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We explicitly determine the Babuska-Aziz constant, which plays an essential role in the
interpolation error estimation of the linear triangular finite element. The equation for
determination is the transcendental equation t + tan t = 0, so that the solution can
be numerically obtained with desired accuracy and verification. Such highly accurate
approximate values for the constant can be widely used for a priori and a posteriori error
estimations in adaptive computation and/or numerical verification.
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1. Introduction

The finite element method (FEM) is now recognized as a powerful numerical
method for wide classes of partial differential equations. Furthermore, it also has
sound mathematical bases such as highly refined a priori and a posteriori error
estimations. In the classical a priori error analysis of FEM, interpolation errors are
essential to derive final error estimates [4, 5]. In this process, there appear various
positive constants besides the standard discretization parameter h and norms (or
seminorms), but it has been very difficult to evaluate such constants explicitly. For
quantitative purposes, however, it is indispensable to evaluate or bound them as
accurate as possible. Thus such evaluation has been attempted for adaptive finite
element calculations based on a posteriori error estimation as well as for numerical
verification by FEM. In this paper, we will determine the so-called Babuska-Aziz
constant [2], which appears in the estimation of the interpolation errors of the linear
(P1) triangular finite element.

More specifically, we derive a transcendental equation for the above constant.
To this end, we use the reflection (or symmetry) method to solve analytically an
eigenvalue problem for 2D Laplace operator. As we will see later, this constant
(C1) gives an upper bound to the optimal constant (C0) appearing in the H1-error
estimation of P1-interpolation functions for H2-functions over the unit isosceles
right triangle. The P1-finite element is the most classical and fundamental one,
but still in frequent use. Thus precise estimation of C1 as well as C0 is very
important, and a number of researchers have given bounds for these two constants
using various approximation methods including numerical verification, see e.g. [1,
7, 8, 9, 10, 11]. The relation between C0 and C1 was pointed out by Babuska and
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Aziz in conjunction with the maximum angle condition [2], and later discussed in
[8, 11].

The transcendental equation for the required eigenvalue λ (= 1/C2
1 ) is a very

simple one given by
√
λ+tan

√
λ = 0. Thus the constant can be easily obtained with

sufficient accuracy, and can be effectively used in the quantitative error estimation
of finite element solutions by the P1-element.

2. Preliminaries

Let T be a unit right-angled isosceles triangle defined by T = {x = (x1, x2) ∈
R2; x1 > 0, x2 > 0, x1 + x2 < 1}, the vertices of which are denoted by Q1(0, 0),
Q2(1, 0) and Q3(0, 1). Let us define the sets V1 and V2 by

V1 = {v ∈ H2(T ); v(Q1) = v(Q2) = v(Q3) = 0}, (1)

V2 =
{
v ∈ H1(T );

∫ 1

0

v(x1, 0) dx1 = 0
}
, (2)

where H1(T ) and H2(T ) are respectively the first- and second-order Sobolev spaces
of real square integrable functions over T . Furthermore, the space L2(T ) equipped
with norm ‖ · ‖T will be also used. Notice here that ∂v/∂x1 ∈ V2 for ∀v ∈ V1.

For v ∈ H2(T ), the linear interpolation function Πv on T is the (at most)
linear polynomial such that (Πv)(Qi) = v(Qi) for 1 ≤ i ≤ 3. Then v − Πv ∈ V1

for v ∈ H2(T ), so that a popular form of the interpolation error for v is ([4, 5])

|v −Πv|1,T ≤ C0|v|2,T , (3)

where | · |1,T and | · |2,T are the usual seminorms of H1(T ) and H2(T ), respectively:
|v|21,T =

∑2
i=1 ‖∂v/∂xi‖2

T , |v|22,T =
∑2

i,j=1 ‖∂2v/∂xi∂xj‖2
T . Moreover, C0 is the

(optimal) positive constant well-defined by the relation [1, 2, 8]

C0 = sup
v∈V1\{0}

|v|1,T

|v|2,T
. (4)

Estimation (3) is effectively used for error analysis for triangular elements of more
general shape by introducing appropriate coordinate transformations [2, 4, 5, 6].

It is actually difficult to decide C0 exactly. An upper bound for C0 was first
given by Natterer [10]. By numerical computations without verification, it is now
known that C0 ≈ 0.489, cf. [1, 7, 11]. Moreover, C0 has an upper bound C1 given
by

C1 = sup
v∈V2\{0}

‖v‖T

|v|1,T
. (5)

This constant was introduced by Babuska and Aziz in [2] to prove the maximum
angle condition for the P1-element, so that we call it the Babuska-Aziz constant
here. The relation between C0 and C1 was fully discussed in [11] and [8], and in
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certain cases C1 is more essential than C0 itself (see below). In particular, C1 was
verified numerically in [8, 9], and it is now known that 0.492 ≤ C1 ≤ 0.494. Thus
0.493 or so is a nice approximation to C0 for most of practical purposes: In fact,
0.5 is recommended in [11] for use as an upper bound for C0.

Furthermore, C1 plays its own role of enabling estimation of each partial deriva-
tive:

‖∂(v −Πv)/∂xi‖T ≤ C1 |∂v/∂xi|1,T (i = 1, 2), (6)

which is in a sense sharper than (3), cf. [6].
It is easily seen that C1 is determined as C1 =

√
1/λ0, where λ0 > 0 is the

minimum eigenvalue of the eigenvalue problem [1, 8]: Find λ and u ∈ V2\{0} that

satisfy

(∇u,∇v)T = λ(u, v)T (∀v ∈ V2). (7)

Here, (·, ·)T denotes the inner products of both L2(T ) and L2(T )2, and ∇ is the
gradient operator. The present eigenvalue problem is also expressed as follows in
terms of a partial differential equation, the linear constraint for V2 and boundary
conditions [1, 8]:

−Δu = λu in T,

∫ 1

0

u(x1, 0) dx1 = 0,
∂u

∂n
=

{
0 on edges Q1Q3 and Q2Q3,

c on edge Q1Q2

(8)

where ∂
∂n denotes the outward normal derivative on edges, and c an unknown

constant. More specifically, c must finally satisfy the relation c +
λ

∫∫
T
u(x1, x2) dx1dx2 = 0. Thus, c = 0 if

∫∫
T
u(x1, x2) dx1dx2 = 0. Otherwise, c

can be equated to 1 at the expense of imposing the condition
∫∫

T
u(x1, x2) dx1dx2 =

−1/λ on the magnitude of u [8].

3. Determination of the Constant

Our problem of determining C1 now reduces to obtaining the minimum eigen-
value of (7) or (8). Since T is a triangular domain, it has been not necessarily easy
to solve the associated eigenvalue problem. However, we have the following main
results.

Theorem 1. The minimum eigenvalue λ0 of (7) is equal to the minimum
positive solution of the transcendental equation for λ :

√
λ+ tan

√
λ = 0. (9)

The concrete value of λ0 can be obtained numerically with verification. For example,√
λ0 lies in the interval 2.0287 <

√
λ0 < 2.0291, and hence C1 = 1/

√
λ0 is bounded

as

0.49282 < C1 < 0.49293. (10)
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(Numerical computation without verification gives C1 = 0.49291245 · · · .)
Proof. We will prove in several steps, each of which is based on rather well-

known arguments and techniques, and is sometimes described concisely.

1◦. Let Ω be a unit square domain: Ω = {x = (x1, x2) ∈ R2; 0 < x1, x2 < 1}.
Let {λ, u} ∈ R×V2\{0} be an arbitrary eigenpair of (7), and define the (symmetric)
extension ũ of u to Ω by reflection with respect to the line x1 + x2 = 1:

ũ(x1, x2) = u(x1, x2) if x = (x1, x2) ∈ T,

ũ(x1, x2) = u(1 − x2, 1 − x1) if x ∈ Ω\T.

It is easy to see that ũ belongs to H1(Ω). Moreover, {λ, ũ} becomes an eigenpair
of the eigenvalue problem for Ω:

ũ ∈ Ṽ2\{0} and (∇ũ,∇ṽ)Ω = λ(ũ, ṽ)Ω (∀ṽ ∈ Ṽ2), (a)

where (·, ·)Ω denotes the inner products of L2(Ω) and L2(Ω)2, and Ṽ2 is defined by

Ṽ2 =
{
ṽ ∈ H1(Ω);

∫ 1

0

ṽ(x1, 0) dx1 = 0,
∫ 1

0

ṽ(1, x2) dx2 = 0
}
. (b)

Conversely, any eigenpair of (a) with ũ restricted to T satisfies (7), if ũ is
symmetric with respect to the line x1 +x2 = 1. Notice here the orthogonal decom-
position of Ṽ2 in H1(Ω) as well as in L2(Ω):

Ṽ2 = Ṽ s
2 ⊕ Ṽ a

2 ,

{
Ṽ s

2 = subspace of symmetric functions in Ṽ2,

Ṽ a
2 = subspace of antisymmetric functions in Ṽ2.

Consequently, for the present purpose, it suffices to deal with (a) in Ṽ s
2 .

2◦. As is well known, a complete system of functions for H1(Ω) is given by
the totality of (orthogonal) eigenfunctions of (a):

φmn(x1, x2) = cosmπx1 cosnπx2 (m,n = 0, 1, 2, 3, . . .).

Since we are interested in symmetric eigenfunctions only, we should make a complete
system of symmetric functions in H1(Ω) from the above: for m ≥ n; m,n =
0, 1, 2, 3, . . . ,

ψmn(x1, x2) = φmn(x1, x2) + φmn(1 − x2, 1 − x1)

= φmn(x1, x2) + (−1)m+nφnm(x1, x2).

When restricted to T , these make a complete system of functions for H1(T ). Fur-
thermore, these are orthogonal in L2(Ω), and also orthogonal with respect to the
bilinear form (∇·,∇·)Ω (and in H1(Ω)).
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3◦. From (b), the condition for a symmetric ṽ ∈ H1(Ω) to belong to Ṽ s
2 is

expressed by

2a00 +
∞∑

m=1

(−1)mam0 = 0 for ṽ =
∞∑

m≥n≥0

amnψmn

with
∞∑

m≥n≥0

(1 +m2 + n2)a2
mn < +∞,

where amn’s are real coefficients and the series
∑∞

m=1(−1)mam0 is shown to be
absolutely convergent. Eliminating a00 by this condition, we can express ∀ṽ ∈ Ṽ s

2

by

ṽ =
∞∑

m=1

am0[ψm0 − (−1)m] +
∞∑

m≥n≥1

amnψmn. (c)

Clearly, ψmn’s for m ≥ n ≥ 1 are eigenfunctions of (a) with completely homoge-
neous Neumann’s boundary condition, and the minimum of the associated eigen-
values is 2π2.

4◦. Taking notice of (c), Ṽ s
2 is expressed by the direct sum

Ṽ s
2 = W1 ⊕W2,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W1 = closure of linear combinations of ψm0 − (−1)m

(m = 1, 2, 3, . . .),

W2 = closure of linear combinations of ψmn

(m ≥ n ≥ 1).

Here, W1 and W2 are orthogonal to each other in both L2(Ω) and H1(Ω), and
moreover, from the observation in 3◦, all the eigenfunctions in W2 are known.
Consequently, our aim will be attained if we obtain the minimum of eigenvalues
associated with eigenfunctions in W1: If it is smaller than 2π2, the obtained one is
nothing but λ0.

5◦. Let us now solve the eigenvalue problem (a) in W1 by expressing ũ ∈
W1\{0} as

ũ =
∞∑

m=1

amϕm with
∞∑

m=1

m2a2
m < +∞ ; ϕm = ψm0 − (−1)m (m ∈ N). (d)

More specifically, ϕm(x1, x2) = cosmπx1 + (−1)m(cosmπx2 − 1). Substituting (d)
into (a) and equating ṽ to each of ϕm’s, we have the equations for coefficients am’s:

(m2π2 − λ)am = λ(−1)m
∞∑

n=1

(−1)nan (m ∈ N). (e)
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The series above is absolutely convergent from (d). In addition,

∞∑
n=1

(−1)nan �= 0, λ �= m2π2 and am �= 0 (∀m ∈ N),

so that am = λ(−1)m
∑∞

n=1(−1)nan/(m2π2 −λ). Multiplying (−1)m to both sides
of this equation and summing up for m ∈ N, we find that

∞∑
m=1

(−1)mam =

[ ∞∑
n=1

(−1)nan

]
×

∞∑
m=1

λ/(m2π2 − λ),

that is,

1 =
∞∑

m=1

λ

m2π2 − λ
, or

∞∑
m=0

1
m2(π/

√
λ)2 − 1

= 0, (f)

where we have used the fact that λ > 0, and the series is absolutely convergent at
least for 0 < λ < π2. We have thus shown that the considered eigenvalue λ must
satisfy (f). Conversely, for each positive solution λ of (f), we can prove in view of
(e) the existence of ũ ∈W1\{0} that satisfies (a), although we omit the proof.

6◦. Notice here the formula for non-integer a ∈ R:

∞∑
m=1

1
(m/a)2 − 1

=
1
2
− πa

2 tanπa
,

which is for example derived from the Fourier cosine expansion of cos at on the
interval [−π, π] for t. Comparing the above with (f) and taking a as

√
λ/π, we have

(9). Clearly, the minimum positive solution of (9) lies in the interval
(
π2/4, π2

)
,

and is the unique solution there. It is surely smaller than 2π2, and is exactly λ0.

7◦. To obtain
√
λ0 ∈ (π/2, π) numerically with verification, we can use various

methods. For example, we can directly use the series in (f). Here we just give
another method based on modification of the equation t+ tan t = 0 for t > 0: Let
us find the minimum positive zero of

f(t) :=
cos t

2
+

sin t
2t

=
∞∑

m=0

(−1)m(m+ 1)t2m

(2m+ 1)!
(t > 0).

The series appearing above is an alternating one, and the absolute value of each
term for fixed t converges to 0 as m → ∞, monotonically for sufficiently large m.
Moreover, f(t) is monotonically decreasing for 0 < t < π. Thus, as is well known
in elementary calculus, we can compute upper and lower bounds for the minimum
zero t0 by utilizing appropriate partial sums: fn(t) := partial sum up to the term
of m = n. It should be noted here that, at least in principle, all the computations
can be performed in the finite-digit binary arithmetic without computer errors,
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provided that t is a rational number. For example, by taking n = 4, 5, we can
bound t0 =

√
λ0 as 2.0287 < t0 < 2.0291, since f(2.0291) < f4(2.0291) < 0 (even

n) and f(2.0287) > f5(2.0287) > 0 (odd n). �

Remark. Eq. (9) can be also derived as follows. The function ϕm in (d)
can be also expressed by ϕm(x1, x2) = cosmπx1 + cosmπ(1 − x2) − (−1)m, so
that ũ ∈ W1 in (d) must be of the form, for an unknown single-variable function
g = g(t),

ũ(x1, x2) = g(x1) + g(1 − x2).

Substituting the above into (a), we have

−g′′(t) = λg(t) for 0 < t < 1, g′(0) = 0, g(1) +
∫ 1

0

g(t) dt = 0. (11)

Notice in this derivation that ṽ in (a) can be taken from whole Ṽ2, since W1 is
orthogonal to W2 and V a

2 both in L2(Ω) and H1(Ω). Solving this eigenvalue
problem, we obtain (9). Moreover, an eigenfunction associated to λ0 is ũ(x1, x2) =
cos

√
λ0x1+cos

√
λ0(1−x2). Eq. (9) is popular in vibration analysis of a string with

one end fixed and the other supported elastically, where the governing differential
equation is the same as in (11).

4. Concludig Remarks

We have succeeded in determining the Babuska-Aziz constant from a very
simple equation. We can effectively utilize this constant to give upper bounds of
the P1-interpolation error constants for triangles of more general shape. That is,
we can derive some explicit relations for the dependence of such constants on the
geometry (such as the maximum interior angle and the minimum edge length) of
triangles by simple coordinate transformations. It is to be noted that they are
consistent with the so-called maximum angle condition in [2]. The detailed results
will be reported separately in due course.
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