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Graphs with Asymptotically
Invariant Degree Sequences
under Restriction
Joshua Cooper and Linyuan Lu

Abstract. Scaling-free graphs are often used to describe a class of graphs that have
the self-similarity property. The degree sequences of many scaling-free graphs follow
the power-law distribution. In this paper, we study the distributions of graphical de-
gree sequences that are invariant under “scaling.” We show that the invariant degree
sequence must be a power-law distribution for sparse graphs if we ignore isolated ver-
tices, or more generally, the vertices of degree less than a fixed constant k. We obtain
a concentration result on the degree sequence of a random induced subgraph. The case
of hypergraphs (or set systems) is also examined.

1. Introduction

What distribution of a graphical degree sequence is invariant under “scaling”?
Are these graphs always power-law graphs? Quite a few recent papers use the
term “scale-free networks” to refer to large sparse graphs formed from real-
world data. Such graphs often exhibit power-law degree distributions. Namely,
the number of vertices with degree d is roughly proportional to d−β , for some
positive β. However, the term “scale-free” is rarely defined in the literature, at
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least in the rigorous mathematical sense. Furthermore, accounts in the literature
of how power laws arise have been largely model-dependent. That is, a number
of models of random-graph growth have been proposed that give rise, under cir-
cumstances of varying generality, to power-law degree distributions. The most
popular growth model of this kind is the “preferential attachment” scheme, exem-
plified by [Aiello et al. 02, Barabási and Albert 99, Barabási et al. 00, Kleinberg
et al. 99].

It is easy to show that power-law graphs are “scale-free.” Here “scaling the
graph down” means “taking an induced subgraph.” Of course, subgraphs may
look quite different from one another. Hence, we consider only the average
behavior.

1.1. The Random Induced Subgraph Gp

For any 0 < p < 1, let Gp be the induced subgraph of G on a random subset
of vertices S. For each vertex v of G, v is in V (Gp) with independent probability
p.

There are some simple cases in which the graph Gp is similar to G. For
example:

� Let G be a complete graph on n vertices. Then Gp is also a complete graph
on around pn vertices.

� Let G be an empty graph on n vertices. Then Gp is also an empty graph
on around pn vertices.

� For any constant q ∈ (0, 1), let G be the random graph G(n, q). Then Gp is
also a random graph G(m, q) over a randomly chosen set of size m ∼ pn.

Crucially, these examples are not “real-world graphs,” in the sense that graphs
appearing “in nature” tend to be quite sparse. Most vertices have small degrees.
To characterize this property, we use the following definition:

Definition 1.1. For a given sequence {λd}∞d=0 satisfying
∑∞

d=0 λd = 1, with λd ≥ 0 for
all d ≥ 0, a sequence of graphs {Gn} on n vertices is said to have degree sequence
with limit distribution {λd}∞d=0 if the number of vertices with degree d in Gn is
λdn + o(n) for each d ≥ 0. We also say that {Gn} has limit distribution {λd}∞d=k

for
∑

d≥k λd ≤ 1 if Gn has λdn + o(n) vertices of degree d for each d ≥ k.
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We consider two questions.

1. If the degree sequence of G in {Gn} has a limit distribution, then for any
fixed p, does the degree sequence of the random induced subgraph Gp also
have a limit distribution?

2. For what distribution {λk}∞k=0 is the limit distribution of the degree se-
quence of Gp essentially the same as the limit distribution of the degree
sequence of G?

To answer the first question, we observe that a vertex of degree cn in G would
badly affect the concentration of the degree sequence of Gp . On the other hand,
using the vertex-exposure martingale, we can show that the degree sequence of
Gp will have a limit distribution if∑

v

deg2(v) = O(n2−ε).

This condition is satisfied, for example, if G has maximum degree bounded by
n1/2−ε .

Suppose a0 , a1 , a2 , . . . , is the degree frequency sequence of a graph G, with
ad representing the number of vertices in G with degree d. What is the degree
frequency sequence of Gp? If a vertex v survives in Gp , its degree has binomial
distribution B(dG (v), p). There is no simple way to describe the joint distribu-
tion because of edge correlations. Nonetheless, the expected degree frequency
sequence for Gp is easy to compute. Let b0 , b1 , b2 , . . . be the expected degree
frequency sequence of the random induced subgraph Gp . We have

bd = p
∑
k≥i

ak

(
k

d

)
pd(1 − p)k−d

for all d = 0, 1, 2, . . . . Note that {bd}d≥0 depends linearly on {ad}d≥0 . We can
therefore normalize both sequences by dividing by n.

Therefore, from now on, we assume that each ai is the fraction of the number
of vertices with degree i in the graph G. More precisely, we consider a sequence
of graphs Gn such that the number of vertices with degree d in Gn is adn + o(n).
We consider only sparse graphs such that∑

i≥0

ai = 1.

We have the following theorem.

Theorem 1.2. For any integer k > β > 1, the degree frequency sequence starting at
k defined by ad = Cβ

(
d−β

d

)
+ on (1) is scale-free. Moreover, if a graph G on n
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vertices such that ∑
v∈G

deg(v)2 = O(n2−ε) (1.1)

for some ε > 0 has a scale-free degree sequence starting at k, then there is a
β ∈ (1, k) such that ad = Cβ

(
d−β

d

)
+ on (1). As a consequence, sparse graphs with

scale-free degree sequences are power-law graphs.

It is worth remarking that this manuscript can be read, in effect, as a response
to the well-known paper [Stumpf et al. 05] and its authors’ related publications.
Although the present authors became aware of this work only after discovering
the results below, it is clear that there is a very strong resemblance to their
work. However, we offer a counterassertion to the authors’ “subnets of scale-free
networks are not scale-free,” namely, “subnets of scale-free networks are scale-
free, as long as one ignores vertices of suitably small-degree.” We also take a
somewhat different tack by studying, in particular, the asymptotic conditions
under which scale-freeness holds.

This paper is organized as follows. In Section 2, we will derive scale-free degree
sequences starting at k = 0, 1. The concentration result is proved in Section 3.
The proof of our main theorem is given in Section 4. Scale-free set systems and
remarks are given in Sections 5 and 6, respectively.

2. Scale-Free Degree Sequences

Let A(x) =
∑∞

i=0 aix
i be the generating function of {ai}i≥0 , and let B(x) =∑∞

i=0 bix
i be the generating function of {bi}i≥0 . Both A(x) and B(x) converge

on the interval [−1, 1]. We have

B(x) =
n∑

i=0

bix
i

=
∞∑

i=0

p
∑
k≥i

(ak + o(1))
(

k

i

)
pi(1 − p)k−ixi

= p

∞∑
k=0

ak

k∑
i=0

(
k

i

)
pi(1 − p)k−ixi + o(1) ·

∞∑
k=0

k∑
i=0

(
k

i

)
pi(1 − p)k−ixi

= p

∞∑
k=0

ak (1 − p + px)k + o(1)
∞∑

k=0

(1 − p + px)k

= pA(1 − p + px) +
o(1)
1 − x

.
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2.1. Scale-Free Degree Sequences Starting at 0

A naive way to define scale-freeness is to require

bi = f(p)ai + o(1) for all i ≥ 0,

where f(p) is a quantity depending only on p.
Equivalently, for any x ∈ [−1, 1] and p ∈ (0, 1), we have

pA(1 − p + px) = f(p)A(x). (2.1)

To solve (2.1), let x = 1. We get pA(1) = f(p)A(1). Thus f(p) = p. We have

A(1 − p + px) = A(x).

Let x = 0. We have A(0) = A(1 − p). Therefore,

A′(0) = lim
x→0

A(x) − A(0)
x

= lim
x→0

A(1 − p + px) − A(1 − p)
x

= pA′(1 − p).

Since this holds for any p ∈ (0, 1), we have

A(p) = A(0) +
∫ 1

1−p

A′(1 − p) dp = A(0) +
∫ 1

1−p

A′(0)
p

dp

= A(0) − A′(0) ln(1 − p).

Thus,

A(x) = A(0) − A′(0) ln(1 − x).

We have

A(1 − p + px) = A(0) − A′(0) ln(p − px) = A(0) − A′(0)(ln p + ln(1 − x))
= A(x) − A′(0) ln p.

This forces A′(0) = 0. The only solution for (2.1) is A(x) ≡ A(0) (the constant
function, corresponding to a graph with no edges). This solution is not interest-
ing.

2.2. Scale-Free Degree Sequences Starting at 1

In many cases, we do not care about the number of isolated vertices. We require
only that

bd = f(p)ad + o(1) for all d ≥ 1,

where f(p) is a quantity depending only on p.
Equivalently, for any p ∈ (0, 1) and x ∈ [−1, 1], we have

f(p)(A(x) − A(0)) = p(A(1 − p + px) − A(1 − p)).



72 Internet Mathematics

Take the derivative with respect to x on both sides. We then have, for any
p ∈ (0, 1) and x ∈ (−1, 1),

f(p)A′(x) = p2A′(1 − p + px). (2.2)

Let α =
∫ 1

0
f (p)
p2 dp be a positive constant. Divide both sides of (2.2) by p2 and

integrate with respect to p from 0 to 1. We obtain

αA′(x) =
∫ 1

0
A′(1 − p + px)dp =

A(1) − A(x)
1 − x

=
1 − A(x)

1 − x
.

Rewriting this expression yields

A′(x)
1 − A(x)

=
1

α(1 − x)
.

Now integrate with respect to x from 0 to x. We get

ln
1 − A(0)
1 − A(x)

= − 1
α

ln(1 − x).

Therefore, we have

A(x) = 1 − (1 − A(0))(1 − x)1/α . (2.3)

It is easy to verify that (2.3) satisfies (2.2) with f(p) = p1+1/α .
We do not care about A(0) = a0 , the number of isolated vertices. Hence the

solution is uniquely determined by the parameter α up to a constant factor. For
d ≥ 1, we have

ad = (1 − a0)
(

1/α

d

)
(−1)d+1 = −(1 − a0)

(
d − 1/α − 1

d

)
= O

(
d−(1+1/α)

)
.

In other words, the degree frequency sequence follows a power-law distribution
with exponent β = 1 + 1/α. However, not all ad are positive. Particularly, if
β > 2, then there are negative terms ad , d ≥ 1.

3. Concentration

Since we know that the only degree sequences that are scale-free in expectation
have power-law limit distributions, it is crucial to show that such graphs have
degree sequences that are close to their means with high probability.

Theorem 3.1. Suppose that {Gn}∞n=1 is a sequence of graphs on n → ∞ vertices
with degree sequence of limit distribution {λd}∞d=k . Further suppose that∑

v∈G

deg(v)2 = O(n2−ε)
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for some ε > 0. Then the degree sequence of Gn
p also has a limit distribution

{λ′
d}∞d=k .

Proof. Let ad = ad(n) be the fraction of vertices of degree d in Gn and let bd = bd(n)
be the fraction of vertices of degree d in Gn

p . Let λ′
d = E(bd). Clearly it suffices

to show that bd is concentrated about its expectation.
To that end, we apply the Azuma–Hoeffding inequality to the “vertex expo-

sure” martingale. In particular, consider the following process. Fix d ≥ k, order
the vertices of Gn as v1 , . . . , vn , and let Am denote the event that vm ∈ Gn

p . Let
X0 = E[bdn], and let Xm+1 = E[Xm | Am+1]. That is, at stage m, we “expose”
vertex m and recalculate the expected number of vertices of degree d based on
the new information concerning whether vm ∈ Gn

p . It is easy to see that this is a
martingale, and furthermore, that |Xm+1 − Xm | ≤ deg(vm+1) + 1, where deg(·)
denotes degree in G. Since bdn = Xn , we may apply the Azuma–Hoeffding in-
equality to get

P [|bd − λ′
d | ≥ t/n] ≤ exp

( −t2

2
∑n

m=1(deg(vm ) + 1)2

)

for t ≥ 0. Since
∑n

m=1 deg(vm )2 = O(n2−ε) and

n∑
m=1

deg(vm ) ≤ √
n

(
n∑

m=1

deg(vm )2

)1/2

= O(n3/2−ε/2)

by Cauchy–Schwarz, we can set t = n1−ε/4 , thereby obtaining

P [|bd − λ′
d | ≥ t/n] ≤ e−Ω(nε / 2 ) .

Let t′ = t/n = n−ε/4 . Then, since

∞∑
n=1

P

[
n∧

d=k

(|bd − λ′
d | ≥ t′)

]
≤

∞∑
n=1

ne−nε / 2
< ∞,

the Borel–Cantelli lemma implies that asymptotically almost surely, |bd − λ′
d | ≤

t′ = o(n) for all d ≥ k.



74 Internet Mathematics

4. Proof of the Main Theorem

Proof of Theorem 1.2. Suppose ad = Cβ

(
d−β

d

)
+ on (1) for all d ≥ k > β > 1. We have

bd = (1 + on (1))
∞∑

i=d

ai

(
i

d

)
pd(1 − p)i−d

= (1 + on (1)Cβ

∞∑
i=d

(
i − β

i

)(
i

d

)
pd(1 − p)i−d

= (1 + on (1))Cβ pd
∞∑

j=0

(
d + j − β

d + j

)(
d + j

d

)
(1 − p)j

= (1 + on (1))Cβ pd

(
d − β

d

) ∞∑
j=0

(
j − (β − d)

j

)
(1 − p)j

= (1 + on (1))Cβ pd

(
d − β

d

) ∞∑
j=0

(
β − d

j

)
(p − 1)j

= (1 + on (1))Cβ pd

(
d − β

d

)
pβ−d

= pβ ad + on (1).

Thus, the degree sequence is scale-free.
Now we assume that inequality (1.1) holds. By Theorem 3.1, the degree se-

quence of Gn
p has a limit distribution. Now we assume that the degree sequence

distribution, considering only degrees at least k, is scale-free. That is,

bd = f(p)ad + on (1) for all d ≥ k,

where f(p) is a quantity depending only on p. Or equivalently, for any p ∈ (0, 1)
and x ∈ [−1, 1], we have

f(p)

(
A(x) −

k−1∑
d=0

adx
d

)
= p

(
A(1 − p + px) −

k−1∑
d=0

adx
d

(
k

d

)
pd(1 − p)k−d

)
.

(4.1)
Take the kth derivative with respect to x on both sides to get rid of all terms of
degree up to k − 1. We have, for any p ∈ (0, 1) and x ∈ (−1, 1),

f(p)A(k)(x) = pk+1A(k)(1 − p + px). (4.2)

Let

αk =
∫ 1

0

f(p)
pk+1 dp.
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Similar arguments to those used in the cases k = 0, 1 (in Section 2) show that
the solution of (4.2) is of the form

Ak−1(x) = C1 − C2(1 − x)1/α .

If we then integrate k − 1 times with respect to x, the result is

A(x) = Pk (x) − C(1 − x)k+1/αk . (4.3)

Here Pk (x) is a polynomial in x of degree k − 1. It is easy to verify that (4.3)
is the solution of (4.1) with f(p) = pαk +k . Let β = k + 1/αk . For any d ≥ k, we
have

ad = C

(
d − β

d

)
.

If we set

C = Cβ =

⎛
⎝∑

d≥
β �

(
d − β

d

)⎞⎠
−1

,

then the ad are positive for d > β. Note that sgn(Cβ ) = (−1)�β .

5. Scale-Free Set Systems

Many power-law graphs such as the collaboration graph and the Hollywood graph
are actually better modeled by set systems (or hypergraphs) than by graphs. For
example, in the Math Reviews database, each published item has one or more
authors. The family of all papers considered as collections of authors forms a set
system. The collaboration graph captures only part of the information in this
set system. Here we quote from the Erdős number project [Grossman et al. 11]:

There are about 1.9 million authored items in the Math Reviews database,
by a total of about 401,000 different authors. . . . Approximately 62.4% of
these items are by a single author, 27.4% by two authors, 8.0% by three
authors, 1.7% by four authors, 0.4% by five authors, and 0.1% by six or
more authors.

In this example, the distribution of set sizes follows a power-law distribution
(see Figure 1). Is this just a coincidence? Is a “scale-free” distribution of a set
system always a power-law distribution?

Motivated by this example and “scale-free” graphs, we consider the following
problem. For a set system F and any probability p ∈ (0, 1), the random sub–set
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Figure 1. The percentages of articles by number of authors in the Math Reviews
database.

system Fp is chosen by independently removing vertices with probability 1 − p

and reducing the sets to their remaining elements.

Problem 5.1. For what sequence of set sizes in a set system F is the sequence of
the set sizes in random sub–set system Fp essentially the same as the original
sequence up to a scaling factor?

For i ≥ 1, let ai be the number of i-sets in F and let bi be the number of i-sets
in Fp . We are asking whether there is a function f(p) such that

bi = f(p)ai + o(n)

for all i ≥ k. Here k is a small positive integer.
Since the expected value E(bi) satisfies

E(bi) =
∑
j≥i

aj

(
j

i

)
pi(1 − p)j−i ,

it is necessary to have

∑
j≥i

aj

(
j

i

)
pi(1 − p)j−i = f(p)ai

for all i ≥ k.
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Let A(x) =
∑

i aix
i be the generating function. For any p ∈ (0, 1) and x ∈

[−1, 1], we have

f(p)

(
A(x) −

k−1∑
d=0

adx
d

)
=

(
A(1 − p + px) −

k−1∑
d=0

adx
d

(
k

d

)
pd(1 − p)k−d

)
.

This is essentially the same equation as (4.1). Thus we have the following
theorem.

Theorem 5.2. If the sequence of set sizes in a set system starting at k > 1 is scale-
free, then there are constants β ∈ (1, k) and C such that the number of i-sets in
this set system is Cβ

(
i−β

i

)
n + o(n) for all i ≥ k.

6. Remarks and Questions

Note that the results of the preceding sections have a probabilistic interpretation.
Suppose that for each n, we have a probability distribution G over graphs on n

vertices with the property that the expected number of vertices of degree d is ad .
Then what must E[ad ] be if when G is sampled from G and a random subgraph
Gp is taken, the expected number bd of vertices of degree d is the same as ad

after scaling so that
∑

d ad =
∑

d bd? The above analysis provides the answer:
the expectation of ad must be a power law in d.

It is natural to ask the following: if the variance of the bd is scaled as the
square of the scaling factor for the expectations, then what must σ2(ad) be? In
fact, one can ask the same question of all moments, leading to the following open
problem:

Problem 6.1. Fix p ∈ (0, 1). Let G be drawn from a probability distribution G on
graphs with n vertices. Suppose that ad , d ≥ 0, is the number of vertices of degree
d in G, and bd , d ≥ 0, is the number of vertices of degree d in Gp . For which
distributions G is it true that there exists some c(p) ∈ R such that {ad}d≥k and
{c(p)bd}d≥k have approximately the same distribution for large n? Is it possible
to find such G for all p ∈ (0, 1) simultaneously?

Currently, the exponents of power laws of “real-world” scale-free networks is
estimated in a rather ad hoc fashion, usually using a regression on the log-log
plot of frequency vs. degree after removing the extremes of the data. If it were
possible to describe scale-free distributions exactly, then it would make sense to
ask the following very practical question:
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Problem 6.2. Find an unbiased estimator for the exponent of a power-law degree
distribution.

For the matter of the variance of the ad , we note that at least for β ∈ (1, 2),
the following must be true:

p2β σ2(ad) =
∑

k

(
k

d

)2

p2d(1 − p)2k−2d

(
σ2(ak ) +

(
k − β

k

))
− pβ−1

(
d − β

d

)
.

This statement can be proven by applying the formula

σ2

(
N∑

i=1

Xi

)
= E[X1 ]2σ2(N) + E[N ]σ2(X1)

for i.i.d. variables Xi and an independent variable N taking on nonnegative
integer values.

We also ask, what can be proved by extending the definition of scale-freeness to
hypergraphs? We believe that the situation is very similar to that of graphs when
the hypergraphs being considered are uniform (with edges removed whenever
at least one of their vertices is removed). Perhaps the answer lies in a more
refined description of scale-freeness. For example, consider the quantity aH (G),
the number of occurrences of H as an induced subgraph of G. Suppose that
aH (G)/n → αH for each H and some αH ∈ R

+ , and that this sequence is scale-
free, i.e.,

aH (Gp) ∝ aH (G)

for any fixed p with 0 < p < 1 and H varying over all graphs on at least k vertices.
Then what must G look like?
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