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1. Introduction

We consider a polynomial of n-th degree

An(x) = xn + a1x
n−1 + · · · + an. (1)

Wide area of problems and practical tasks in economics, biology, chemistry, and
physics are reduced to the problem of finding only a part of all roots of (1). We set
the task in this paper to build iteration methods with raised speed of convergence
and at the same time they give opportunities for searching only one part of all
roots of (1) (real, complex, lying in given area, satisfying given conditions). Many
methods for specifying number of zeros and their approximation are displayed in
[15], [10], [16], [1], [11], [17] and [12].

Let us denote the approximations of the k-th iteration to the zeros x1, x2, . . . , xn

of (1) by xk
1 , xk

2 , . . . , xk
n. The iteration formula for simultaneous inclusion of all roots

of (1)

xk+1
i = xk

i − An(xk
i )

n∏
j=1, j �=i

(xk
i − xk

j )

, i = 1, 2, . . . , n, k = 0, 1, 2, . . .



64 A. Iliev, N. Kyurkchiev and Q. Fang

was derived by Weierstrass [18], Durand [4], Dochev [3], Prešić [13], etc., in different
way, provided that xi are distinct.

In 1971 Prešić [14] published the following iteration formula

xk+1
i = xk

i − An(xk
i )

m∏
j=1, j �=i

(xk
i − xk

j ).Axk(xk
i )

(2)

for finding m (≤ n) roots simultaneously. He obtained it by using the presentation

An(x) = (x − xk+1
i )

m∏
j=1, j �=i

(x − xk
j ).Axk(x)

+
m∑

l=1, l �=i

An(xk
l )

m∏
j=1, j �=l

x − xk
j

xk
l − xk

j

, i = 1, 2, . . . ,m, (3)

where Axk(x) denotes the m-th divided difference An[xk
1 , . . . , xk

m, x]. It is remarked
in [19] that the equality (3) is not an identity and that the iteration formula (2)
follows not from (3) but from the identity

An(x) = (x − xk+1
i )

m∏
j=1, j �=i

(x − xk
j ).Axk(x) +

m∑
l=1, l �=i

An(xk
l )

m∏
j=1, j �=l

x − xk
j

xk
l − xk

j

−

⎡
⎢⎢⎢⎢⎣(xk

i − xk+1
i )Axk(x) − An(xk

i )
m∏

j=1, j �=i

(xk
i − xk

j )

⎤
⎥⎥⎥⎥⎦

m∏
j=1, j �=i

(x − xk
j ).

The polynomial (1) can be written in the way [6]

An(x) = Qm(x)Tn−m(x),

where Qm(x) is a polynomial of zeros, which we desire to find and Tn−m(x) is
a polynomial whose zeros we drop off. We assume that the roots of Qm(x) are
distinct, but do not assume it for the roots of Tn−m(x). Let us define

Qm(x) = xm + b1x
m−1 + · · · + bm,

Tn−m(x) = xn−m + c1x
n−m−1 + · · · + cn−m.

(4)
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Between (1) and (4) there exist the following relations

a1 = c1 + b1,

a2 = c2 + b2 + c1b1,

· · · · · ·
al = cl + bl + c1bl−1 + c2bl−2 + · · · + cl−1b1,

· · · · · ·
an−m = cn−m + bn−m + c1bn−m−1 + c2bn−m−2 + · · · + cn−m−1b1,

· · · · · ·
an = cn−mbm.

We define polynomials

Qk
m(x) = xm + bk

1xm−1 + · · · + bk
m,

T k
n−m(x) = xn−m + ck

1xn−m−1 + · · · + ck
n−m.

(5)

Then it is fulfilled evidently from (5) that

bk
1 = −

m∑
j=1

xk
j ,

bk
2 =

m−1∑
j=1

(
xk

j

m∑
s=j+1

xk
s

)
,

· · · · · ·

bk
m = (−1)m

m∏
j=1

xk
j

(6)

hold.
We define ck

j , j = 1, . . . , n − m, by formulas

ck
1 = a1 − bk

1 ,

ck
2 = a2 − bk

2 − (a1 − bk
1)bk

1 = a2 − bk
2 − ck

1bk
1 ,

· · · · · ·

ck
n−m = an−m − bk

n−m −
n−m−1∑

j=1

ck
j bk

n−m−j .

(7)

In [14] the Brouwer theorem is not used to prove convergence, and it only gives
requisite conditions that ensure convergence to the exact zeros. In [6] and [7], Iliev
and Kyurkchiev wrote the method (2) in the following way

xk+1
i = xk

i − An(xk
i )

m∏
j=1,j �=i

(
xk

i − xk
j

)
.T k

n−m

(
xk

i

) , i = 1, . . . ,m, k = 0, 1, . . . .



66 A. Iliev, N. Kyurkchiev and Q. Fang

for finding m (≤ n) zeros of (1) simultaneously and, in [6], proved a theorem which
gives sufficient conditions for certain convergence to the part of roots of (1). It is
stated as follows:

Theorem 1.1. Let the polynomial (1) have real as well as complex roots.
Decomposition An(x) = Qm(x)Tn−m(x) is valid, where the polynomials Qm(x) and
Tn−m(x) have for their roots the real roots and the complex roots of (1), respectively.
Let c > 0, 1 > q > 0 be real numbers such that

c [A1g + [A2 + gc] z] U−1 < 1,

where A1, A2, g, z and U are some appropriate positive constants. If initial approxi-
mations x0

1, x0
2, . . . , x

0
m to the real roots of (1) satisfy the inequalities

∣∣x0
i − xi

∣∣ < cq,

i = 1, 2, . . . ,m, then for every natural k the following inequalities are satisfied∣∣xk
i − xi

∣∣ < cq2k

, i = 1, 2, . . . ,m.

From computational point of view, the coefficients (6) and (7) can be calculated
easily and they are also convenient for computer programming. In comparison with
it, in [14] the polynomial T k

n−m(x) is derived with a technique based on divided
differences which are calculated at each iteration step. In [9] we discussed Gauss-
Seidel modification of method (2).

2. Main Result

The iterative method

xk+1
i = xk

i − σk
i

(
1 + σk

i

∑
j �=i

1
xk

i − xk
j

)
, i = 1, 2, . . . , n; k = 0, 1, 2, . . . (8)

with

σk
i =

An(xk
i )

A′
n(xk

i )

is due to Euler [5] and also considered independently by Tanabe [16] in an equivalent
form

xk+1
i = xk

i − σk
i

(
1 −

∑
j �=i

σk
j

xk
i − xk

j

)
, i = 1, 2, . . . , n; k = 0, 1, 2, . . . . (9)

On the other hand, the Chebyshev method for solving a nonlinear equation

F (x) = 0, x ∈ C
n

is defined by

xk+1 = xk −
[
I +

1
2
ΓkF ′′(xk)ΓkF (xk)

]
ΓkF (xk), k = 0, 1, 2, . . . (10)
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with Γk = F ′(xk)−1.
It is known (e.g. [8]) that (9) is the Chebyshev method applied to a system of

nonlinear equations

fi = (−1)iϕi(x1, x2, . . . , xn) − ai = 0, i = 1, 2, . . . , n,

where ϕi denote the i-th elementary symmetric functions.
Hence, we shall call (8) the Euler-Chebyshev method or Euler-Chebyshev-

Tanabe method. On the basis of (8), we construct an iterative formula

xk+1
i = xk

i − σk
i

⎡
⎣1 + σk

i

(
m∑

j �=i

1
xk

i − xk
j

+
T k

n−m

′
(xk

i )
T k

n−m(xk
i )

)⎤⎦ ,

i = 1, 2, . . . ,m; k = 0, 1, 2, . . . ,

(11)

where T k
n−m(x) is as defined in Section 1, which is a generalization of the classical

Euler-Chebyshev method (8) since (11) reduces to (8) in the case m = n.
We prove the following theorem which asserts that the order of convergence of

the method (11) is locally cubic.

Theorem 2.1. Let d = mini �=j |xi − xj | > 0 where i, j = 1, 2, . . . ,m and q

be real numbers with 1 > q > 0. Then there is a positive constant σ satisfying the
following property (P).
(P) If we take a number c > 0 which is so small that

d − 2c > c(n − 1) (> 0),

c2
[
σ(d − 2c)2 + (n − 1)2 + m − 1

]
< [d − 2c − c(n − 1)]2 ,

(12)

then the inequalities

|xk
i − xi| < cq3k

, i = 1, 2, . . . ,m (13)

hold for every k ∈ N provided that initial approximations x0
1, x

0
2, . . . , x

0
m to

the real roots of (1) satisfy inequalities |x0
i − xi| < cq, i = 1, 2, . . . ,m.

Proof. Suppose that for some k ∈ N
⋃{0} inequalities (13) are fulfilled. The

equalities

bk
j = bj + Rj , j = 1, . . . ,m, (14)

where |Rj | ≤ ρjcq
3k

and where ρj is independent of iteration number k, are valid.
For ck

s , it is true that

ck
j = cj + R∗

j , j = 1, . . . ,m (15)

hold, where |R∗
j | ≤ zjcq

3k

and where zj is independent of iteration number k. Here,
we prove (14) and (15) for j = 1 and j = 2 only, since the proofs of (14) and (15)
for other j are similar.
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In fact,

bk
1 = −

m∑
j=1

xk
j = −

m∑
j=1

xj +
m∑

j=1

(xj − xk
j ) = b1 + R1,

where

|R1| =

∣∣∣∣∣
m∑

j=1

(xj − xk
j )

∣∣∣∣∣ = |bk
1 − b1|

≤ |xk
1 − x1| + · · · + |xk

m − xm| ≤ mcq3k

and therefore |R1| ≤ ρ1cq
3k

with ρ1 = m independent of iteration number k. For
bk
2 , we have

bk
2 =

m−1∑
j=1

⎛
⎝xk

j

m∑
s=j+1

xk
s

⎞
⎠ =

m−1∑
j=1

⎛
⎝xj

m∑
s=j+1

xs

⎞
⎠

+
m−1∑
j=1

m∑
s=j+1

(xk
j xk

s − xjxs)

= b2 + R2

where

R2 =
m−1∑
j=1

m∑
s=j+1

(xk
j xk

s − xjxs)

=
m−1∑
j=1

m∑
s=j+1

(
(xk

j − xj)(xk
s − xs) − 2xjxs + xk

j xs + xk
sxj

)

=
m−1∑
j=1

m∑
s=j+1

(
(xk

j − xj)(xk
s − xs) − xj(xs − xk

s) − xs(xj − xk
j )
)

and therefore

|R2| ≤ Ac2q3k+1
+ Bcq3k

= cq3k(
Acq3k

+ B
) ≤ cq3k

(Ac + B),

where A and B are some positive constants independent of iteration number k.
That is, |R2| ≤ ρ2cq

3k

. For ck
1 , we know

ck
1 = a1 − bk

1 = a1 − b1 − R1

i.e., ck
1 − c1 = −R1 = R∗

1. For ck
2 , we have

ck
2 = a2 − bk

2 − (a1 − bk
1)bk

1 = a2 − b2 − R2 − (a1 − b1 − R1) × (b1 + R1)

= c2 − R2 + b1R1 − (a1 − b1)R1 + R2
1 = c2 + R∗

2,
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where R∗
2 = −R2 + R2

1 − (a1 − 2b1)R1. Hence

|R∗
2| ≤ |R2| + |R2

1| + |a1 − 2b1||R1|
≤ (

ρ2 + ρ2
1c + |a1 − 2b1|ρ1

)
cq3k

= z2cq
3k

and z2 = ρ2 + ρ2
1c + |a1 − 2b1|ρ1 is independent of iteration number k.

Now, we will show the inequalities (13). Evidently

A
′
n(xk

i )/An(xk
i ) =

n∑
j=1

1/(xk
i − xj), (16)

and

T
′
n−m(xk

i )/Tn−m(xk
i ) =

n∑
j=m+1

1/(xk
i − xj), i = 1, . . . ,m. (17)

Using (16) and (17), and after removing the parentheses in the right side of the
equality (11), we have

xk+1
i = xk

i −
(

1
xk

i − xi
+

n∑
j �=i

1
xk

i − xj

)−1

−
(

m∑
j �=i

1
xk

i − xk
j

+
T k

n−m

′
(xk

i )
T k

n−m(xk
i )

)

×
(

1
xk

i − xi
+

n∑
j �=i

1
xk

i − xj

)−2

, i = 1, . . . ,m. (18)

We subtract xi from both sides of (18) and after some transformation we arrive
to

xk+1
i − xi = (xk

i − xi)2
[
(xk

i − xi)

(
n∑

j �=i

1
xk

i − xj

)2

+
m∑

j �=i

xj − xk
j

(xk
i − xj)(xk

i − xk
j )

+
T

′
n−m(xk

i )
Tn−m(xk

i )
− T k

n−m

′
(xk

i )
T k

n−m(xk
i )

]/(
1 + (xk

i − xi)
n∑

j �=i

1
xk

i − xj

)2

(19)

Thus, using (5) and (15), we get

T k
n−m(xk

i ) = (xk
i )n−m + (c1 + R∗

1)(x
k
i )n−m−1 + (c2 + R∗

2)(x
k
i )n−m−2

+ · · · + cn−m + R∗
n−m

= Tn−m(xk
i ) + R∗

1(x
k
i )n−m−1 + R∗

2(x
k
i )n−m−2 + · · · + R∗

n−m

≡ Tn−m(xk
i ) + M1. (20)

For |M1|, we have the estimation

|M1| ≤ gcq3k

,
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where g is a positive number which is independent of the iteration number k.
For T k

n−m

′
(xk

i ), we get

T k
n−m

′
(xk

i ) = (n − m)(xk
i )n−m−1 + (c1 + R∗

1)(n − m − 1)(xk
i )n−m−2

+ (c2 + R∗
2)(n − m − 2)(xk

i )n−m−3 + · · · + cn−m−1 + R∗
n−m−1

= T
′
n−m(xk

i ) + R∗
1(n − m − 1)(xk

i )n−m−2

+ R∗
2(n − m − 2)(xk

i )n−m−3 + · · · + R∗
n−m−1

≡ T
′
n−m(xk

i ) + M2, (21)

where

|M2| ≤ ycq3k

and y is independent of the iteration number k. Evidently

T
′
n−m(xk

i )
Tn−m(xk

i )
− T k

n−m

′
(xk

i )
T k

n−m(xk
i )

=
T

′
n−m(xk

i )
Tn−m(xk

i )
− T

′
n−m(xk

i ) + M2

Tn−m(xk
i ) + M1

=
M1T

′
n−m(xk

i ) − M2Tn−m(xk
i )

Tn−m(xk
i )
(
Tn−m(xk

i ) + M1

) . (22)

We examine the functions T
′
n−m(x) and Tn−m(x) when x �= xi, i = m + 1, . . . , n.

They are restricted within domain of considerations and consequently there exist
real positive constants L1, F1 and F2 independent of the iteration number and such
that

L1 ≤ |Tn−m(x)| ≤ F1,

|T ′
n−m(x)| ≤ F2.

(23)

It follows from (22) and (23) that∣∣∣∣∣T
′
n−m(xk

i )
Tn−m(xk

i )
− T k

n−m

′
(xk

i )
T k

n−m(xk
i )

∣∣∣∣∣ ≤ |M1|F2 + |M2|F1

L1(L1 + |M1|) ≤ gF2 + yF1

L2
1

cq3k

(24)

holds, and also the inequalities

|xk
i − xj | ≥ |xi − xj | − |xi − xk

i | ≥ d − cq3k

> d − c > d − 2c

|xk
i − xk

j | ≥ |xk
i − xj | − |xj − xk

j | ≥ d − cq3k − cq3k

> d − 2c, i �= j
(25)

are true. Then, using (24), (25) and (12), it can be obtained from (19) that

|xk+1
i − xi| ≤ (cq3k

)2
(
cq3k

(n − 1)2/(d − 2c)2 + (gF2 + yF1)cq3k

/L2
1

+ cq3k

(m − 1)/(d − 2c)2
)
/ (1 − c(n − 1)/(d − 2c))2

< cq3k+1
. (26)
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Therefore, it follows from (26) that iteration process (11) is of locally cubic conver-
gence i.e.,

|xk+1
i − xi| < cq3k+1

if we set σ = (yF1 + gF2)/L2
1. Thus we prove Theorem 2.1. �

3. A Numerical Example

In this section, we show results of some numerical experiments for the algorithm
(11).

Example 3.1. The equation

A10(x) = (x − 1)(x + 3)(x + 8)(x − 5)(x + 6)(x − 4)(x2 + 6)(x2 + 7)

= x10 + 7x9 − 38x8 − 192x7 + 209x6 − 1009x5 + 5768x4 + 19002x3

− 2580x2 + 99792x − 120960

and the initial approximations

x0
1 = 0.8, x0

2 = −2.7, x0
3 = −8.2, x0

4 = 5.2, x0
5 = −5.7, x0

6 = 3.8

are considered.

Using the formula (11), we get the real roots x1 = 1, x2 = −3, x3 = −8,
x4 = 5, x0

5 = −6 and x6 = 4 with accuracy 18 decimal digits (except xk
5) after only

4 iterations, which are shown in Table 3.1.

Table 3.1. Numerical results for Example 3.1 by (11).

xk
1 xk

2 xk
3

k = 1 1.006184091337086300 −2.989695413032682900 −8.010609186020062100

k = 2 0.999998802480556730 −2.999998189633442900 −8.000003178452360000

k = 3 1.000000000000000000 −3.000000000000000000 −8.000000000000000000

k = 4 1.000000000000000000 −3.000000000000000000 −8.000000000000000000

k = 5 1.000000000000000000 −3.000000000000000000 −8.000000000000000000

k = 6 1.000000000000000000 −3.000000000000000000 −8.000000000000000000

xk
4 xk

5 xk
6

k = 1 5.019153162232133700 −5.963283139087074900 3.994780877313887300

k = 2 5.000032475564413700 −5.999963456891165900 3.999999537421087500

k = 3 5.000000000000167000 −5.999999999999966200 4.000000000000000000

k = 4 5.000000000000000000 −5.999999999999999100 4.000000000000000000

k = 5 5.000000000000000000 −5.999999999999999100 4.000000000000000000

k = 6 5.000000000000000000 −5.999999999999999100 4.000000000000000000

We note that our methods are efficient to get high accuracy within few itera-
tions when the polynomial has well separated real roots. For the equation in which
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some real roots are close, however, the iterations may not get so high accuracy
roots.

The computational cost of T k
n−m

′
(xk

i )/T k
n−m(xk

i ), which are carried out by
(6) and (7), is not small. But this is the price that we pay for getting the con-
vergence method of third order. Index of effectiveness, in the Ostrowski-Traub
sense [11], is 31/4. In Table 3.2, we show the numerical results for the terms

T k
n−m

′
(xk

i )/T k
n−m(xk

i ) in Example 3.1.

Table 3.2. Numerical results for T k
n−m

′
(xk

i )/T k
n−m(xk

i ) in Example 3.1.

T k
n−m

′
(xk

1)/T k
n−m(xk

1) T k
n−m

′
(xk

2)/T k
n−m(xk

2) T k
n−m

′
(xk

3)/T k
n−m(xk

3)

k = 1 0.268171607354484420 −0.642229504036485040 −0.447216825363411340

k = 2 0.569035172588895910 −0.790483420255177480 −0.455254554486917430

k = 3 0.535765638319055550 −0.775023028374614010 −0.453925768688997980

k = 4 0.535714285714167130 −0.774999999999965490 −0.453923541247486960

k = 5 0.535714285714287700 −0.775000000000000690 −0.453923541247484910

k = 6 0.535714285714287700 −0.775000000000000690 −0.453923541247484910

T k
n−m

′
(xk

4)/T k
n−m(xk

4) T k
n−m

′
(xk

5)/T k
n−m(xk

5) T k
n−m

′
(xk

6)/T k
n−m(xk

6)

k = 1 0.594462209284029820 −0.580425811397484950 0.656042724146176810

k = 2 0.630901188828704380 −0.571096551453553760 0.708230185527435110

k = 3 0.635073842629359840 −0.564791704983316430 0.711456842023672880

k = 4 0.635080645161241520 −0.564784053156150770 0.711462450592822090

k = 5 0.635080645161290370 −0.564784053156146550 0.711462450592885490

k = 6 0.635080645161290370 −0.564784053156146550 0.711462450592885490
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