.6),
we have

|σ(p) − σ(q)| =

∣∣∣∣∣
√

G1(p) − √
G1(q)√

1 + p2
+

√
G1(q)

(
1√

1 + p2
− 1√

1 + q2

)∣∣∣∣∣
≤ C3|p − q|√

1 + p2
+

C5|p − q|√
(1 + p2)(1 + q2)

≤ C6|p − q|
1 + |p| + |q| ,

where the last inequality comes from

(1 + |p| + |q|)2 ≤ (1 + 2|p|)2 ≤ 6(1 + |p|2),

and

(1 + |p| + |q|)2 ≤ 3(1 + p2 + q2) ≤ 3(1 + p2)(1 + q2).

This proves the equation (3.1).

Now, we give the precise hypothesis on the initial function u0:

(H3) There exist ν ∈ [0, (1 +
√

5)/2) and a modulus of continuity m such that

|u0(x) − u0(y)| ≤ m ((1 + |x| + |y|)ν |x − y|) for all x, y ∈ R

where lims→+0 m(s) = 0 and m(s + t) ≤ m(s) + m(t).
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Finally, we introduce the space Cpoly of functions on R×[0, T ] which have polynomial
growth at infinity. More precisely v ∈ Cpoly if there exists � > 0 such that

v(x, t)
1 + |x|� → 0 as |x| → +∞ uniformly with respect to t ∈ [0, T ].

Then we deduce the following Lemma from [2, Theorem 2.1 and Corollary].

Lemma 3.1. The following hold.
(i) Comparison principle. If u0 satisfies (H3) and if ū ∈ Cpoly (resp. u ∈

Cpoly) is a supersolution (resp. subsolution) of (1.3) with ū(x, 0) ≥ u0(x) for
all x ∈ R (resp. u(x, 0) ≤ u0(x)), then

u ≤ ū in R × [0, T ].

(ii) Existence result. Let u0 satisfies (H3). In Cpoly , there exists a unique
continuous viscosity solution of (1.3).

4. The Traveling Curved Fronts

Consider the solution of

ut =
G1(ux)
1 + u2

x

uxx + G2(ux). (4.1)

Definition. We say that a solution u of (4.1) is a traveling curved front if it
holds that u(x, t) = ϕ(x−c1t)+c2t for all (x, t) ∈ R×[0,+∞) where there exist 0 <

θ− < θ+ < π such that the function ϕ has two asymptotic lines y = tan(θ±−π/2)x
as x → ±∞.

The function ϕ is called the profile of the traveling curved front and the vector
c := t(c1, c2) is the velocity of the front. The profile ϕ satisfies

c2 − c1ϕ
′(x) =

G1(ϕ′(x))ϕ′′(x)
1 + ϕ′(x)2

+ G2(ϕ′(x)). (4.2)

Let θ(x) be the angle between the x-axis and the normal vector to the graph
of ϕ at the point x. Then we have

ϕ′(x) = tan
(
θ − π

2

)
, (4.3)

and (4.2) reduces to

θ′(x) = f(θ), (4.4)

θ(−∞) = θ−, (4.5)

θ(∞) = θ+, (4.6)
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where

f(θ) :=
c1 cos θ + c2 sin θ − aΨ(θ)
Ψ(θ)(Ψ(θ) + Ψ ′′(θ)) sin θ

.

First we show the following lemma.

Lemma 4.1. For any θ± (0 < θ− < θ+ < π), there exists a unique pair of
constants (c1, c2) such that

f(θ±) = 0.

Moreover, if a �= 0, then f(θ)/a does not depend on a and⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f(θ)
a

> 0 for θ− < θ < θ+,

f(θ)
a

< 0 for 0 ≤ θ < θ−, θ+ < θ ≤ π,

f ′(θ−)
a

> 0,
f ′(θ+)

a
< 0.

(4.7)

Proof. By (4.5) and (4.6), c1 and c2 are uniquely determined as follows:(
c1

c2

)
= a

(
cos θ+ sin θ+

cos θ− sin θ−

)−1 (
Ψ(θ+)
Ψ(θ−)

)
= − a

sin(θ+ − θ−)

(
sin θ− − sin θ+

− cos θ− cos θ+

) (
Ψ(θ+)
Ψ(θ−)

)
. (4.8)

Thus f(θ)/a does not depend on a. Note that Ψ(θ)(Ψ(θ) + Ψ ′′(θ)) sin θ > 0 for all
θ ∈ (0, π). Then we set

h(θ) := c1 cos θ + c2 sin θ − aΨ(θ).

Since

h′′(θ) = −c1 cos θ − c2 sin θ − aΨ ′′(θ),

we have that

−h′′(θ) − h(θ) = a(Ψ ′′(θ) + Ψ(θ)),

h(θ+) = h(θ−) = 0.

Let K(θ, ξ) be the Green function, that is,

K(θ, ξ) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sin(θ − θ−) sin(θ+ − ξ)

sin(θ+ − θ−)
for θ < ξ,

sin(ξ − θ−) sin(θ+ − θ)
sin(θ+ − θ−)

for ξ < θ,
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so that h is represented as

h(θ) = a

∫ θ+

θ−
K(θ, ξ)(Ψ ′′(ξ) + Ψ(ξ))dξ. (4.9)

For ξ ∈ (θ−, θ+), it holds that K(θ, ξ) > 0 if θ ∈ (θ−, θ+). Since Ψ ′′(ξ) + Ψ(ξ) > 0,
it implies that if a > 0 (resp. a < 0) then h > 0 (resp. h < 0) in (θ−, θ+). Also, we
deduce from the Hopf Lemma that h′(θ−) > 0 and h′(θ+) < 0 if a > 0 and that
h′(θ−) < 0 and h′(θ+) > 0 if a < 0. In the case where θ+ < θ ≤ π and a > 0,
we have h′(θ+) < 0, h(θ+) = 0 and h′′(θ) + h(θ) < 0. It follows from the Strum
theorem that h possesses no zeros between θ+ and π, which implies that h < 0 on
the interval. We can show the other cases too. The equality

f ′(θ±) =
h′(θ±)

Ψ(θ±)(Ψ(θ±) + Ψ ′′(θ±)) sin θ±
, (4.10)

proves the last two inequalities of (4.7). �

Angenent and Gurtin [1] already proved the above lemma in the context of
the Finsler metric. See [1, Theorem on steady motions, p. 349] or [11, Section 9.2,
p. 65].

Lemma 4.2. If a > 0 and 0 < θ− < θ+ < π, then there exists a unique
traveling curved front u(x, t) = ϕ(x − c1t) + c2t satisfying

lim
x→+∞ (ϕ(x) − x tan(θ+ − π/2)) = 0,

lim
x→−∞ (ϕ(x) − x tan(θ− − π/2)) = 0.

(4.11)

Moreover, the following holds:
(i) ϕ′′(x) > 0, 0 < ϕ(x) − xϕ′(x) ≤ ϕ(0) for x ∈ R.
(ii) supx∈R

|ϕ′(x)| < ∞.
(iii) The vector c = t(c1, c2) belongs to the cone starting at the origin and delimited

by the vectors t(cos(θ+ − π/2), sin(θ+ − π/2)) and t(cos(θ− − π/2), sin(θ− −
π/2)).

(iv) For all x ∈ R, it holds that ϕ(x) ≥ x tan(θ± − π/2).

Proof. Lemma 4.1 implies that there exists a unique solution θ̃ of (4.4)–(4.6)
up to translation. Let θ̃ be any solution. Then, θ̃(x) ∈ (θ−, θ+), θ̃x > 0. By (4.7),
there exists α1, α2 > 0 such that

|θ̃(x) − θ±| ≤ α1e
−α2|x| as x → ±∞. (4.12)

Then, by setting

ϕ̃(x) =
∫ x

0

tan
(
θ̃(s) − π

2

)
ds,
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one can easily check that ϕ̃ satisfies (4.2)–(4.3). By (4.12), there exist two constants
C± such that

lim
x→±∞[ϕ̃(x) − x tan(θ± − π/2)] = C±. (4.13)

Let t(ρ1, ρ2) be the intersection between the two lines y = x tan(θ± − π/2) + C±,
then one can easily check that ϕ(x) = ϕ̃(x + ρ1) − ρ2 is the unique solution of
(4.2)–(4.3) satisfying

lim
x→±∞[ϕ(x) − x tan(θ± − π/2)] = 0.

In the sequel we will denote by θ the solution of (4.4)–(4.6) such that

ϕ(x) = ϕ(0) +
∫ x

0

tan(θ(s) − π/2)ds.

Then (4.3) gives that

ϕ′′(x) =
θ′(x)

cos2(θ(x) − π/2)
> 0,

and since (ϕ(x) − xϕ′(x))′ = −xϕ′′(x), we have that

lim
|x|→+∞

(ϕ(x) − xϕ′(x)) < ϕ(x) − xϕ′(x) ≤ ϕ(0).

By (4.3) and (4.11), it holds that

lim
|x|→+∞

(ϕ(x) − xϕ′(x)) = lim
|x|→+∞

(ϕ(x) − x tan (θ± − π/2)) = 0, (4.14)

which concludes the proof of (i). Note that (iv) directly follows from (i). Thus, (ii)
follows from (4.3) and the fact that θ(x) ∈ (θ−, θ+). Also, the definition of t(c1, c2)
implies that (

c1

c2

)
·
(

cos θ±
sin θ±

)
= aΨ(θ±) > 0,

which proves (iii). �

In the rest of this section, we assume that a > 0.
Next we consider the asymptotic stability of the traveling curved front. As in

[13], we search for a supersolution and a subsolution of the following type:

v(x, t) =
1

α(t)
ϕ(α(t)(x − c1t)) + c2t + β(t).

Putting

z = α(t)(x − c1t),
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we have

L[v] := vt − G1(vx)vxx

1 + v2
x

− G2(vx)

=
αt

α2
(zϕ′(z) − ϕ(z)) − c1ϕ

′(z) + c2 + βt − αG1(ϕ′(z))ϕ′′(z)
1 + ϕ′(z)2

− G2(ϕ′(z))

=
αt

α2
(zϕ′(z) − ϕ(z)) + βt + (1 − α) {c2 − c1ϕ

′(z) − G2(ϕ′(z))}

=
αt

α2

{
zϕ′ − ϕ +

α2βt

αt
+

(1 − α)α2

αt
(c2 − c1ϕ

′ − G2(ϕ′))
}

. (4.15)

By this calculation we can construct the supersolution and subsolution.

Lemma 4.3. Let v±(x, t) be defined by

v±(x, t) :=
1

α±(t)
ϕ(α±(t)(x − c1t)) + c2t + β±(t), (4.16)

where

α±(t) := 1 ∓ δe−γt,

β±(t) := σ

(
1

α±(0)
− 1

α±(t)

)
.

Then, for any δ, γ are positive constants, there exists a non-negative constant
σ0(γ, δ) such that

lim
γ→0

σ0(γ, δ) = 0, (4.17)

and v+ is a supersolution of (1.3) and v− is a subsolution for σ > σ0(γ, δ). More-
over, v+(x, t) ≥ v−(x, t) for any x ∈ R and t ≥ 0.

Proof. By (4.15), we have

L[v±] = ±δγe−γt

α2±

{
zϕ′ − ϕ + σ +

α2
±
γ

(c2 − c1ϕ
′ − G2(ϕ′))

}
.

Set

σ0(γ, δ) := sup
z∈R

{
−zϕ′(z) + ϕ(z) − (1 − δ)2

γ
(c2 − c1ϕ

′(z) − G2(ϕ′(z)))
}

.

Lemma 4.2 (i), (ii) and Lemma 4.1 immediately imply that v+ is a supersolution
when σ > σ0(γ, δ) and that v− is a subsolution. Letting z → ±∞, we see that
σ0(γ, δ) ≥ 0.

Next we shall show that for any ε > 0 and δ �= 1, there exists a positive
constant γ0 such that

ϕ(z) − zϕ′(z) ≤ ε +
(1 − δ)2

γ
(c2 − c1ϕ

′(z) − G2(ϕ′(z)))
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for 0 < γ < γ0 and z ∈ R, which in turn implies (4.17).
First, by (4.14), there exists a positive constant R such that

ϕ(z) − zϕ′(z) ≤ ε for |z| ≥ R.

It follows from (4.2) and Lemma 4.2 (i) that, for |z| ≤ R,

c2 − c1ϕ
′(z) − G2(ϕ′(z)) =

G1(ϕ′(x))ϕ′′(x)
1 + ϕ′(x)2

≥ CR > 0

for a suitable positive constant CR. Then, Lemma 4.2 (i) implies that, for γ close
enough to 0,

ϕ(z) − zϕ′(z) ≤ ϕ(0) ≤ ε +
(1 − δ)2

γ
CR,

≤ ε +
(1 − δ)2

γ
(c2 − c1ϕ

′(z) − G2(ϕ′(z))).

Next, we will show that v+ ≥ v−. The simple calculation leads us to

v+(x, 0) − v−(x, 0) =
∫ α−(0)

α+(0)

1
α2

(ϕ − zϕ′)dα ≥ 0.

Since v+ is a supersolution and v− is a subsolution, we have proved that v+(x, t) ≥
v−(x, t) for t ≥ 0. �

By the supersolutions and subsolutions in Lemma 4.3 we can show the local
asymptotic stability of the traveling curved fronts by the similar argument to [13]
which is based on [5, 6].

Theorem 4.4. Assume that u0(x) satisfies

lim
x→±∞ |u0(x) − x tan(θ± − π/2)| = 0, (4.18)

u0(x) ≥ x tan(θ+ − π/2) for x > 0, (4.19)

u0(x) ≥ x tan(θ− − π/2) for x < 0. (4.20)

Then,

lim
t→∞ sup

x∈R

|u(x, t) − ϕ(x − c1t) − c2t| = 0.

Note that, by Lemma 4.2 (iv), v±(x, 0) also satisfy (4.19)–(4.20) and that the
global existence of the solution u(x, t) of (1.3) in time is guaranteed by the local
existence of solutions of (1.3) and the existence of supersolutions and subsolutions
in [0, T ] for all T > 0.

Proof. We shall show that, for any ε > 0, there exists a large time T such
that

ϕ(x − c1t) + c2t − ε ≤ u(x, t) ≤ ϕ(x − c1t) + c2t + ε, (4.21)
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for t ≥ T and x ∈ R.
We first prove the upper estimate. By (4.18), there is a positive constant R

such that

|u0(x) − x tan(θ± − π/2)| ≤ ε

3
for |x| ≥ R. (4.22)

Lemma 4.2 (iv) and (4.22) imply that, for |x| ≥ R and δ < 1,

v+(x, 0) +
ε

3
=

1
1 − δ

ϕ((1 − δ)x) +
ε

3
≥ x tan(θ± − π/2) +

ε

3
≥ u0(x).

Note that by Lemma 4.2 (i), minx∈R ϕ(x) > 0 and choose δ close enough to 1 so
that

u0(x) ≤ 1
1 − δ

min
x∈R

ϕ(x) for |x| ≤ R.

Then we have that for |x| ≤ R

v+(x, 0) +
ε

3
=

1
1 − δ

ϕ((1 − δ)x) +
ε

3

≥ 1
1 − δ

min
x∈R

ϕ(x) +
ε

3
≥ u0(x).

Since by Lemma 4.3 v+ + ε/3 is also a supersolution, we have proved that for
δ close enough to 1 and for all γ > 0

u(x, t) ≤ v+(x, t) +
ε

3
.

Then take γ so small that

δσ0(γ, δ)
(1 − δ)2

<
ε

3
,

and choose σ such that σ0(γ, δ) < σ < ε(1 − δ)2/(3δ). By setting z = x − c1t and
by the definition of v+, we have

v+(x, t) − ϕ(z) − c2t =
1

α+(t)
ϕ(α+(t)z) − ϕ(z) + σ

(
1

α+(0)
− 1

α+(t)

)
≤

∫ 1

α+(t)

ϕ(αz) − αzϕ′(αz)
α2

dα +
δσ

(1 − δ)2

≤ ϕ(0)
α+(t)2

(1 − α+(t)) +
δσ

(1 − δ)2

≤ ϕ(0)δ
(1 − δ)2

e−γt +
δσ

(1 − δ)2
.

For t ≥ T1 := ln[(3ϕ(0)δ)/((1 − δ)2ε)]/γ and for all x ∈ R, we have

u(x, t) ≤ v+(x, t) +
ε

3
≤ ϕ(x − c1t) + c2t + ε, (4.23)



Anisotropic Curvature Flows 95

which proves the upper estimate. Note that inequality (4.23) is still establish even
if u0 does not satisfy (4.19)–(4.20).

Next we show the lower estimate. By Lemma 4.2, there is a positive constant
R such that

|ϕ(x) − x tan(θ± − π/2)| ≤ ε

3
for |x| ≥ R. (4.24)

For all δ > 0 and all |x| ≥ R, it holds that |(1 + δ)x| ≥ R and then (4.24) implies
that

v−(x, 0) − ε

3
=

1
1 + δ

ϕ((1 + δ)x) − ε

3
≤ x tan(θ± − π/2) ≤ u0(x),

where the last inequality follows from (4.19)–(4.20). Moreover, for |x| ≤ R, using
Lemma 4.2 (i), it holds that

v−(x, 0) − ε

3
=

1
1 + δ

ϕ((1 + δ)x) − ε

3

≤ 1
1 + δ

ϕ(0) + xϕ′((1 + δ)x) − ε

3

≤ 1
1 + δ

ϕ(0) + x tan(θ± − π/2) − ε

3
.

Then let δ be so large that ϕ(0)/(1 + δ) ≤ ε/3, then (4.19)–(4.20) implies that for
|x| ≤ R,

v−(x, 0) − ε

3
≤ u0(x).

Now, choose γ and σ satisfying

δσ0(γ, δ)
1 + δ

<
ε

3
, σ0(γ, δ) < σ <

(1 + δ)ε
3δ

.

Since v−(x, t) − ε/3 is also a subsolution, Lemma 4.3 implies that, for t ≥ 0,

v−(x, t) − ε

3
≤ u(x, t).

Similarly as the upper estimate, we have

ϕ(z) + c2t − v−(x, t) = ϕ(z) − 1
α−(t)

ϕ(α−(t)z) − σ

(
1

α−(0)
− 1

α−(t)

)
≤

∫ α−(t)

1

ϕ(αz) − αzϕ′(αz)
α2

dα +
δσ

1 + δ

≤ ϕ(0)δe−γt +
δσ

1 + δ
.

If T2 is large enough, it holds that ϕ(x − c1t) + c2t − ε ≤ u(x, t) for t ≥ T2, which
proves inequality (4.21) for all T ≥ max(T1, T2). �
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Theorem 4.4 directly implies that the local asymptotic stability for the initial
data satisfying (4.18)–(4.20). The assumption (4.18) is essential. It is shown in [13]
that some solutions do not converge to the traveling wave, if (4.18) violates. The
conditions (4.19) and (4.20) can be relaxed by introducing another subsolution as
in [13].

Lemma 4.5. There exists ε0 such that for any ε ∈ (0, ε0), there exist positive
constants ρ± and two traveling curved fronts y = ϕ∗

±(x − c1t) + c2t satisfying

ϕ∗
+(x) is defined on [−ρ+,∞), and ϕ∗

−(x) is on (−∞, ρ−] respectively,

lim
x→±∞

(
ϕ∗
±(x) − x tan(θ± − π/2)

)
= 0,

lim
x→∓ρ±

d

dx
ϕ∗
±(x) = ±∞,

ϕ∗
+(0) = ϕ∗

−(0) = −ε.

Furthermore, it holds that

(ϕ∗
±)′′(z) ≤ 0 and 0 ≤ z(ϕ∗

±)′(z) − ϕ∗
±(z) ≤ ε. (4.25)

Proof. Using Lemma 4.1, one shows that there exist solutions θ∗± of (4.4) such
that

(θ∗−)′ = f(θ∗−), θ∗−(ρ−) = 0, θ∗−(−∞) = θ−,

(θ∗+)′ = f(θ∗+), θ∗+(−ρ+) = π, θ∗+(∞) = θ+.

By an appropriate shifts in x and y, we can easily check the existence of ϕ∗
±.

Moreover, by denoting by θ∗± the orbits such that

(ϕ∗
±)′ = tan(θ∗± − π/2),

it holds that

(ϕ∗
±)′′ =

(θ∗±)′

cos2(θ∗± − π/2)
< 0,

and the equality (ϕ∗
±(z) − z(ϕ∗

±)′(z))′ = −z(ϕ∗
±)′′ implies that

ϕ∗
±(z) − z(ϕ∗

±)′(z) ≥ −ε,

which concludes the proof. �

Note that tan(θ∗− − π/2) ≤ tan(θ− − π/2) and that tan(θ∗+ − π/2) ≥ tan(θ+ −
π/2) so that

ϕ∗
+(z) = ϕ∗

+(0) +
∫ z

0

tan(θ∗+ − π/2)ds ≥ −ε + z tan(θ+ − π/2) for z ≥ 0,

ϕ∗
−(z) = ϕ∗

−(0) +
∫ z

0

tan(θ∗− − π/2)ds ≥ −ε + z tan(θ− − π/2) for z ≤ 0.

(4.26)
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Using ϕ∗
± we can construct the following subsolution.

Lemma 4.6. Let v− be defined by

v−(x, t) :=

⎧⎪⎪⎨⎪⎪⎩
1

α∗(t)
ϕ∗

+(α∗(t)(x − c1t)) + c2t + β∗(t), for x − c1t ≥ 0

1
α∗(t)

ϕ∗
−(α∗(t)(x − c1t)) + c2t + β∗(t), for x − c1t ≤ 0

where

α∗(t) := 1 − δ∗e−γ∗t,

β∗(t) := −σ∗
(

1
α∗(0)

− 1
α∗(t)

)
.

For any positive constants δ∗, γ∗, there exists a positive constant σ∗
0(γ, δ) such that

v− is a subsolution of (1.3) for σ∗ > σ∗
0(γ∗, δ∗). Moreover,

lim
γ∗→0

σ∗
0(γ∗, δ∗) = 0. (4.27)

Proof. We consider the case on [−ρ+,∞). It follows from (4.15) that

L[v−] = −δ∗γ∗e−γt

(α∗)2

{
−z(ϕ∗

+)′ + ϕ∗
+ + σ∗ +

(α∗)2

γ∗ (−c2 + c1(ϕ∗
+)′ + G2((ϕ∗

+)′))
}

,

so that L[v−] ≤ 0 for all σ∗ ≥ σ∗
0(γ∗, δ∗) where

σ∗
0(γ∗, δ∗) := sup

z∈R

{
z(ϕ∗

+)′ − ϕ∗
+ − (1 − δ∗)2

γ∗ (−c2 + c1(ϕ∗
+)′ + G2((ϕ∗

+)′))
}

.

By letting z → +∞, we see that σ∗
0(γ∗, δ∗) ≥ 0. To show (4.27), we need to prove

that, for any ε′ > 0, there exists γ∗
0 such that

z(ϕ∗
+)′ − ϕ∗

+ ≤ ε′ +
(1 − δ∗)2

γ∗ (−c2 + c1(ϕ∗
+)′ + G2((ϕ∗

+)′))

for 0 < γ∗ < γ∗
0 and z ∈ R. By the similar argument in the proof of Lemma 4.3,

we see the above inequality.
We can perform a similar computation for ϕ∗

−. Then, the lemma follows from
the fact that the maximum of subsolutions is also a subsolution. �

We give a simpler proof of the global stability than in [13].

Theorem 4.7. Let u0(x) satisfy (4.18) and u(x, t) be a solution of (4.1) with
u(x, 0) = u0(x). Then,

lim
t→∞ sup

x∈R

|u(x, t) − ϕ(x − c1t) − c2t| = 0.
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Proof. In view of Theorem 4.4, we only need to show that, for any ε > 0,
there exists a time T such that

x tan(θ± − π/2) ≤ u(x + c1T, T ) − c2T + 3ε for x ∈ R. (4.28)

To that purpose, we use a similar argument as in Theorem 4.4. Let ε > 0 be
small enough and take ϕ∗

± as in Lemma 4.5. First, we can choose R > 0 such that

x tan(θ± − π/2) − ε < u0(x) for |x| ≥ R. (4.29)

Then, choose η > 0 so that ϕ∗
±(±x) ≤ −ε/2 for all 0 ≤ x ≤ η. Define

MR = sup
x∈[−R,R]

|u0(x)|

and choose δ∗ ∈ (0, 1) close enough to 1 so that

(1 − δ∗)R < η, and
ε

2(1 − δ∗)
≥ MR.

Then, if |x| ≤ R, it holds that |(1 − δ∗)x| ≤ η and then by Lemma 4.6

v−(x, 0) =
1

1 − δ∗
ϕ∗
±((1 − δ∗)x) ≤ 1

1 − δ∗
× −ε

2
≤ −MR ≤ u0(x),

which together with (4.29) and (4.25) implies that

v−(x, 0) − ε ≤ u0(x) for all x ∈ R.

Then for all positive constants γ∗ and σ∗ such that σ∗ ≥ σ∗
0(γ∗, δ∗), Lemma 4.6

implies that

v−(x, t) − ε ≤ u(x, t) (4.30)

for any x ∈ R and t ≥ 0.
By (4.27), we can choose γ∗ and σ∗ small enough to satisfy

2σ∗
0(γ∗, δ∗)δ∗

1 − δ∗
≤ 2σ∗δ∗

1 − δ∗
< ε.

Using (4.26), we have, for x > 0,

v−(x + c1t, t) − c2t =
1

α∗(t)
ϕ∗

+(α∗(t)x) + β∗(t)

≥ 1
α∗(t)

(−ε + α∗(t)x tan(θ+ − π/2)
) − σ∗δ∗

1 − δ∗

≥ x tan(θ+ − π/2) − ε

α∗(t)
− σ∗δ∗

1 − δ∗
.
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Then, for t ≥ (ln 3δ∗)/γ∗, it holds that

v−(x + c1t, t) − c2t ≥ x tan(θ+ − π/2) − 2ε. (4.31)

Similarly it holds that, for x < 0 and t large enough,

v−(x + c1t, t) − c2t ≥ x tan(θ− − π/2) − 2ε. (4.32)

Combining (4.30)–(4.32) immediately implies (4.28). �

5. Level Set Methods

In this section, we give an application of our result to movement by anisotropic
curvature in the plane. More precisely, let Γ0 be a curve in R

2 satisfying:

Γ0 possesses asymptotic lines y = x tan(θ± − π/2) as x → ±∞.

Namely, we suppose that there are two functions ζ1, ζ2 ∈ C(R) such that ζ1, ζ2

satisfy hypothesis (H3) and

Γ0 ⊂ {(x, y) ∈ R
2 | ζ1(x) ≤ y ≤ ζ2(x)},

lim
x→±∞

(
ζ1(x) − x tan(θ± − π/2)

)
= 0,

lim
x→±∞

(
ζ2(x) − x tan(θ± − π/2)

)
= 0.

Let U0 be a continuous function such that

{(x, y) ∈ R
2 | U0(x, y) = 0} = Γ0,

U0(x, y) = 1 if y ≥ ζ2(x) + 1, U0(x, y) = −1 if y ≤ ζ1(x) − 1,

and such that there exist ν ∈ [0, (1 +
√

5)/2) and a modulus of continuity m such
that

|U0(x, y) − U0(x′, y′)| ≤ m ((1 + |x| + |x′| + |y| + |y|′)ν) (|x − x′| + |y − y′|)

for all x, y ∈ R.
Then, we prove the following result.

Theorem 5.1. Let Γ0 be as above and U be the unique solution of (1.2) with
U(x, y, 0) = U0(x, y). Set

Γt := {(x, y) ∈ R
2 | U(x, y, t) = 0}.

Then, for any ε > 0, there exists T > 0 such that for all t ≥ T

Γt ⊂ {(x, y) ∈ R
2 | |y − ϕ(x − c1t) − c2t| ≤ ε}.
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Note that the existence of a solution as well as a comparison principle is already
known (see [2, 10] for instance).

Proof. Let u− be the solution of (4.1) with u−(x, 0) = ζ1(x). Since u−
0 satisfies

(4.18), by Theorem 4.7, it holds that

lim
t→∞ sup

x∈R

|u−(x, t) − ϕ(x − c1t) − c2t| = 0.

Moreover, setting U+
0 (x, y) = sup(y − ζ1(x), U0(x, y)), we have that U+

0 (x, y) ≥
U0(x, y) for all (x, y) ∈ R

2. If U+ denotes the solution of (1.2) with U+(x, y, 0) =
U+

0 (x, y), the comparison principle for (1.2) implies that U+(x, y, t) ≥ U(x, y, t) for
all t ≥ 0.

Since U+
0 (x, y) = 0 if and only if y = ζ1(x), it holds that

Γ+
t := {(x, y) ∈ R

2 | U+(x, y, t) = 0} = {(x, y) ∈ R
2 | y = u−(x, t)},

so that

U
(
x, u−(x, t), t

) ≤ 0. (5.1)

Similarly, one can construct a solution u+ of (4.1) such that

lim
t→∞ sup

x∈R

|u+(x, t) − ϕ(x − c1t) − c2t| = 0,

and such that

U
(
x, u+(x, t), t

) ≥ 0. (5.2)

Then, for all t ≥ 0, the equations (5.1) and (5.2) imply that if (x, y) ∈ Γt then
u−(x, t) ≤ y ≤ u+(x, t) which by letting t → ∞ concludes the proof. �

6. Singular Limit of Traveling Curved Fronts and Crystalline Motions

In this section we consider the profile of the traveling waves when Ψ includes
the small parameter ε > 0.

We assume that Ψ = Ψ(θ, ε) is a π-periodic function in θ which belongs to
C2(R × (0, ε0], R) ∩ C0(R × [0, ε0], R) with some positive constant ε0 and satisfies
(H2) where λ1 and λ2 are independent of ε and λ3 and λ4 depends on ε. We also
write f(θ, ε) instead of f(θ) to emphasize the dependence on ε. Assume furthermore
that

(H4) There exist 0 ≤ θ1 < θ2 < · · · < θm < 2π and positive constants mj such
that

Ψ(θ, ε) + Ψθθ(θ, ε) →
m∑

j=1

mjδ(θ − θj) in the distribution sense as ε ↓ 0,

lim
ε↓0

[Ψ(θ, ε) + Ψθθ(θ, ε)] = 0 if θ �∈ {θj}m
j=1,
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(H5) There are positive integers j1 and j2 such that 1 ≤ j1 ≤ j2 ≤ m and
θ− < θj1 ≤ θj2 < θ+ and θj1−1 < θ−, if j1 ≥ 2, and θ+ < θj2+1, if
j2 ≤ m − 1.

Since the velocity (c1, c2) given by (4.8) also depends continuously on ε, we will
also write (cε

1, c
ε
2). We also write C±, ρ1 and ρ2 as in the proof of Lemma 4.2 with

f = f(θ, ε) by Cε
±, ρε

1 and ρε
2 respectively.

In [9, Corollary 1.3], it was proved that the motion by crystalline energy (6.4)
below is a limit of the regularized problem (1.3). More precisely, the evolving
solution of (1.3) with the periodic boundary conditions converges to the admissible
solution of (6.4) locally uniformly as ε ↓ 0 provided that the initial function uε

0

converges to u0
0 uniformly. For the traveling wave solutions of (1.3), we can show

that they converge to those of the corresponding crystalline motion in the following
sense.

Theorem 6.1. Assume (H1)–(H5). Let ϕ(x, ε) be a traveling curved front
given in Lemma 4.2 and Lj (j = 1, . . . , j2 − j1 + 1) a positive constant given by

Lj :=
mj+j1−1Ψ(θj+j1−1, 0)

c0
1 cos θj+j1−1 + c0

2 sin θj+j1−1 − aΨ(θj+j1−1, 0)
. (6.1)

Then there exist constants x1, . . . , xj2−j1+1 with

xj+1 − xj = Lj sin θj+j1−1 (6.2)

such that ϕ(x, ε) converges to ϕ̂(x) as ε ↓ 0 where

ϕ̂′(x) =

⎧⎪⎨⎪⎩
tan(θ− − π/2) (−∞, x1],
tan(θj+j1−1 − π/2) (xj , xj+1], (j = 1, . . . , j2 − j1 if j1 < j2)
tan(θ+ − π/2) (xj2−j1+1,∞).

(6.3)

Moreover, if j1 < j2, then the normal velocity Vj of the facet between (xj , ϕ̂(xj))
and (xj+1, ϕ̂(xj+1)) (j = 1, . . . , j2 − j1) satisfies the following crystalline motion

Vj =
(

mj+j1−1

Lj
+ a

)
Ψ(θj+j1−1, 0). (6.4)

Proof. For simplicity, we set

dj := Lj sin θj+j1−1.

First consider the case where j1 < j2. It follows from (4.4) and the definition of f

that

x = x(θ̃, ε) := x1 +
∫ θ

(θj1+θ−)/2

ds

f(s, ε)



102 Y. Marutani, H. Ninomiya and R. Weidenfeld

where x1 is specified later. By (H4), we have∫ θj+j1−1+δ

θj+j1−1−δ

ds

f(s, ε)
=

∫ θj+j1−1+δ

θj+j1−1−δ

Ψ(s, ε)(Ψ(s, ε) + Ψ ′′(s, ε)) sin s

cε
1 cos s + cε

2 sin s − aΨ(s, ε)
ds

−→ Ψ(θj+j1−1, 0)mj sin θj+j1−1

c0
1 cos θj+j1−1 + c0

2 sin θj+j1−1 − aΨ(θj+j1−1, 0)
= dj ,

as ε tends to 0 for sufficiently small positive δ. It turns out that

lim
ε↓0

x(θ̃, ε) =

⎧⎪⎨⎪⎩
x1 (θ− < θ̃ < θj1),

xj (θj+j1−2 < θ̃ < θj+j1−1), (j = 2, . . . , j2 − j1 + 1)

xj2−j1+1 (θj2 < θ̃ < θ+),

where xj+1 := xj + dj (j = 1, . . . , j2 − j1 + 1). Thus, the inverse function θ̃(x, ε) of
x(θ̃, ε) converges to

lim
ε↓0

θ̃(x, ε) =

⎧⎨⎩
θ− (x < x1),
θj+j1−1 (xj < x < xj+1), (j = 1, . . . , j2 − j1)
θ+ (xj2−j1+2 < x).

Recall that ϕ̃(x, ε) can be defined by θ̃. By (4.10), (4.9) and (H5), we have

lim inf
ε↓0

f ′(θ−)
a

> 0, lim sup
ε↓0

f ′(θ+)
a

< 0.

These inequalities and the fact that

Cε
± = lim

x→±∞

∫ x

0

(
tan(θ̃(s, ε) − π/2) − tan(θ± − π/2)

)
ds.

imply that Cε
± converges to C0

± as ε ↓ 0. Since ρε
i continuously depends only

on Cε
± and θ±, ρε

i also converges to ρ0
i as ε ↓ 0. Thus the traveling wave ϕ(x, ε)

converges to the segment with the slope tan(θj+j1−1−π/2) in the interval [xj , xj+1]
(j = 1, . . . , j2−j1+1) and x1 is uniquely defined by ρ0

j (j = 1, 2). Each facet between
(xj , ϕ̂(xj)) and (xj+1, ϕ̂(xj+1)) (j = 1, . . . , j2−j1+1) moves with constant velocity.
The length of each facet is Lj = dj/ sin θj+j1−1 and its normal vector is

nj :=
(

cos θj+j1−1

sin θj+j1−1

)
.

The normal velocity is

Vj := nj ·
(

c0
1

c0
2

)
. (6.5)

By (6.1), we have

Vj = c0
1 cos θj+j1−1 + c0

2 sin θj+j1−1

=
(

mj+j1−1

Lj
+ a

)
Ψ(θj+j1−1, 0).
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for small δ > 0. This implies that (H4) and (H5) hold and that mj = 2. The
traveling faceting curve with θ− = π/6 and θ+ = 9π/10 is in Fig. 1.
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