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Scaled Gromov Four-Point
Condition for Network Graph
Curvature Computation
Edmond Jonckheere, Poonsuk Lohsoonthorn, and Fariba Ariaei

Abstract. In this paper, we extend the concept of scaled Gromov hyperbolic graph,
originally developed for the thin triangle condition (TTC), to the computationally
simplified, but less intuitive, four-point condition (FPC). The original motivation was
that for a large but finite network graph to enjoy some of the typical properties to be
expected in negatively curved Riemannian manifolds, the delta measuring the thinness
of a triangle scaled by its diameter must be below a certain threshold all across the
graph. Here we develop various ways of scaling the 4-point delta, and develop upper
bounds for the scaled 4-point delta in various spaces. A significant theoretical advantage
of the TTC over the FPC is that the latter allows for a Gromov-like characterization of
Ptolemaic spaces. As a major network application, it is shown that scale-free networks
tend to be scaled Gromov hyperbolic, while small-world networks are rather scaled
positively curved.
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1. Introduction

1.1. Network Congestion Motivation

The “scaled Gromov hyperbolic” property of networks, as originally defined
in [Jonckheere et al. 08], has far-reaching implications in network analysis
and design, the most important one being probably congestion. This was
best demonstrated in [Narayan and Saniee 09], in which the authors used
the Rocketfuel database as a test bed and verified that those networks pass
the δttc(∆)/diam(∆) < 3/2 scaled hyperbolicity test. Here ∆ is an arbitrary
geodesic triangle embedded in the network, and TTC stands for thin triangle
condition, in the sense that δttc(∆) is the minimum perimeter of all triangles
inscribed in ∆, which has to remain “small” compared with the diameter of
the triangle, hence giving ∆ a “thin” external appearance. Next, Narayan and
Saniee implemented a synthetic traffic model (driven by a uniformly distributed
demand), and experimentally observed that the Rocketfuel networks have a max-
imum congestion vertex v, where traffic (quantified by betweenness) scales as N 2 ,
where N is the order of the network. To epitomize the crucial role played by the
curvature, the authors implemented the same synthetic traffic on 2-dimensional
Euclidean lattices and observed that in contrast to hyperbolic networks, in this
case the congestion scales as N 1.5 .

Following up on this line of work, in [Jonckheere et al. 11b, Lou et al. 11], the re-
sults of Narayan and Saniee were proved on a continuous-geometry model of net-
work traffic. A Gromov hyperbolic network was modeled as a subset X ⊂ H n of
the hyperbolic space, a continuous-geometry traffic function representative of the
betweenness was defined, and it was proved that the maximum of the traffic over
a small subset V ⊂ X scales as vol(X)2 , that is, N 2 , if we identify the number
of vertices in the network with the volume vol(X) of its Riemannian-geometric
counterpart. Furthermore, the maximum congestion appears for a small subset
V around the center of gravity of X (see [Jost 97] for the concept of center
of gravity of a manifold). The same methodology applied to a Euclidean sub-
set X ⊂ E n revealed a congestion scaling as vol(X)1+1/n , hence confirming the
experimental 2-dimensional result of Narayan and Saniee.

Besides the “bad” congestion implication, hyperbolicity has a “good” impli-
cation in terms of “navigability” [Boguna et al. 10].

The Gromov hyperbolic property has implications beyond the realm of classi-
cal networks—specifically, in quantum networks, where the message is encoded
in spin excitation. Uniform spin chains endowed with a metric reflecting the
maximum transfer probability turn out to be Gromov hyperbolic [Jonckheere
et al. 11a], as in the “scaled 4-point” criterion precisely developed in the present
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paper. But in contrast to the existence of a center of gravity as in classical net-
works, spin chains have a “center of antigravity” that acts as a repeller of the
excitation encoding the messages. The reason for this discrepancy is subtle: A
classical Gromov hyperbolic network is quasi-isometric to a tree and hence has
a Cantor Gromov boundary [Jonckheere et al. 07], while a Gromov hyperbolic
spin chain is not quasi-isometric to a tree and hence has its Gromov boundary
reduced to a singleton [Jonckheere et al. 11a].

1.2. Scaled Gromov Hyperbolic Networks

As already alluded to in the previous subsection, the Gromov hyperbolic property
of metric spaces can be formulated in essentially two different ways. The first and
most intuitive formulation, already emphasized in Section 1.1, rephrases the well-
known fact that the sum of the internal angles of a geodesic triangle � drawn on
a negatively curved surface is less than π, endowing the triangle with a “thin”
external appearance. The Gromov δttc(�) somehow quantifies how “fat” the
triangle � is, using the more primitive concept of distance, so that δttc applies
to arbitrary metric spaces, e.g., graphs, subject to the technical requirement
that the metric space be geodesic. The δttc could be the minimum perimeter of
all inscribed triangles, the diameter of the inscribed triangle also referred to as
insize, the neighborhood size δttc such that the union of δttc-neighborhoods of
two sides of � contains the third side, etc. A geodesic metric space is then said to
be Gromov hyperbolic if the thin triangle condition (TTC) holds, that is, if there
exists a bound δ̄ttc such that δttc(�) < δ̄ttc for all geodesic triangles embedded
in the space. (See [Bridson and Haefliger 99, Chapter III.H] for a survey.) All of
these measures, however, involve in one way or another the sides of the triangle
and as such require the metric space to be geodesic.

The second formulation precisely removes this geodesic requirement; it does
not involve triangle sides, but it has the added difficulty of requiring four points,
a, b, c, d. We construct the set of all (unordered) pairs of distinct points and
partition this set into three subsets of nonintersecting pairs:

{{a, d}, {b, c}} ∪ {{a, b}, {c, d}} ∪ {{a, c}, {b, d}}.

The two nonintersecting pairs of points in a subset of the partition are referred
to as opposite, with reference to the geometric interpretation shown in Figure 1.
For each subset of the partition, we compute the sum of the distances between
points in pairs, and we list the sums in decreasing order as follows:

L := d(a, d) + d(b, c) ≥ M := d(a, b) + d(c, d) ≥ S := d(a, c) + d(b, d),
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Figure 1. Illustration of the various quantities when the metric space is geodesic
and the distances can be interpreted as lengths of diagonals of the complete
quadrilateral. For the subset {{a, b} ∪ {c, d}}, the pairs of points {a, b} and {c, d}
and the geodesic diagonals [a, b] and [c, d] are said to be opposite.

where L,M,S are the largest, middle, and smallest such sums, respectively. We
define δ(a, b, c, d) = (L − M)/2. Then an equivalent formulation of the Gromov
hyperbolic property is existence of a bound δ̄ such that δ(a, b, c, d) < δ̄ for all
quadruples of points, the so-called (Gromov) four-point condition (FPC).

We will sometimes refer to the quadruple (a, b, c, d) as the quadrilateral �abcd,
because the latter is more geometrically appealing, with a word of caution that
if the space is not geodesic, there might not exist a geodesic edge [a, b] of length
equal to d(a, b).

There are some definite computational advantages in using the FPC instead
of the TTC, since the former does not require computation of geodesics (but it
still requires computation of distances). However, both formulations suffer the
restriction that they are not directly applicable to real-world networks, in which
all graphs, no matter how awesome their sizes, have finite δ’s.

This leaves the investigator in a quandary as to how small δ should be for the
graph to enjoy some Gromov hyperbolic properties. For the TTC, the directing
idea was to scale δttc relative to the diameter of the triangle and declare the
graph scaled Gromov hyperbolic if δttc(�)/diam(�) < 3/2, ∀�. The justification
of this bound is that 3/2 is the maximum achievable value of δttc/diam in
standard hyperbolic space or in Euclidean space, while δttc/diam goes beyond
3/2 in positively curved spaces. (See [Jonckheere et al. 08] for the details.)

In this paper, we basically do the same analysis, but for the FPC. The fact that
four instead of three points are involved leads to a greater variety of ways to scale
δ than in the TTC case. Here, we consider the following scalings: δ(�)/diam(�),
δ(�)/L(�), δ(�)/(L + M + S)(�), and compute the upper bound of such scaled
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δ’s in the standard Riemannian manifold H = M −k 2 of constant negative curva-
ture, in the Euclidean space E , and in the standard manifold S = M k 2 of constant
positive curvature. In addition, because the scaled FPC relies on quadrilaterals
instead of triangles as basic geometric objects, the suprema of the scaled δ’s can
also be computed in Ptolemaic space P in a quite natural way. Furthermore, the
recent reformulation of CAT(0) space in term of quadrilateral inequalities [Berg
and Nikolaev 08] even allows us to compute the suprema of the scaled δ’s in
CAT(0) space. To simplify the notation, the four scaled δ’s are denoted generi-
cally by δ/D, where D is any of the distance elements diam, L, L + M + S, or
even L − S. We are now in a position to formulate our main result.

Theorem 1.1. For the scalings D = L, L + M + S, and diam, the various δ/D’s
behave as follows in the hyperbolic (H ), Euclidean (E ), Ptolemaic (P ), CAT(0),
and spherical (S) spaces:

sup
a,b,c,d∈H

d(i,j )≥ε>0,
i �=j

δ(a, b, c, d)
D(a, b, c, d)

< sup
a,b,c,d∈H

δ(a, b, c, d)
D(a, b, c, d)

= sup
a,b,c,d∈E

δ(a, b, c, d)
D(a, b, c, d)

= sup
a,b,c,d∈CAT(0)

δ(a, b, c, d)
D(a, b, c, d)

≤D sup
a,b,c,d∈P

δ(a, b, c, d)
D(a, b, c, d)

< sup
a,b,c,d∈S

δ(a, b, c, d)
D(a, b, c, d)

,

where equality holds in the relation ≤D for D = diam, and strict inequality holds
for D = L,L + M + S. (See Table 1.) Furthermore, the Euclidean supremum is
easily identified as being achieved for a 2-dimensional square. As for the D =
L − S scaling, only the first inequality holds, since the others become equalities.

A few comments are in order if one is to understand the gist of the result. In
the definition of the spaces H and S, the curvature was set to −k2 and k2 across
the respective spaces, but k �= 0 was arbitrary. It is already a first observation
that the suprema over H and S depend only on the sign of the curvature (see Sec-
tion 4.3). The requirement d(i, j) ≥ ε > 0, i �= j = a, b, c, d, in the top supremum
is to prevent it from being achieved for infinitesimally small distances among the
four points, in which case the hyperbolic supremum coincides with the Euclidean
one. We note that the diam scaling is a bit deficient, since it does not provide a
distinction between, on the one hand, the spaces H , E , and CAT(0) and on the
other hand, the space P .

The overall string of (in)equalities is consistent with the TTC intuition that
δ/D should be “small” in negative curvature and “bigger” in positive curvature
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[Jonckheere et al. 08]. We shall therefore declare a metric space to be scaled
Gromov nonpositively curved if δ(a, b, c, d)/D(a, b, c, d) remains less than or equal
to the Euclidean bound for all quadruples of points.

The δ/D analysis in various spaces was motivated by network problems (see
Section 9.1), but the results raise the fundamental issue of what spaces X are “be-
tween” the Euclidean and spherical spaces; precisely, supE δ/D < supX δ/D <

supS δ/D. As shown in this paper, the Ptolemaic space with the proper scaling
is one such space, but whether there are other spaces within the discontinuity
gap is widely open.

The scaled TTC analysis relied on a Cartan–Alexandrov–Toponogov (CAT)
comparison argument [Jonckheere et al. 08]. Unfortunately, such a geometric
approach does not appear to be workable for the FPC; therefore, here, we re-
sort to a computational-algebraic approach: The above suprema are first com-
puted numerically (see Sections 4, 5). From the numerical values of the suprema
in various spaces, we guess their exact values δ̂/D, as well as the quadrilat-
eral �̂ that achieves the optimum (see Section 6). Since the conditions for
embeddability in Euclidean, CAT(0), and Ptolemaic spaces are purely alge-
braic, verifying that ∀a, b, c, d, δ(a, b, c, d)/D(a, b, c, d) ≤ δ̂/D is true and that
∃(a, b, c, d) : δ(a, b, c, d)/D(a, b, c, d) > δ̂/D is false should, in principle, be man-
ageable via a Tarski–Seidenberg decision problem. Unfortunately, the Mathe-
matica and MacAulay encodings of the preceding expressions together with the
well-known Cayley–Menger, CAT(0), and Ptolemaic conditions for embeddabil-
ity in the corresponding spaces result in running times of more than 24 hours,
sometimes with saturated memories, without a decision being reached.1 However,
a very recent reformulation of the CAT(0) conditions [Berg and Nikolaev 08] al-
lows the Euclidean bound gleaned from numerical computation to be proved
analytically (see Section 7). The Ptolemaic case, on the other hand, requires
part of the quantifier elimination to be done “by hand” before Mathematica can
positively confirm the bound. The latter part is a bit involved and therefore
relegated to the appendix (Section 11).

The practical impact of this work is that comparison between the scaled 4-
point δ of an Internet graph and the bounds achievable in the various reference
spaces for the various scalings allows us to model, in the spirit of coarse geome-
try, such network graphs as Riemannian manifolds, CAT(0), or even Ptolemaic
spaces. In the case of a Riemannian manifold model, a finer classification is
provided by the curvature, and it is along that important line of applications
[Jonckheere et al. 11b] that the classical graph generators differ:

1 The MacAulay encoding was done by Dr. Alex Shoshitaishvili.
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Major impact. Relative to the diameter scaling, and for a relevant combination
of generator parameters, the standard graph generators (Barabási–Albert scale-
free and β-model Watts–Strogatz small-world) behave as follows:

sup
�⊆{B-A scale-free}

δ(�)
D(�)

≈ sup
�⊂H

δ(�)
D(�)

< sup
�⊆{W-S small-world}

δ(�)
D(�)

(see Figures 2 and 3). This conclusion is fully consistent with the TTC analysis
[Jonckheere et al. 08], namely, that for some combination of the graph-generator
parameters, scale-free graphs can be coarsely modeled as negatively curved Rie-
mannian manifolds, and small-world graphs are modeled by positively curved
manifolds.

2. 4-Point Inequality, 4-Point Condition

Consider four points a, b, c, d in a metric space (X, d). As stated in the introduc-
tion, we need to consider all distances between all pairs of points. To simplify
the notation, define

u = d(a, d), v = d(b, c);
x = d(a, b), y = d(c, d); (2.1)
z = d(a, c), w = d(b, d);

with the assumption, incurring no loss of generality, that

L := u + v ≥ M =: x + y ≥ S := z + w. (2.2)

Recall that an ultrametric space is a metric space in which the triangle inequality
in, say, �abc is strengthened to v ≤ max{x, z} along with inequalities resulting
from permutations of the sides of �abc. The significance of the concept is that d is
ultrametric iff it is the distance on an equidistant tree [Su 04, Theorem 6.1], that
is, a tree that has constant distance between its root and its degree-one vertices.
The metric space (X, d) is said to satisfy the four-point inequality if it satisfies
a quadrilateral version of the ultrametric condition. With our convention, the
four-point inequality reduces to L ≤ max{M,S}, and further to L = M . It can
be shown that a metric satisfies the four-point inequality if and only if it is the
distance on a (not necessarily equidistant) tree [Su 04, Theorem 6.2]. Hence to
make the space look like a tree at a large scale, the condition L = M is relaxed
to L − M ≤ 2δ. Formally, we have the following definition.
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Definition 2.1. The metric space (X, d) is said to satisfy the Gromov four-point
condition (FPC) if there exists δ̄ < ∞ such that

sup
a,b,c,d∈X

δ(a,b,c,d)︷ ︸︸ ︷
L(a, b, c, d) − M(a, b, c, d)

2
< δ̄.

3. Algebraic and Trigonometric Characterization of Various Spaces

In this section, various spaces are characterized in a way that is numerically, and
sometimes analytically, tractable.

3.1. Ptolemaic Spaces and the Cayley–Menger Matrix

Definition 3.1. A metric space (X, d) is said to be Ptolemaic if for any quadruple of
points {a, b, c, d} ⊆ X, we have

uv ≤ xy + zw,

xy ≤ uv + zw, (3.1)
zw ≤ uv + xy,

where u, . . . , w are defined as in (2.1).

Ptolemy’s theorem states that a quadruple of points on a Euclidean circle sub-
ject to the convention (2.2)) saturates the first inequality. Less trivial is the fact
that the Euclidean space and the standard constant-negative-curvature manifold
are Ptolemaic. One can generalize a bit further by saying that a CAT(0) space
is Ptolemaic (but the converse is not true).

The Ptolemaic inequalities can be written in matrix format as follows: Define
the “Ptolemaic matrix”

P =

⎛⎜⎜⎜⎜⎝
0 x2 z2 u2

x2 0 v2 w2

z2 v2 0 y2

u2 w2 y2 0

⎞⎟⎟⎟⎟⎠ .

Then it is easily established that

det P = (uv − xy − zw)(xy − uv − zw)(zw − xy − uv)(uv + xy + zw), (3.2)

and the Ptolemaic conditions are equivalent to detP ≤ 0.
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We now look at the more restrictive condition of embeddability in Euclidean
space.

Theorem 3.2. There exists an isometric embedding ({a, b, c, d}, d) ↪→ E r≤3 , or equiv-
alently, the edges of lengths u, v, x, y, z, w form a complete Euclidean quadri-
lateral of E r , iff the Cayley–Menger matrix

CM =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 1 1 1
1 0 x2 z2 u2

1 x2 0 v2 w2

1 z2 v2 0 y2

1 u2 w2 y2 0

⎞⎟⎟⎟⎟⎟⎟⎠
has a sequence of nested principal minors CMI×I , I ⊆ {1, 2, 3, 4, 5}, starting at
order |I| = 2 with CM{1,2}×{1,2} = ( 0 1

1 0 ) and running to order r + 2 such that

sign(det CMI×I ) = −(−1)|I | for |I| ≤ r + 2

and

det CMI×I = 0 for |I| > r + 2.

Proof. See [Blumenthal 53, Theorems 41.1, 42.1].

Observe that for |I| = 3, the sign constraints are completely trivial. For |I| = 4,
they yield the triangle inequalities; indeed, for I = {1, 2, 3, 4},

det

⎛⎜⎜⎜⎜⎝
0 1 1 1
1 0 x2 z2

1 x2 0 v2

1 z2 v2 0

⎞⎟⎟⎟⎟⎠ = (x − v − z)(v − x − z)(z − x − v)(x + v + z), (3.3)

which is the triangle inequality for the subset of points {a, b, c}. Should the
triangle inequality hold, then by Heron’s theorem, the above is −8(A(�abc))2 .
For I = {1, 2, 3, 5}, det CMI×I ≤ 0 yields the triangle inequality for {a, b, d}; for
I = {1, 3, 4, 5}, the constraint yields the triangle inequality for {b, c, d}, etc. If,
in addition, the last condition det CM ≥ 0 holds, it is well known that det CM =
288 vol2(�abcd), where vol(�abcd) is the volume of the tetrahedron with vertices
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a, b, c, d. Observe that

detCM
= −2x2y4 − 2w4z2 − 2v4u2 − 2x4y2 − 2z4w2 − 2u4v2

+ 2v2u2y2 + 2w2z2y2 + 2x2w2y2 + 2w2v2u2 + 2x2v2y2 + 2z2v2u2

+ 2v2w2z2 + 2x2u2y2 + 2x2v2u2 + 2x2z2y2 + 2x2w2z2 + 2z2w2u2

− 2v2w2y2 − 2x2v2z2 − 2x2w2u2 − 2z2u2y2

= 2(u2 + v2)(x2y2 − u2v2 + z2w2) + 2(x2 + y2)(−x2y2 + u2v2 + z2w2)
+ 2(z2 + w2)(x2y2 + u2v2 − z2w2)
− 2x2(u2w2 + z2v2) − 2y2(v2w2 + z2u2).

The case I = {2, 3, 4, 5} does not occur in a nested sequence of principal mi-
nors starting at I = {1, 2}. Observe, however, that det CM{2,3,4,5}×{2,3,4,5} ≤ 0 is
equivalent to the Ptolemaic conditions. By a fundamental congruence theorem,
if there exists a nested sequence of principal minors of alternating signs, then
det CM{2,3,4,5}×{2,3,4,5} ≤ 0 and the Ptolemaic conditions hold.

It is trivial, but necessary, to observe that the Ptolemaic and Cayley–Menger
conditions are scale-independent, in the sense that the various inequalities are
preserved under a scaling of the form (u, v, w, x, y, z) �→ (ku, kv, kw, kx, ky, kz),
k ∈ R ∗.

3.2. A Quadrilateral Inequality for CAT(0) Spaces

As shown in the appendix, the Cayley–Menger conditions are difficult to manage
in the realm of computer algebra. However, Berg and Nikolaev’s new character-
ization of CAT(0) spaces via a quadrilateral inequality comes in handy as a
replacement of the Cayley–Menger constraints (see [Berg and Nikolaev 08] and
[Jost 97, Theorem 2.3.1] for a closely related result). The Berg and Nikolaev theo-
rem states that any geodesic space (X, d) is a CAT(0) space iff for any quadruple
of points a, b, c, d ∈ X we have

d(a, d)2 + d(b, c)2 ≤ d(a, b)2 + d(b, d)2 + d(d, c)2 + d(c, a)2 ,

or equivalently,

u2 + v2 ≤ (x2 + y2) + (z2 + w2), (3.4)

along with similar inequalities for the other subsets of the partition.

3.3. Gram Matrices

Surprisingly, embeddability of a quadruple of points in a space of constant
nonvanishing curvature is much easier than in the Euclidean case, since
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embeddability relies on Gram matrices. We define M r
κ to be the standard r-

dimensional Riemannian manifold of constant curvature κ.

Theorem 3.3. There exists an isometric embedding ({a, b, c, d}, d) ↪→ M r≤3
κ<0 iff the

Gram matrix

G− =

⎛⎜⎜⎜⎜⎝
1 cosh(

√−κx) cosh(
√−κz) cosh(

√−κu)
cosh(

√−κx) 1 cosh(
√−κv) cosh(

√−κw)
cosh(

√−κz) cosh(
√−κv) 1 cosh(

√−κy)
cosh(

√−κu) cosh(
√−κw) cosh(

√−κy) 1

⎞⎟⎟⎟⎟⎠
has a sequence of nested principal minors G−

I×I , I ⊆ {1, 2, 3, 4}, starting at order
|I| = 1 and running to order r + 1 such that

sign(det G−
I×I ) = −(−1)|I | for |I| ≤ r + 1

and

det G−
I×I = 0 for |I| > r + 1.

Proof. See [Blumenthal 53, Theorem 106.1 and corollary].

Theorem 3.4. There exists an isometric embedding ({a, b, c, d}, d) ↪→ M r≤3
κ>0 iff

diam{a, b, c, d} ≤ π/
√

κ and the Gram matrix

G+ =

⎛⎜⎜⎜⎜⎝
1 cos(

√
κx) cos(

√
κz) cos(

√
κu)

cos(
√

κx) 1 cos(
√

κv) cos(
√

κw)
cos(

√
κz) cos(

√
κv) 1 cos(

√
κy)

cos(
√

κu) cos(
√

κw) cos(
√

κy) 1

⎞⎟⎟⎟⎟⎠
is positive semidefinite of rank (r + 1), that is, if there exists a sequence of nested
principal minors G+

I×I , I ⊆ {1, 2, 3, 4}, starting at order |I| = 1 and running to
order r + 1 such that

sign(det G+
I×I ) = +1 for |I| ≤ r + 1

and

det G+
I×I = 0 for |I| > r + 1.

Proof. See [Blumenthal 53, Theorem 63.1].
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Again, the sign constraints on G± for |I| = 1, 2 are completely trivial. For
|I| = 3, it is easy to see that because of the Gram nature of the matrices G±,
the sign constraints are in fact triangle inequalities [Bridson and Haefliger 99].

More specifically, in the hyperbolic case, it is readily observed that

det G−
{1,2,3}×{1,2,3} = 1 − cosh2(

√−κv) − cosh2(
√−κx) − cosh2(

√−κz)

+ 2 cosh(
√−κv) cosh(

√−κx) cosh(
√−κz).

By the hyperbolic Heron formula, the condition detG−
{1,2,3}×{1,2,3} ≥ 0 is equiv-

alent to the triangle inequality in �abc and

det G−
{1,2,3}×{1,2,3}

=
((

1 + cosh(
√−κv) + cosh(

√−κx) + cosh(
√−κz)

)
tan

(
A(�abc)

2

))2

.

In the spherical case, det G+
{1,2,3}×{1,2,3} ≥ 0 is related to A(�abc), and the

latter is related to the triangle inequalities via L’Huilier’s formula:

tan2 A(�abc)
4

= tan
x + z + v

4
tan

x + z − v

4
tan

x + v − z

4
tan

z + v − y

4
.

The highest-order condition detG± ≥ 0 is related to the volume.
Specifically, if the last condition detG− ≥ 0 holds, then detG− is related to

vol(�abcd), but not via an easy formula [Murakami and Ushijima 05, Theo-
rem 2.2], from which it nevertheless follows that

det G+ = 0 =⇒ vol(�abcd) = 0.

The Gram matrix conditions are a bit different from the Ptolemaic inequality
and the Cayley–Menger conditions in that they are scale-independent under a
rescaling of the curvature. Specifically, if (u, v, x, y, z, w) is embeddable in M κ ,
then (ku, kv, kx, ky, kz, kw), k > 0, is embeddable in M κ/k 2 .

If the Gram matrix is singular, then scale-independence holds only under
rescaling of the curvature. As a counterexample, consider two equilateral trian-
gles �abc,�dbc ⊂ M −1 , where d(a, b) = d(a, c) = d(b, c) = d(b, d) = d(c, d) = 1;
the two triangles are glued along their common side [b, c] such that the common
foot h of the altitudes [a, h], [d, h] is “between” a and d. The later “between-
ness” concept means that d(a, d) = d(a, h) + d(h, d). The internal angle of the
equilateral triangle is

α = cos−1 cosh(1)2 − cosh(1)
sinh(1)2 ≈ 0.9188.

The length of the altitude is �([a, h]) = sinh−1(sin(α) sinh(1)) ≈ 0.8340. Hence
d(a, d) ≈ 1.668. With this system of distances, the principal minors of the Gram
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matrix are (1.0,−1.3810978, 1.205158,−0.0), with the last one vanishing, as ex-
pected. However, if we amplify those distances by a factor k > 1, the last minor
of the Gram matrix becomes positive. Hence the system of points is no longer
isometrically embeddable in the hyperbolic space M −1 ; the only space in which
it is isometrically embeddable is M −1/k 2 .

4. Generic Constrained Optimization Problem

Finding the upper bounds on the Gromov 4-point δ for the various spaces is
basically the constrained optimization problem

sup
a,b,c,d

δ(a, b, c, d)
D(a, b, c, d)

subject to the constraint that the quadruple {a, b, c, d} be isometrically embed-
dable in the specific space: negatively curved, Euclidean, Ptolemaic, positively
curved. Since embeddability in the various spaces is expressed in terms of the
distances, the problem is conveniently reformulated in terms of those distances,

sup
u,v ,x,y ,z ,w

L(u, v, x, y, z, w) − M(u, v, x, y, z, w)
2D(u, v, x, y, z, w)

subject to various constraints:

Linear constraints: to enforce the fundamental triangle inequalities L ≥ M ≥
S and other convenient assumptions incurring no loss of generality. In
addition, in the diameter scaling case, we enforce u to be the diameter.

Nonlinear constraints: to enforce the Ptolemaic inequalities and the various
sign constraints on the principal minors of the Cayley–Menger and Gram
matrices.

4.1. Linear Constraints

The 3
(4
3

)
= 12 triangle inequalities can conveniently be written as

u ≤ min{x + w, z + y}, v ≤ min{x + z, w + y}, x ≤ min{z + v, u + w},
y ≤ min{v + w, u + z}, z ≤ min{u + y, v + x}, w ≤ min{v + y, u + x}.

If we define

ξ = (u, v, x, y, z, w)′,

the triangle inequalities can be rewritten as Atξ ≤ 0, where At is a 12 × 6
matrix.
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The constraint L ≥ M ≥ S can be rewritten as Almsξ ≤ 0, where Alms is a
2 × 6 matrix.

The convenient linear constraints, incurring no loss of generality, are as follows:

u ≥ v, x ≥ y, z ≥ w.

They are convenient because they restrict the diameter to u, x, or z. Again, they
can be rewritten as Awlogξ ≤ 0, where Awlog is a 3 × 6 matrix.

The linear constraints are written compactly as Aξ ≤ 0, where

A = (A′
t , A

′
lms, A

′
wlog)

′.

Specifically,

At =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 0 0 −1
1 0 0 −1 −1 0
0 1 −1 0 −1 0
0 1 0 −1 0 −1
0 −1 1 0 −1 0

−1 0 1 0 0 −1
0 −1 0 1 0 −1

−1 0 0 1 −1 0
−1 0 0 −1 1 0

0 −1 −1 0 1 0
0 −1 0 −1 0 1

−1 0 −1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Alms =

(
−1 −1 1 1 0 0

0 0 −1 −1 +1 +1

)
,

Awlog =

⎛⎜⎝−1 1 0 0 0 0
0 0 −1 1 0 0
0 0 0 0 −1 1

⎞⎟⎠ .

4.2. Nonlinear Constraints

The nonlinear constraints in the various spaces involve either trigonometric or
polynomial inequalities ci(ξ) ≤ 0, with the extra requirement that if one of the
inequalities saturates, others might have to saturate as well. The precise sign
requirement is written as c(ξ) � 0, to indicate that the embeddability conditions
are more stringent than just c(ξ) ≤ 0.
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The nonlinear constraints in a Ptolemaic space are written either as the three
inequalities (3.1), to be written c1(ξ) ≤ 0, c2(ξ) ≤ 0, c3(ξ) ≤ 0, or as the sin-
gle, but higher-degree, inequality detP := c1 ≤ 0, where det P is given by (3.2).
There are no restrictions on the saturation; nevertheless, we keep the notation
c(ξ) � 0.

The new formulation of CAT(0) spaces involves quadrilateral inequalities,
again without restrictions on the saturation; nevertheless, we keep the notation
c(ξ) � 0.

Regarding the nonlinear constraints of the Euclidean case, those corresponding
to determinants of order |I| = size(CM) − 1 = 4 of the relevant Cayley–Menger
matrix involve the product form of the three triangle inequalities in all four
triangles of the quadrilateral; the latter are written ci(ξ) ≤ 0, i = 1, 2, 3, 4, where,
for example, c1 is given by (3.3). Should any of them vanish, then the determinant
of the full matrix detCM =: c5 has to vanish, in which case the quadruple is
embeddable in a subspace of dimension ≤ 2. Therefore, the constraints can be
formalized as C1 ∨ C2 ∨ C3 , where

C1 = (c1 < 0) ∧ (c2 < 0) ∧ (c3 < 0) ∧ (c4 < 0) ∧ (c5 < 0),
C2 = (c1 < 0) ∧ (c2 < 0) ∧ (c3 < 0) ∧ (c4 < 0) ∧ (c5 = 0),
C3 = (∀i ∈ {1, 2, 3, 4}, ci ≤ 0) ∧ (∃i ∈ {1, 2, 3, 4} : ci = 0) ∧ (c5 = 0).

We write C1 ∨ C2 ∨ C3 as c(ξ) � 0.
For the Riemannian cases of negative and positive curvature, the constraints

on the principal minors of order |I| = size(G±) − 1 = 3 are triangle inequalities,
to be written ci(ξ) ≤ 0, i = 1, 2, 3, 4. The condition on the full matrix is written
c5(ξ) ≤ 0. Again, one has to be cautious, since if one of the triangle inequalities
saturates, i.e., ci(ξ) = 0 for some i ∈ {1, 2, 3, 4}, then the fifth inequality satu-
rates as well, i.e., c5(ξ) = 0, meaning that the volume vanishes. Therefore, the
constraints can be formalized as C1 ∨ C2 ∨ C3 , where

C1 = (c1 < 0) ∧ (c2 < 0) ∧ (c3 < 0) ∧ (c4 < 0) ∧ (c5 < 0),
C2 = (c1 < 0) ∧ (c2 < 0) ∧ (c3 < 0) ∧ (c4 < 0) ∧ (c5 = 0),
C3 = (ci ≤ 0,∀i ∈ {1, 2, 3, 4}) ∧ (∃i ∈ {1, 2, 3, 4} : ci = 0) ∧ (c5 = 0).

We write C1 ∨ C2 ∨ C3 as c(ξ) � 0.

4.3. Scale Independence

Proposition 4.1. supa,b,c,d∈Mκ �= 0

δ(abcd)
D (abcd) depends only on the sign of the curvature,

not on its magnitude.
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Proof. Let cκ(ξ) � 0 denote nonlinear embeddability constraints in M κ �=0. Let κ′ be

another curvature (of the same sign). It is easily verified that cκ ′(ξ) = cκ

(√
κ ′
κ ξ
)
.

Define ξ′ =
√

κ ′
κ ξ. We have

sup
Aξ≤0,cκ ′ (ξ)�0

δ(ξ)
D(ξ)

= sup
Aξ ′≤0,cκ (ξ ′)�0

δ
(√

κ
κ ′ ξ

′)
D
(√

κ
κ ′ ξ′
) = sup

Aξ ′≤0,cκ (ξ ′)�0

δ(ξ′)
D(ξ′)

,

where the last equality stems from the trivial scale invariance of δ/D. The result
follows from the extreme sides of the above equality.

Proposition 4.2. In the Ptolemaic, Euclidean, and CAT(0) cases, if ξ̂ reaches

sup
Aξ≤0,c(ξ)�0

δ(ξ)
D(ξ)

,

so does kξ̂, k > 0. In the M κ �=0 case, if ξ̂ reaches

sup
Aξ≤0,cκ (ξ)�0

δ(ξ)
D(ξ)

,

then kξ̂, k > 0, reaches

sup
Aξ≤0,cκ / k 2 (ξ)�0

δ(ξ)
D(ξ)

.

Proof. The first part is trivial from the homogeneous property of the Ptolemaic,
Cayley–Menger, and quadrilateral inequality CAT(0) conditions. The second
part results from manipulation of the arguments of cos and cosh in the Gram
matrix conditions.

The scaling issue in negatively curved manifolds is different from that in posi-
tively curved manifolds. In the standard positively curved space, it is tacitly as-
sumed that u, v, x, y, z, w ≤ π/

√
κ. In hyperbolic space, the supremum is achieved

for an infinitesimally small quadrilateral. Precisely, we have the following result.

Proposition 4.3.

lim
ε↓0

sup
a,b,c,d∈M κ < 0
u,v ,x,y ,z ,w≥ε

δ(a, b, c, d)
D(a, b, c, d)

= sup
a,b,c,d∈M 0

u,v ,x,y ,z ,w≥ε

δ(a, b, c, d)
D(a, b, c, d)

.

Proof. Indeed, the 1×1 and 2 × 2 conditions on the Gram G− matrix are trivial,
as are the 2 × 2 and 3 × 3 conditions on the Cayley–Menger CM matrix. Next,
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the 3 × 3 conditions on G− are equivalent to the triangle inequalities, as are the
4 × 4 conditions on CM, except for the {2, 3, 4, 5} × {2, 3, 4, 5} condition on CM,
which is equivalent to the Ptolemaic conditions. Hence all that remains to be
proved is the equivalence between the 4 × 4 G− condition at small scale and the
5 × 5 CM condition. Precisely, the proof relies on the observation that the 4 × 4
Gram G− condition, up to eighth order, is equivalent to the 5 × 5 Cayley–Menger
conditions. Clearly,

G− =

⎛⎜⎜⎜⎜⎝
1 1 + x2

2 1 + z 2

2 1 + u2

2

1 + x2

2 1 1 + v 2

2 1 + w 2

2

1 + z 2

2 1 + v 2

2 1 1 + y 2

2

1 + u2

2 1 + w 2

2 1 + y 2

2 1

⎞⎟⎟⎟⎟⎠+ 0(ξ2).

The determinant of the second-order component of G− is found to be

1
16
(− 2x2v2u2y2 − 2x2w2z2y2 − 2z2w2v2u2 + x4y4 + z4w4 + u4v4 + 4z4w2

+ 4u4v2 + 4v4u2 + 4x4y2 + 4w4z2 + 4x2y4 − 4x2w2z2 − 4z2w2u2

− 4v2u2y2 − 4w2z2y2 − 4x2v2u2 − 4x2z2y2 − 4x2w2y2 − 4w2v2u2

− 4z2v2u2 − 4x2v2y2 − 4v2w2z2 − 4x2u2y2 + 4x2w2u2 + 4z2u2y2

+ 4x2v2z2 + 4v2w2y2).
It is easily seen that the sixth-order term of the above is exactly − 1

8 det CM.

5. Numerical Results

The problem is set up, conceptually as follows:

sup
Aξ≤0
c(ξ)�0

L(ξ) − M(ξ)
2D(ξ)

,

where Aξ ≤ 0 are the linear constraints and c(ξ) � 0 are the nonlinear con-
straints. It is good to recall that L(·), M(·), and D(·) are linear.

The routine fmincon of Matlab is used to find the solution to the constrained
optimization problem. The initial estimate ξ0 is taken to be the solution to the
problem with linear constraints only, which reduces to a (computationally reli-
able!) linear programming problem. Indeed, m = supAξ≤0

L−M
2D can be rewritten

as infAξ≤0 (2Dm − (L − M)) = 0. The latter is a linear programming problem
that can be iterated on m using the Matlab routine linprog until a vanishing
minimum is reached.
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5.1. Linear Programming Results

The maxima of L−M
2D subject to the linear constraints only for the various scalings

are tabulated in the following table:

D supA ξ≤0
δ
D

L 0.25
L + M + S 0.125

diam 0.5
L − S 0.5

In fact, these numerical results can be confirmed analytically.

Theorem 5.1. Consider the linear programming problem

min
Aξ≤0

(2mD − (L − M)) .

For D = L, ∀m, the solution is

(u, v, x, y, z, w) = ρ(2, 2, 1, 1, 1, 1),

and the optimal cost vanishes for m = 0.25. For D = L + M + S, the solution is
the same, provided m ≤ 0.125, and the optimal cost vanishes for m = 0.125. For
D = diam, the optimal solution is still the same ∀m and the optimal cost vanishes
for m = 0.5. Finally, for D = L − S, the optimal cost vanishes for m = 0.5.

Proof. For transparency of the proof, we discard the constraint Awlogξ ≤ 0, since it
is not really necessary, and set A = (A′

t A′
lms )′. We first follow the path that the

proofs of the D = L, D = L + M + S, D = L − S, and D = diam cases have in
common. The inequality constraint Aξ ≤ 0 is rewritten as an equality constraint
σ + Aξ = 0, where σ ≥ 0 is a vector of slack variables. Next, it is necessary to
impose an upper bound on the solution ξ, for otherwise it is infinite. Again,
this is done by means of another slack vector τ ≥ 0, and the upper bound ξ ≤ 2
is rewritten as another equality constraint τ + ξ = 2e, where e = (1 1 . . . 1 )′.

Augmenting the state vector as (σ′ τ ′ ξ′ )′, the constraints can be rewritten as

(
I 0 A

0 I I

)⎛⎜⎝σ

τ

ξ

⎞⎟⎠ =

(
0
2

)
.

Furthermore, if the cost is written as 2mD − (L − M) = γξ, the linear program-
ming tableau is
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I14×14 014×6 A14×6 014×1

06×14 I6×6 I6×6 26×1

01×14 01×6 γ1×6 0

Essentially, we set m to its optimum value, and endeavor to show that the
minimum of γξ is indeed 0 for ξ = (2, 2, 1, 1, 1, 1). It is trivial to verify that
ξ = (2, 2, 1, 1, 1, 1) satisfies the constraints and that γξ = 0. The nontrivial step
is to show that ξ = (2, 2, 1, 1, 1, 1) is indeed the optimum. This is accomplished
via a pivoting procedure on the above tableau. As the original tableau stands,
the basic feasible solution is (σ′, µ′, ξ′)′ = (0′, 2′, 0′)′. Since all ξ variables have to
be activated, we move the

(
A
I
γ

)
part of the tableau across the double vertical line

to the extreme left of the tableau. To compensate for this, six among the σ and
τ slack columns have to be moved across the double vertical line to the right,
where they will become vanishing, hence saturating some constraints. From the
presumed solution, it is easily seen that the constraints to be saturated are those
corresponding to σ{1,2,3,4,14} and τ1 . Indeed, σ{1,2,3,4} = 0 yields saturation of
the first four triangle inequalities u ≤ x + w, u ≤ z + y, v ≤ x + z, v ≤ w + y;
σ14 = 0 yields saturation of M ≥ S; τ1 = 0 yields saturation of u ≤ 2. Regarding
saturation of v ≤ 2, the latter is equivalent to τ2 = 0, which, as we will soon see,
comes out of the new basic feasible solution. After this operation, the tableau
becomes

A14×6

04×9

I9×9

01×9

014×5
I4×4

010×4

013×1

1
014×1 014×1

I6×6 06×9
01×5

I5×5
06×4 06×1

1
05×1

26×1

γ 01×9 01×5 01×4 0 0 01×1

We rewrite the above tableau in a more compact format as

A1 A2 b

γ 0 0

By row operations, we convert A1 to the identity matrix, so as to obtain the
near-canonical form

I20×20 A−1
1 A2 A−1

1 b

γ 0 0

To obtain the canonical form, we reduce γ to 0 by trivial row operations to obtain

I20×20 A−1
1 A2 A−1

1 b

0 c2 0
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It follows from the above that the new basic feasible solution is

( ξ′ σ′
5,...,13 τ ′

2,...,6 )′ = A−1
1 b.

It is also easily observed that
(
A−1

1 b
)
16 = τ2 = 0; as expected, the constraint

v ≤ 2 is saturated. Since the (2, 3)-block element of the above tableau vanishes,
the cost vanishes for the basic feasible solution.

It remains to prove that this solution is optimal. For D = L, we have

γ = (−1 −1 2 2 0 0 ),

and it follows that

c2 = ( 1/2 1/2 1/2 1/2 1 0 ).

Since those relative cost coefficients are nonnegative, optimality is proved [Luen-
berger 89, Section 3.4]. For the case D = L + M + S, we have

γ = (−3 −3 5 5 1 1 ),

and it follows that

c2 = ( 3/2 3/2 3/2 3/2 2 0 ).

Since those coefficients are nonnegative, optimality is proved as well. For D =
L − S, we have γ = (0 0 1 1 −1 −1 ), and it follows that

c2 = ( 0 0 0 0 1 0 ).

For D = diam, we have γ = (0 −1 1 1 0 0 ), and it follows that

c2 = ( 0 0 1/2 1/2 1/2 0 ).

The fact that in all scaling cases, some components of c2 vanish reveals the
possibility of multiple optima. (Recall that the vanishing of some relative cost co-
efficient is necessary but not sufficient for multiple optimal solutions [Appa 02].)

Lemma 5.2. Consider the linear programming problem minĀχ= b̄ γ̄χ = 0. Define the
associated linear programming problems

lpk : min
Āk χk = b̄k

γ̄kχk , k = 0, 1, . . . .

The linear programs are initialized as

γ̄0 = γ̄, Ā0 = Ā, b̄0 = b̄.
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In this particular application, the initialization is given as

γ̄0 = γ̄ =
(

0 0 γ
)

,

Ā0 = Ā =

(
I 0 A

0 I I

)
,

b̄0 = b̄ =

(
014×1

26×1

)
.

Recursively, if χ∗
k−1 is a solution to lpk−1 and as long as γ̄k−1χ

∗
k−1 < 0, the

program lpk is defined as follows:

Āk =

(
Āk−1

γ̄k−1

)
, b̄k =

(
b̄k−1

γ̄k−1χ
∗
k−1

)
,

and the cost coefficients are defined as

(γ̄k )i =

{
−1 if

(
χ∗

k−1

)
i
= 0,

0 otherwise.

Then the solution χ∗
k−1 , k = 1, 2, . . . , is unique iff γ̄kχ∗

k = 0.

Proof. The first step k = 1 is proved in [Appa 02]. If γ̄1χ1 = 0, the optimal solu-
tion χ∗

0 is unique, and the algorithm terminates. If γ̄1χ
∗
1 �= 0, the χ∗

0 solution is
nonunique, since χ1 is another solution. But the question now is whether besides
χ0,1 there are still other solutions.

Then we use again the results of [Appa 02] to check whether the solution to lp1

is unique. This defines the problem lp2, which sets the stage for the recursion.
Clearly the recursion stops when γ̄kχk = 0.

For D = L, the first iteration of the algorithm of Lemma 5.2 yields

χ1 =
(

01×12 01×2 21×6 01×6

)′
along with γ̄1χ1 = −4, so that the χ-solution is nonunique. Even though the
ξ-component vanishes, it is necessary to run the iteration at least one more
time, for there is no way to rule out the next solution having a nonvanishing
ξ-component, hence revealing another ξ-solution. The next iteration yields

χ2 = ( 01×4 |0.30771×8 0|0.3077 1.69231×2 |1.84611×4 0.30771×2 |0.15391×4 )′.

Clearly the ξ-component is of the form ρ(2, 2, 1, 1, 1, 1). From here on, the ξ-
solution cycles. Hence the ξ = (2, 2, 1, 1, 1, 1) solution is unique, up to a multi-
plicative positive constant.
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For D = L + M + S, the first iteration yields

χ1 = ( 01×12 01×2 21×6 01×6 )′

along with γ̄1χ1 = −4, so that the χ-solution is nonunique. The situation is much
the same as the previous case. The next iteration yields

χ2 = ( 01×4 |0.30771×8 0|0.3077 1.69231×2 |1.84611×4 0.30771×2 |0.15381×4 ).′

As in the preceding case, the ξ = (2, 2, 1, 1, 1, 1)-solution is unique up to a mul-
tiplicative positive factor.

As for D = L − S, the first iteration of the algorithm of Lemma 5.2 yields

χ1 = ( 21×12 01×2 01×6 21×6
′

along with γ̄1χ1 = −8, so that the χ-solution is nonunique, and more importantly,
the ξ part of the χ solution is nonunique. This component, in fact, yields an
alternative solution that will prove useful in the nonlinear part of the algorithm.
However, running another iteration yields

χ2 = ( 0.46901×4 |0.86431×8 0|0.3953 1.3571×2 |1.33331×4 0.86431×2 |0.66671×4 )′.

Clearly, this reveals another ξ solution,

ξ = (0.8643, 0.8643, 0.6667, 0.6667, 0.6667, 0.6667).

The next iteration does not have feasible solution. Hence all ξ solutions are
positive combinations of

(2, 2, 1, 1, 1, 1), (2, 2, 2, 2, 2, 2), (0.8643, 0.8643, 0.6667, 0.6667, 0.6667, 0.6667).

5.2. Nonlinear Programming Results

The preceding linear constraint solution is utilized as the initial condition to the
nonlinear constraint routine. In all cases, the initial condition to the nonlinear
algorithm was taken to be the (2, 2, 1, 1, 1, 1)-solution, except in the hyperbolic
(L − S)-case, in which a combination of the generic solution and the one provided
by Lemma 5.2,

(2, 2, 1, 1, 1, 1) + (2, 2, 2, 2, 2, 2) = (4, 4, 3, 3, 3, 3),

was chosen to make the algorithm converge. The numerical values of max(δ/D)
subject to the linear and nonlinear constraints for the various scalings and in the
various spaces are as shown in Table 1. The optimum edge lengths are shown in
Table 2.

The L, L + M + S, and diam scalings behave in roughly the same way. As
intuition suggests, one observes an increase of max� δ(�)/D(�) from hyperbolic
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Hyperbolic Hyperbolic
supA ξ≤0 ,c (ξ )≤0

δ
D

subject to Euclidean Ptolemaic Spherical
ξ ≥ 1/

√−κ CAT(0)
L 0.1397 0.1464 0.1667 0.25

L + M + S 0.0572 0.0607 0.0714 0.125
diam 0.2788 0.2929 0.2929 0.5
L − S 0.5 0.5 0.5 0.5

Table 1. Achievable bounds in various spaces.

to spherical spaces. The hyperbolic ξ ≥ 1/
√−κ column indicates that for a hy-

perbolic quadrilateral with edge length bounded from below, sup(δ/D) remains
below what could be achieved without a lower bound, which, for infinitesimally
small edge length, equals the Euclidean bound. On the other hand, there is
a strict inequality between the absolute hyperbolic/Euclidean bound and the
spherical bound. The Ptolemaic space appears “somewhere between” Euclidean
and spherical spaces, which is not surprising, since H , E ⊆ P .

The situation is totally different for the L − S scaling, since max δ/(L − S)
remains constant across all spaces. For H , E , and S, this seems to indicate that
max δ/(L − S) = 0 is indicative of constant curvature, but it is unclear what this
means for P .

Regarding the minima, no matter what the scaling is, we have min δ/D = 0,
since the latter is easily seen to be reached for the degenerate quadrilateral a = c,
b = d, embeddable is all spaces considered.

6. Geometric Interpretation of Suprema

The numerical values of sup�⊂H ,E
δ
D for D = L,L + M + S,diam indicate that

the suprema are reached for a 2-dimensional square, u = v, x = y, z = w. In-
deed, for H with ξ ≥ 1, we have x = y = 1 and z = w = 1, and some hyperbolic
trigonometry in the right triangle �ab0, where 0 = [a, d] ∩ [b, c], yields

u = v = 2 cosh−1
(√

cosh(1)
)

= 1.3653,

from which the result follows. For E , the result is trivial to verify.
In positive curvature, the numerical results are consistent with a quadrilateral

embedded in a 2-sphere, with the midsize and small diagonals [a, b] ∪ [b, d] ∪
[d, c] ∪ [c, a] forming the “equator” and with the large diagonals [a, d], [b, c] each
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Hyperbolic Euclidean Ptolemaic Spherical
(u, v, x, y, z, w)′ ξ ≥ 1/

√−κ hyperbolic

L 1.0000 1.2375 1.0608 3.1416
0.9281 1.2375 0.5304 3.1416
0.6948 0.8750 0.5304 1.5708
0.6948 0.8750 0.5304 1.5708
0.6949 0.8750 0.5304 1.5708
0.6947 0.8750 0.5304 1.5708

L + M + S 1.0000 7.7272 1.0450 0.0496
1.0000 7.7272 0.5225 0.0496
0.6947 5.4640 0.5225 0.0246
0.6945 5.4640 0.5225 0.0246
0.6945 5.4640 0.5225 0.0246
0.6944 5.4640 0.5225 0.0246

diam 1.0000 7.6630 1.3077 0.0534
1.0000 7.6630 1.3077 0.0534
0.7212 5.4185 0.9247 0.0264
0.7212 5.4185 0.9247 0.0264
0.7212 5.4185 0.9247 0.0264
0.7212 5.4185 0.9247 0.0264

L − S 3.7133 7.9753 8.2890 3.1416
3.7133 7.9753 8.2890 3.1416
3.0662 5.6407 5.8613 1.5708
3.0662 5.6407 5.8613 1.5708
3.0662 5.6407 5.8613 1.5708
3.0662 5.6407 5.8613 1.5708

Table 2. Optimum edge lengths in various spaces for various scalings.

half the circumference in length. On the unit sphere, this yields x = y = u = v =
π
2 and u = v = π, with which the numerical result is consistent.

7. Proof of Bound for CAT(0) and Euclidean Spaces for Some Scalings

Here, we endeavor to prove the bounds in the CAT(0) space for all scalings,
except the diameter scaling, which entails additional expressions making the
problem more involved. The Euclidean bound is proved for the L-scaling. The
Euclidean bound in the (L + M + S)-scaling does not appear to be tractable with
the technique presented here; it can, however, be proved by a Sturm-sequence
argument implemented in Maple [Ariaei and Jonckheere 08].
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As is well known, E , H ⊂ CAT(0), so that

sup
�⊂E ,H

δ

D
≤ sup

�⊂CAT(0)

δ

D
,

and we endeavor to derive a bound on the right-hand side of the inequality and
then show that this bound is achievable in E .

The inequality (3.4) can be written as

(u + v)2 − 2uv ≤ (x + y)2 − 2xy + (z + w)2 − 2zw. (7.1)

Since the spaces E and H are known to be Ptolemaic, we can utilize the inequality

uv ≤ xy + zw

in (7.1), which yields

(u + v)2 ≤ (x + y)2 + (z + w)2 , L2 ≤ M 2 + S2 . (7.2)

Clearly, (3.4) implies (7.2), so that

sup
u2 +v 2 ≤x2 +y 2 +z 2 +w 2

δ

D
≤ sup

L2 ≤M 2 +S 2

δ

D
,

and we proceed to derive an explicit bound on the right-hand side of this in-
equality and show that this bound in achievable in E .

7.1. L -Scaling, max δ

L = (
√

2−1)
2
√

2

To show that

max
δ

L
=

(√
2 − 1

)
2
√

2
,

it suffices to show the following:

(u + v) −
√

2(x + y) ≤ 0,

or equivalently,

L −
√

2M ≤ 0.

Since S ≤ M , from (7.2) we have

L2 ≤ 2M 2 .

Therefore,

L ≤
√

2M =⇒ L −
√

2M ≤ 0.
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The proof is complete under the relaxed constraint L2 ≤ M 2 + S2 , and since the
bound is obviously achieved for a flat Euclidean square, it is the bound for E .
By a similar argument, it is also the bound for H and CAT(0).

7.2. (L + M + S )-Scaling, max δ

L +M+S =
√

2−1
2(
√

2+2)

Verifying the bound “by hand” does not appear completely straightforward;
however, it is easily manageable with the help of Mathematica. The latter indeed
confirms that the following expression is true:

∀(L,M,S) : (L2 ≤ M 2 + S2) ∧ (L ≥ M ≥ S ≥ 0)

=⇒ (L − M) ≤
√

2 − 1√
2 + 2

(L + M + S).

7.3. (L − S )-Scaling, max δ

L −S = 1
2

To prove that the inequality δ
L−S ≤ 1

2 always holds, we use the assumption L ≥
M ≥ S. Since M ≥ S, the inequality L − M ≤ L − S holds. Therefore, L−M

2(L−S ) ≤
1
2 is always true.

8. Geometric Interpretation of Scaled FPC

Here we show that the L-scaled 4-point condition captures some “thinness”
characteristics of the various geodesic triangles in the network. Consider a
geodesic triangle ∆abc. It can be shown [Bridson and Haefliger 99, p. 408]
that there exist quantities r, s, t > 0 such that d(a, b) = r + s, d(b, c) = s + t,
and d(c, a) = t + r. Define points ia ∈ [b, c], ib ∈ [c, a], and ic ∈ [a, b] such that
d(b, ia) = s, d(ia , c) = t, d(c, ib) = t, d(ib , a) = r, d(a, ic) = r, and d(ic , b) = s.
The points ia , ib , and ic can be defined as the points of contact of the in-
scribed circle with sides [b, c], [a, c], and [a, b], respectively, of the comparison
triangle. Consider the quadrilateral �abia ib . It can be shown [Bridson and Hae-
fliger 99, p. 411, Figure H.6] that L = d(a, ia) + d(b, ib), M = d(a, b) + d(ib , ia).
The L-scaled condition means that 1 − M

L ≤ (2b̄L ), where b̄L is the bound in
the space being analyzed; equivalently, L(1 − 2b̄L ) ≤ M . For the quadrilateral
�abia ib , this yields

(d(a, ia) + d(b, ib))(1 − 2b̄L ) ≤ r + s + d(ib , ia) ≤ r + s + 2t.
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Applying the same reasoning to the other quadrilaterals and adding the resulting
inequalities yields

(d(a, ia) + d(b, ib) + d(c, ic)) ≤ 1
1 − 2b̄L

(d(a, b) + d(b, c) + d(c, d)).

In other words, we obtain a bound on the sum of the distances between the
vertices and the contact points between the opposite sides of the triangle and its
inscribed circle as a function of the perimeter of the triangle. Clearly, this is a
“fatness” bound.

Repeating the same argument for the (L + M + S)-scaling yields (the details
are left to the reader)

(d(a, ia) + d(b, ib) + d(c, ic)) ≤ 1 + 3b̄L+M +S

1 − 2b̄L+M +S
(d(a, b) + d(b, c) + d(c, d)).

9. Simulation Experiments

9.1. Scaled FPC in Small-World, Scale-Free, and Other Graph Generators

Parallel to what was done in [Jonckheere et al. 08], here we examine the behavior
of δ(�)/diam(G), which is a large-scale approximation of δ(�)/diam(�), for
the traditional graph generators: the Erdős–Rényi purely random graphs, the
Barabási–Albert growth/preferential attachment scale-free generator, and the
Watts–Strogatz β-model small-world generator [Barabási et al. 99]. In addition,
we also consider a slight variant of the growth/preferential attachment generator:
that for which the attachment is uniform. Recall that the latter is not scale-free
[Barabási et al. 99]. The scaling by the diameter of the graph rather than the
diameter of the quadrilateral is motivated by the need to make the computation
tractable.

To draw a fair comparison among all four models, we set the total number of
nodes (50 in the experiment of Figure 2 and 100 in the experiment of Figure 3)
and then adjust the parameters of the various models so as to have the same
number of edges M across all four models (for details, see [Jonckheere et al. 08]
or [Lohsoonthorn 03], since the protocol of this FPC experiment is exactly the
same as that of the TTC experiment of [Jonckheere et al. 08]). Then we plot

EM

(
max
�⊂G

δ(�)
diam(G)

)
(9.1)

versus M , where EM denotes the ensemble average over all graphs of size M

generated by all four models. The results are shown in Figures 2 and 3.
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Figure 2. The mathematical expectation of max (δ(�)/diam(G)) versus the total
number of edges M for all four graph generators of order 50. Observe that the
scale-free graph is the closest to being hyperbolic.

The results are consistent with those of the scaled TTC [Jonckheere et al. 08],
in the sense that among all graph generators, the Barabási–Albert scale-free
one comes closest to being scaled Gromov hyperbolic. More specifically, this
phenomenon happens in an intermediate range of values of M , not too small,
for otherwise, the graph looks like the startup tree (δfpc(�) = 0), and not too
large, for otherwise, the graph has too many quadrilaterals with the potential
for too-high values of δfpc. In this region, though, there is a mild discrepancy
with [Jonckheere et al. 08], in the sense that the FPC performance (9.1) does
not quite drop below the theoretical threshold as the TTC performance did.

This discrepancy can be explained on the ground that the graphs on which
the TTC and FPC were tested involve some randomness in the definition of the
startup backbone and the attachment process, so that in the FPC experiment it
was nearly impossible to reproduce the graphs of the TTC experiment. Moreover,
the performance is evaluated in a very conservative way, since for every graph
the worst quadrilateral (with the highest δfpc(�)/diam(�)) is chosen, making
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Figure 3. The mathematical expectation of max (δ(�)/ diam(G)) versus the total
number of edges M for all four graph generators of order 100. Observe that the
scale-free graph is the closest to being hyperbolic.

the performance sensitive to random events in the backbone and the attachment
process.

The findings of Figures 2 and 3 are consistent with the “taxonomy of large-scale
networks” of [Narayan and Saniee 09, Figure 5], showing that the relationships
among the various network concepts (power law, scale-free, hyperbolic, etc.)
are not inclusions, but rather nonempty intersections; e.g., there are power law
graphs that are hyperbolic, while other power law graphs are not hyperbolic. To
further exemplify the fact that scale-free graphs need not be hyperbolic, it was
observed in [Boguna et al. 10] that scale-free networks do not show the traffic-
congestion anomalies reported in [Jonckheere et al. 11b, Lou et al. 11, Narayan
and Saniee 09] for hyperbolic networks.

Graphs of order 100, such as those utilized in the simulation studies, might
appear small by today’s standards; however, the scaled δfpc analysis on graphs
of order 500 was done in a recent experiment on spin networks [Jonckheere
et al. 11a]. In any case, the next experiment will involve many more vertices.



166 Internet Mathematics

Figure 4. Histogram of δfpc(�)/ diam(�) for 40,000 points uniformly chosen over
the open Poincaré disk.

9.2. Poincare Disk Network

To see how the scaled FPC test behaves for a truly hyperbolic network, take
the Poincaré disk; uniformly sample the open unit disk of the complex plane
(the norm is uniformly distributed over [0, 1) and the argument is uniformly
distributed in [0, 2π)). Let us pick 40,000 points and let us plot the histograms
of δfpc(�)/diam(�). It can be seen in Figure 4 that the theoretically established
bounds are never exceeded.

10. Conclusions

We have shown that scaling the Gromov four-point condition in various ways
and requiring the various scaled quantities to be below the corresponding
hyperbolic threshold leads to a concept of Gromov hyperbolic space applicable
to finite spaces, revealing a new “thinness” property of triangles, and relevant
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to the classical network graph generators. But probably the deepest question
raised here is what kind of spaces “fill” the discontinuity of sup� δ(�)/D(�)
between Euclidean spaces and Riemannian manifolds of constant positive
curvature. These spaces seem to defy constant-curvature Riemannian geometry.
The Ptolemaic spaces appear to be such spaces, but whether other such spaces
can be identified is widely open. Another widely open application-oriented
question is whether there are graphs that can be modeled as Ptolemaic spaces.

11. Appendix: Computational Algebra for the Ptolemaic Case

If D(ξ) is a polynomial in ξ = (u, v, x, y, z, w), we write

sup
ξ ,f (ξ)<0

δ(ξ)
D(ξ)

= b̄, (11.1)

where f(ξ) = ( c(ξ) ξ′A′ )′, where c(ξ) < 0 are the polynomial embeddability con-
straints in either Euclidean or Ptolemaic space and Aξ < 0 are the linear con-
straints. The above can then be rewritten, in polynomial format, as follows:

f0(ξ) := u + v − (x + y) − 2b̄D(u, v, x, y, z, w) < 0.

If the scaling factor D is the largest sum of lengths of diagonals, L, the above
becomes

f0(ξ) := u + v − (x + y) − 2b̄(u + v) < 0.

If δ is scaled by the perimeter of the quadrilateral, then

f0(ξ) := u + v − (x + y) − 2b̄(u + v + x + y + z + w) < 0.

In the Euclidean case and for the scaling D = L, we have a good guess as to
what b̄ is, namely

√
2−1

2
√

2
. It is even an algebraic number, so that the problem can

be reduced to one over Z[ξ], but for the sake of the simplicity of the exposition,
we will not pursue this here.

In the Euclidean case with D = L, the statement (11.1) can be rephrased
algebraically as the conjunction P ∧ ¬Q of two statements: The first one, P ,
asserts that for all ξ satisfying the constraints, the scaled δ remains below the
bound; the second one, ¬Q, asserts that there does not exist any ξ satisfying the
constraints and giving a scaled δ above the bound.

Formally, the first statement is to decide whether it is true that whenever
f1(ξ) < 0, . . . , fM (ξ) < 0, we have f0(ξ) < 0. In the predicate language L1 (see
[Manin 77]), this statement is written as the formula

P := (∀ξ) ((f1(ξ) < 0 ∧ · · · ∧ fM (ξ) < 0) → f0(ξ) < 0)
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being true. In the Mathematica language, the above formula is written as

ForALL[{ξ1, . . . , ξM}, f1<0 && · · · &&fN<0,f0<0].

In Mathematica, it might take several instructions of the form

FullSimplify[%]

before a true or false answer is rendered. The above is, formally, the universal
quantifier ∀ elimination.

The second statement can be formally reworded as the nonexistence of real
solutions to the system of polynomial equations f1 < 0, . . . , fM < 0 and f0 > 0.
In the L1 language, we have to decide whether the formula

Q := (∃ξ) (f1 < 0 ∧ · · · ∧ fM < 0 ∧ f0 > 0)

is false. In Mathematica, the above formula is written

Exists[{ξ1,. . . ,ξN}, f1<0 && · · · && fM<0 && f0>0].

Again, it might take several iterations on

Resolve[%]

before a final true or false answer is rendered. Formally, the above is elimination
of the existential quantifier ∃.

Thus what needs to be established is that P ∧ ¬Q is true.
Even in the simplified Ptolemaic case, with all constraints properly taken into

consideration, the quantifier elimination ForAll seems to be running forever (a
run of at least 12 hours has been observed!). It appears, therefore, that we ought
to simplify the problem “by hand” before submitting it to Mathematica.

11.1. Tarski–Seidenberg Decision for the Ptolemaic Case, L -Scaling

In L = u + v scaling, what is overlooked if we just submit the problem “as is”
to Mathematica is the independence of the criterion

(u + v) − (x + y) ≤ 2b̄(u + v)

of the z, w variables. Therefore, those variables are candidates for elimination
“by hand.”

More formally, let B(u, v, x, y, z, w) be the Boolean combination of polynomial
inequality constraints of the problem, that is, the sign constraints, the triangle
inequalities, the convention on opposite diagonals, and the Ptolemaic conditions.
Elimination of z, w consists in deriving a Boolean combination B(u, v, x, y)
such that there exists (z, w) such that B(u, v, x, y, z, w) is true if and only if
B(u, v, x, y) is true.
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11.1.1. Convention and Sign Constraints. Recall that (u, v) and (x, y) are pairs of lengths
of diagonals such that u + v ≥ x + y ≥ z + w. This leaves us the freedom to order
the pairs (u, v) and (x, y) as follows, where we have by the same token enforced
the fact that lengths are nonnegative:

x ≥ y ≥ 0, v ≥ u ≥ 0.

The reasons for this particular ordering will become clearer later.

11.1.2. Triangle Inequalities. Working out the various triangle inequalities, we obtain
the following relevant inequalities (those that are trivial have been omitted):

y + v ≥ w ≥ u − x, x + v ≥ z ≥ u − y,

x + u ≥ w ≥ v − y, y + u ≥ z ≥ v − x.

Using the convention on the ordering of the pairs (u, v) and (x, y), the above
reduces to

y + v ≥ w, (11.2)
z ≥ u − y, (11.3)

x + u ≥ w ≥ v − y, (11.4)
y + u ≥ z ≥ v − x. (11.5)

Clearly, necessary conditions for existence of (z, w) include the inequalities be-
tween the leftmost and rightmost terms of the bottom two strings. The latter is
easily seen to reduce to

v ≤ x + u + y. (11.6)

Observe that this resulting inequality is no longer a “triangle” inequality, since
after removing the opposite diagonals [a, c] of length z and [b, d] of length w,
the resulting quadrilateral is no longer complete; it has no triangles. In fact, the
above is a polygonal inequality.

11.1.3. Opposite Diagonal Conditions. The opposite diagonal conditions are

u + v ≥ x + y ≥ z + w. (11.7)

Using the above triangle inequalities to bound z, w from above, we obtain the
following:

u + v ≥ x + y ≥ z + w ≥ (u + v) − 2y ≥ (u + v) − 2x ≥ 2u − (x + y)
≥ 2v − (x + y).



170 Internet Mathematics

Using the convention on the ordering of u, v, x, y, the above simplifies to

u + v ≥ x + y ≥ z + w ≥ (u + v) − 2y ≥ 2v − (x + y). (11.8)

Therefore, necessary conditions to be able to eliminate z, w are the inequalities
between the two leftmost and rightmost terms, which yield

u + v ≥ x + y ≥ (u + v) − 2y, (11.9)
x + y ≥ v. (11.10)

11.1.4. Ptolemaic Conditions. The Ptolemaic conditions are trivially rewritten

uv − xy, xy − uv ≤ zw ≤ uv + xy. (11.11)

The inequality between the two extreme terms of (11.11) is trivial. However, the
first inequality and the various triangle inequalities in the triangles having z, w

as sides yield

|uv − xy| ≤ zw ≤ (y + u)(y + v) ≤ (x + v)(y + v) ≤ (x + v)(x + u)
≤ (y + u)(x + u).

Utilizing x ≥ y, v ≥ u ⇒ (x + v) ≥ (u + y), the above simplifies to

|uv − xy| ≤ zw ≤ (y + u)(y + v) ≤ (y + u)(x + u).

Again, the inequalities between the extreme terms eliminate z, w. Clearly, there
are four such inequalities. Two of them are easily found to be trivial, while the
nontrivial ones are

uv ≤ 2xy + u2 + ux + uy, xy ≤ 2uv + y2 + uy + vy.

Finally, returning to the second inequality of (11.11) and using triangle in-
equalities in those triangles having z, w as sides yields

(u − y)(v − y) ≤ zw ≤ uv + xy, (u − y)(u − x) ≤ zw ≤ uv + xy,

(v − x)(v − y) ≤ zw ≤ uv + xy, (v − x)(u − x) ≤ zw ≤ uv + xy.

Expanding and simplifying yields the (linear!) constraints

y − (u + v) ≤ x, u − (x + y) ≤ v, v − (x + y) ≤ u, x − (u + v) ≤ y.

Finally, using the convention x ≥ y, v ≥ u, we get

y − x ≤ u + v, v − u ≤ x + y.

Observe that the above are polygonal inequalities in the incomplete quadrilateral.
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11.1.5. Necessary Conditions. Necessary conditions for the existence of z, w such that
B(u, v, x, y, z, w) is true can be expressed as follows:

B(u, v, x, y)
⊆ (x ≥ y ≥ 0) ∧ (v ≥ u ≥ 0) ∧ (v ≤ x + u + y)
∧ (u + v ≥ x + y ≥ u + v − 2y) ∧ (x + y ≥ v)
∧ (uv ≤ 2xy + u2 + ux + uy) ∧ (xy ≤ 2uv + y2 + uy + vy)
∧ (y − x ≤ u + v) ∧ (v − u ≤ x + y).

11.1.6. Sufficient Conditions. In the preceding, we have written estimates of the form
z ≤ z ≤ z̄, w ≤ w ≤ w̄, s ≤ z + w ≤ s̄, and p ≤ zw ≤ p̄, and we have written
z(u, v, x, y) ≤ z̄(u, v, x, y), etc., as necessary conditions for the existence of, and
hence the possibility of eliminating, (z, w). These conditions are obviously not
sufficient, since clearly a discriminant condition is needed. The latter is the in-
herently difficult step in this computer algebra problem. Indeed, attempting to
execute the apparently simple Mathematica instructions

Exists[{z, w}, (z ≤ z ≤ z̄)&&(w ≤ w ≤ w̄)&&(s ≤ z + w ≤ s̄)&&(p ≤ zw ≤ p̄)]

Resolve[%]

results in Mathematica running endlessly. The reason is that while the above is
simple to express geometrically in the (z, w)-plane, it is linguistically difficult to
express in the L1 language.

Geometrically, we have to secure a nonempty intersection between a rectangle
implementing the triangle inequalities (11.2)–(11.5), the region between two hy-
perbolas implementing the Ptolemaic conditions (11.11), and a half-plane with
boundary line at a −45◦ angle implementing the opposite diagonal condition,
the second inequality of (11.7).

There are two cases to be considered: y + v > x + u and y + v < x + u. If y +
v > x + u, the rectangle is [v − x, y + u] × [v − y, x + u], the “large” rectangle
of Figure 5; if y + v < x + u, the rectangle is [u − y, y + u] × [v − y, v + y], the
“small” rectangle of Figure 6. In either case, the hyperbolas are zw = ±(uv − xy)
and zw = uv + xy. The −45◦ boundary line of the half-plane is z + w = x + y.
We have also drawn the lines z + w = u + v − 2y and z + w = 2v − (x + y) that
saturate the inequalities (11.8), although this is not absolutely necessary.

Take the “small” rectangle [u − y, y + u] × [v − y, v + y]. Clearly, the line z +
w = x + y has to be above the point (u − y, v − y), which requires u + v < x +
3y. Next, we look at the position of the hyperbola zw = |xy − uv| relative to the
point (u − y, v − y). It is easily seen that as a corollary of u + v > x + y, we have
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Figure 5. Illustration of the discriminant constraints in the (z, w)-plane for the
case of the “large rectangle” y + v > x + u.

Figure 6. Illustration of discriminant constraints in the (z, w)-plane for the case
of the “small rectangle” y + v < x + u.
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uv − xy > (v − y)(u − y), so that the hyperbola zw = uv − xy has to be “above”
the point (u − y, v − y). Clearly, the hyperbola zw = xy − uv is irrelevant.

Because of the Ptolemaic conditions (11.11), the hyperbola zw = xy + uv is
“above” the hyperbola zw = uv − xy. Therefore, the discriminant issue is the
position of the line z + w = x + y relative to the hyperbola zw = uv − xy. The
line and the hyperbola must intersect, which requires the classical condition

(x + y)2 − 4(uv − xy) ≥ 0.

The difficulty is to state—linguistically—that the “crescent” between the line
and the hyperbola intersects the rectangle. Therein lies the problem.

Regarding the “big rectangle” case, first of all, the line z + w = x + y has to be
“above” the point (v − x, v − y), that is, x + y > v − x + v − y, which trivially
holds in view of the opposite diagonal condition (11.10). The hyperbola zw =
xy − uv is below the point (v − x, v − y), that is, xy − uv < (v − x)(v − y), as
is easily seen from the opposite diagonal condition. Therefore, the hyperbola
zw = xy − uv is irrelevant. The hyperbola zw = uv − xy could be either below
or above the point (v − x, v − y), depending on whether uv < v2 + 2xy − yv − vx

or uv > v2 + 2xy − yv − vx. The latter case contradicts the condition of the “big
rectangle” case, so that the former prevails.

Hence we restrict ourselves to the situation uv < v2 + 2xy − yv − vx, in which
the hyperbola zw = uv − xy is irrelevant. In this case, all that remains to be
imposed is that the hyperbola zw = uv + xy be above the point (v − x, v − y),
that is, uv + xy > (v − y)(v − x), which reduces to the polygonal inequality v <

u + x + y, already singled out in (11.6).

11.2. Mathematica Encoding and Results

In this subsection, we specifically write down the Mathematica instructions that
implement the preceding ideas. The critical parameter of course is b̄. We did
“trial and error” for several different values of b̄. This affects only the “c” (cost)
expression. The other expressions implementing the Ptolemaic conditions, the
triangle inequalities, etc., remain the same.

11.2.1. Triangle Inequalities. In Mathematica, the triangle inequalities are written

t = (v < x + u + y).

11.2.2. Sign and Opposite Diagonal Constraints. The sign and opposite diagonal constraints
are written as

s = (x > y > 0)&&(v > u > 0),
d = (u + v > x + y)&&(x + y > u + v− 2y)&&(x + y > v).
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11.2.3. Ptolemaic Conditions. The Ptolemaic conditions split into two sets of con-
straints: the nonlinear p-constraints and the linear q-constraints. There are, re-
spectively, as follows:

p = (u v < 2x y + û 2 + u x + u y)&&(x y < 2u v + ŷ 2 + u y + v y),
q = (v− u < x + y)&&(y− x < u + v).

11.2.4. Cost Criterion and Results. Computational results give b̄ ≈ 0.1667, hence 2b̄ ≈
0.3334. In fact, the numerical value of (u, v, x, y, z, w) indicates that the optimum
is obtained for a quadrilateral that degenerates along a line, so that it is fair to
conjecture that 2b̄ = 1/3. The problem is that Mathematica has some difficulties
in handling the discriminant conditions. So we start with the necessary conditions
and ascertain what bound is reached, so as to get an idea as to whether the
discriminant conditions saturate.

11.2.5. Necessary Conditions: p ∧ q ∧ s ∧ t ∧ d . The cost is encoded as

c = (u + v− x− y < (u + v)/3).

Then we submit the following query to Mathematica:

ForAll[{u, v, x, y}, p&&q&&s&&t&&d, c].
Immediately thereafter, Mathematica merely rewrites the constraints and the
cost criterion. Then we ask Mathematica to simplify the expression

FullSimplify[%].

After about a minute, Mathematica renders the verdict False. This clearly in-
dicates that the discriminant conditions play a role.

For the sake of argument, we attempt to establish the bound, disregarding the
discriminant conditions. For each of the tentative values of 2b̄ in the following
table, Mathematica provides an answer within one minute:

2b̄ 1/3 5/12 11/24 23/48 47/96 1/2
True/False F F F F F T

It follows from the above that the bound, disregarding the discriminant con-
ditions, appears to be 1/2. To confirm this conjecture, we check ∃(u, v, z, w):
p ∧ q ∧ s ∧ t ∧ d ∧ (¬c). In Mathematica,

Exists[{u, v, x, y}, p&&q&&s&&t&&d&&(!c)]
Resolve[%]

Mathematica returns the answer False. Hence the bound 2b̄ = 1/2 disregarding
the discriminant conditions is confirmed.
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11.2.6. Necessary and Sufficient Conditions. We first look at the “small rectangle” case.
The situation of Figure 6 is linguistically rect ∧ r, where

rect = (u + x > v + y) ∧ (u + v < x + 3y), r = ((x + y)2 − 4(uv − xy) > 0).

In Mathematica,

rect = (u + x > v + y)&&(u + v < x + 3y),
r = ((x + y)2 − 4(u v− x y) > 0).

Temporarily disregarding the condition of the nonempty intersection of the rect-
angle and the crescent, we eliminate (z, w) by the following query:

∀(u, v, x, y): (p ∧ q ∧ s ∧ t ∧ d ∧ rect ∧ r) ⇒ c,

where c is computed with the guessed bound 1/3. In Mathematica,

ForAll[{u, v, x, y}, p&&q&&s&&t&&d&&rect&&r, c],
FullSimplify[%].

After a few minutes, Mathematica returns the answer True, as expected.
We now look at the “big rectangle” case. In this case, the only additional

condition relative to the necessary conditions is

rect = (y + v > x + u) ∧ (uv < v2 + 2xy − xv − vy).

In Mathematica,

rect = (y + v > x + u)&&(u v < v2 + 2x y− x v− v y).

Hence we have to check whether

∀(u, v, x, y): (p ∧ q ∧ s ∧ t ∧ d ∧ rect) ⇒ c,

where c is computed with the guessed bound 1/3. In Mathematica,

ForAll[{u, v, x, y}, p&&q&&s&&t&&d&&rect, c]
FullSimplify[%].

After about five minutes, Mathematica returns the verdict True, as expected.
The conclusion is that adding the discriminant condition to the necessary

condition case makes the upper bound drop from 1/2 to 1/3, as can reasonably
be expected.
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