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Nongrowing Preferential
Attachment Random Graphs
Tomas Hruz and Ueli Peter

Abstract. We consider an edge rewiring process that is widely used to model the dy-
namics of scale-free weblike networks. This process uses preferential attachment and
operates on sparse multigraphs with n vertices and m edges. We prove that its mix-
ing time is optimal and develop a framework that simplifies the calculation of graph
properties in the steady state. The applicability of this framework is demonstrated by
calculating the degree distribution, the number of self-loops, and the threshold for the
appearance of the giant component.

1. Introduction

The study of complex networks has attracted considerable attention over the
past ten years. Recently, there have appeared signals suggesting that a new
phase in network development, importance, and proliferation is on the way. Some
networks like the Internet and the World Wide Web have become mission-critical.
Even some military operations are partially supported through the Internet, not
to mention news reports and information from geographical regions under crisis.
The importance of complex networks has led to deeper research showing that
the behavior and the growth of such networks are far from being purely random.
They often follow certain topological and structural patterns discovered in the
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theory of scale-free networks and small worlds [Barabási and Albert 99, Watts
and Strogatz 98].

During the past decade an interplay between statistical analysis of real-world
networks and a formal study of stochastic models has turned out to be promis-
ing (see [Cami and Deo 07] for a survey on methods used for the analysis of
such models). The models are designed to simulate dynamic change in a network
and to produce properties observed in real-world networks. A formal analysis is
important in order to verify the quality of the model by comparing it with em-
pirically collected data [Mitzenmacher 06]. Unfortunately, the well-understood
random graph models Gn,p and Gn,m do not produce the features that are ob-
served in real-world networks, nor are they designed to simulate the dynamics of
those networks. The research community is therefore challenged to design and
analyze better models.

The most-discussed property of complex networks is the scale-free degree dis-
tribution [Barabási and Albert 99]. The first model to create graphs with a
scale-free degree distribution was the Barabási–Albert model, which was rigor-
ously analyzed in [Bollobás et al. 01]. That model adds a vertex at every time
step and connects it to the existing graph by choosing a vertex with preferential
attachment. This is believed to model the growing phase of a network quite well.
However, it is known [Park et al. 05] that several complex networks reach a state
of saturation in which they no longer grow but continue to evolve. Unfortunately,
there are almost no rigorous results known for models of nongrowing networks.
In this paper we make a first step toward analyzing such a model.

A widely accepted stochastic process [Dorogovtsev and Mendes 03, Evans and
Plato 07, Hruz et al. 08] that uses preferential attachment and considers multi-
graphs with a stable number of vertices and edges is defined as follows. At ev-
ery time step, one of the m edges in the multigraph is selected uniformly at
random and one of its half-edges is rewired to a new vertex, which is selected
at random from n vertices with probability proportional to a preference func-
tion f(d(v)) : {1, . . . , 2m} → R, where d(v) is the degree of vertex v. If there is
more than one graph, we write dG (v) for the degree of vertex v in graph G.
The symbol 〈f〉 stands for the average value (

∑
v f(d(v)))/n of f . This pro-

cess is called SESP (simple edge-selection process) and has the following formal
definition.

Process 1.1. (SESP.) The following steps are repeated at each time unit:

1. An edge ei is selected uniformly at random.

2. An end vertex vi of ei is selected uniformly at random.
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3. A vertex vl is selected at random with probability f(d(vl))/n〈f〉.
4. The edge ei is rewired from vi to vl.

In [Evans and Plato 07], the authors solved a mean-field equation for the
degree distribution of Process 1.1. We complement the understanding of this
model with a rigorous study of the graph properties in the steady state of
the process. We believe that SESP represents one of the simplest possible pro-
cesses that is nevertheless principally different from classical random graphs.
This claim is supported by the fact that if the preference function is set to
a constant, then every multigraph appears with equal probability in the sta-
tionary distribution that is equivalent to a multigraph version of Gn,m . The
next natural step, which is tackled in this paper, is to consider linear preference
functions.

1.1. SESP Markov Chains

The parameters of Process 1.1 are the number of vertices n, the number of edges
m, the preference function f , and the input graph G0 . To reformulate the model
as a Markov chain, we define the state space Ω that contains all multigraphs
with n labeled vertices and 2m labeled half-edges. We split each edge e in the
middle and denote its two half-edges by e1 and e2 . Let the vertices and half-edges
be labeled v1 , . . . , vn respectively e1

1 , e
2
1 , . . . , e

1
m , e2

m . Then a labeled multigraph
x ∈ Ω is defined as (H(v1), . . . , H(vn )), where H(vi) denotes the set of half-edges
at vertex vi . The transition probabilities between two states in Ω explicitly follow
from Process 1.1. The result of steps 1 and 2 in Process 1.1 is that every half-
edge is selected with probability 1/(2m). Therefore, we will use the following
equivalent definition of the process for the remainder of this paper.

Process 1.2. (SESP Markov chain.) The following steps are repeated at each time unit:

1. A half-edge ej
i (where 1 ≤ i ≤ m and j ∈ {0, 1}) is selected uniformly

at random from all half-edges.

2. A vertex vl is selected at random with probability f(d(vl))/n〈f〉.
3. The half-edge ej

i is rewired to vl.

Note that for x, y ∈ Ω there is a nonzero transition probability if and only if
there exists at most one half-edge e1

i that is at different vertices in x (vp) and y
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(vq ). Then a transition from x to y happens only if e1
i is selected in step 1 and

vq is selected in step 2 of Process 1.2. Thus,

P (x, y) =
1

2m

f(dx(vq ))
n〈f〉 and P (y, x) =

1
2m

f(dy (vp))
n〈f〉 , (1.1)

where ds(v) denotes the degree of vertex v in state s. The Markov chain is
irreducible if and only if f(k) > 0 for all k ∈ {0, . . . , 2m}, because then every
state can be reached from every other state in at most 2m transitions. It is
furthermore aperiodic (and therefore ergodic) because a transition from state
G ∈ Ω back into itself has positive probability for all states. It follows from the
fundamental Markov chain theorem (see, for example, [Levin et al. 09, Theorem
4.16]) that the chain will converge into its unique stationary distribution π.

All our results in this article are for linear preference functions f(k) = ak + b,
where a ≥ 0 and b > 0 are constants such that a + b = 1. In [Evans and Plato 07],
the authors explained that selection of a vertex of degree k with probability

pp
k

2m
+ pr

1
n

,

where pp and pr are probabilities that add up to 1, is the most general form of
linear preferential attachment. Because of

f(k)
n〈f〉 =

ak + b

n(ak + b)
=

a

a + b
k

k

2m
+

b

ak + b

1
n

= pp
k

2m
+ pr

1
n

for

a :=
pp

kpr + pp

and b :=
kpr

kpr + pp

,

our choice of the preference function is equivalent. We require that b be strictly
larger than zero, because otherwise, the Markov process is not irreducible and
will converge to a particular set of states. When b = 0, the analysis of the process
is simple, since the graph condenses to a state in which all edges are connected to
a single vertex. Complex networks are usually sparse, and we therefore assume
that the average degree k = 2m/n is constant.

In this paper we study graph properties in the stationary distribution of the
SESP Markov chain and can therefore neglect the initial graph G0 . We justify
this proceeding by showing that the process reaches the stationary distribution
rapidly. Note that the authors of [Evans and Plato 07] chose a different approach.
They derived the dynamic of the degree distribution over time by solving a mean-
field equation for the number of vertices of degree k at time t.

Let Gn,a,k denote the random graph model in which multigraphs on n vertices
and m = nk/2 edges are distributed according to the stationary distribution of
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the SESP Markov chain with preference function f(k) = ak + b (where b := 1 − a

and 0 ≤ a < 1). Note that for such a function, the average is

〈f〉 = ak + b = a(k − 1) + 1. (1.2)

We use G ∼ Gn,a,k to denote that graph G is drawn at random with distribution
Gn,a,k . For a graph property P we say that Gn,a,k has P asymptotically almost
surely (a.a.s.) or with high probability (whp) whenever the probability that G ∼
Gn,a,k has P is 1 − o(1), where n is the relevant parameter for all asymptotic
notations unless otherwise stated.

A natural question that arises when we examine a graph property is this: For
what parameters a and k does Gn,a,k exhibit the given property as n tends to
infinity?

1.2. Main Results

Our first result shows that the Markov chain converges rapidly, which legitimates
our approach of looking only at the stationary distribution.

Theorem 1.3. The mixing time tmix(ε) of SESP is bounded by

tmix(ε) ≤ log(nkε−1)nc1 ,

where c1 := k(a(k − 1) + 1)/(1 − a).

This upper bound on the mixing time is asymptotically optimal, since every
half-edge needs to be rewired at least once to have a nonzero probability that
two processes with initial graphs of distance 2m are in the same state. It is well
known (see, for example, the coupon collector problem in [Levin et al. 09, Section
2.2 ]) that O(m log m) steps are needed to have a high probability for the event
that all 2m half-edges have been selected at least once.

Inequalities that give a measure for the concentration of a quantity around its
expectation appeared helpful in the study of random graph models. A 1-Lipschitz
function f : Ω → R has the property that for all x, y ∈ Ω,

|f(x) − f(y)|
h(x, y)

≤ 1,

where h(x, y) is the shortest-path metric in the Markov chain.
We observe that many important graph measures such as the number of iso-

lated vertices, the chromatic number, and the number of self-loops are Lipschitz
functions. In this work we develop the following concentration inequality for
1-Lipschitz functions.
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Theorem 1.4. For all 1-Lipschitz functions f : Ω → R and all u > 0, if G ∼ Gn,a,k ,
then

Pr[|f(G) − E[f(G)]| ≥ u] ≤ 2e−u2 /nc1

where

c1 :=
k(a(k − 1) + 1)

1 − a
.

The degree distribution is an important topic in complex network research. In
this paper we use the random variable N(k) to denote the number of vertices of
degree k in Gn,a,k . In the following theorem we derive the expected number of
vertices of a given degree in G ∼ Gn,a,k .

Theorem 1.5. For every ε > 0, G ∼ Gn,a,k has a.a.s. no vertex of degree larger than
kmax := (2 + ε/log c2) log m, and for all 0 ≤ k ≤ kmax , the expected number of
vertices of degree k has the following asymptotic form:

E[N(k)] = Θ

(
n · 1(

1 + b/ak
)k · k−1+b/a

)
.

One consequence of Theorem 1.4 is that the degree distribution is concentrated
around its expectation.

Corollary 1.6. For 0 ≤ k ≤ 2m and G ∼ Gn,a,k ,

Pr[|N(k) − E[N(k)]| ≥
√

n log n] ≤ 2n−1/4c1 , (1.3)

where

c1 :=
k(a(k − 1) + 1)

1 − a
.

The configuration model for random graphs is the state-of-the-art method
for the examination of random graphs with a specific degree distribution. For
a degree sequence d1 , . . . , dn , where di denotes the degree of vi , we write
G ∼ Conf(d1 , . . . , dn ) if G is chosen at random out of all multigraphs with prob-
ability defined by the configuration model. Theorem 1.7 states that in Gn,a,k ,
all multigraphs of a given degree sequence have the same probability as in the
configuration model.
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Theorem 1.7. Let GSESP ∼ Gn,a,k , and for an arbitrary degree sequence d1 , . . . , dn

such that
∑

di = nk, let GConf ∼ Conf(d1 , . . . , dn ). Then for all multigraphs G

with degree sequence d1 , . . . , dn ,

Pr[GSESP = G|dGS E S P (v1) = d1 , . . . , dGS E S P (vn ) = dn ] = Pr[GConf = G].

In [Molloy and Reed 95, Molloy and Reed 00], the authors derived the threshold
for the appearance of the giant component in the configuration model for a large
class of random graphs. In Section 3.2, we apply the framework provided by the
previous theorems to show that Gn,a,k is in that class. This results in a precise
formulation of the threshold as a function of a and k in Lemma 4.2. We believe
that there exists a simple formulation of the threshold, namely that there is a
giant component if k > (1 − a) and that all components are small if k < (1 − a),
as formulated in Conjecture 4.3. We prove the conjecture for two important
special cases of the preference function.

In Section 2, we prove Theorems 1.3 and 1.4. In Section 3, we derive Theorem
1.5 and Corollary 1.6. Then in Section 3.1, we prove Theorem 1.7 by looking
at symmetries in the transition diagram of the Markov chain. All these results
are used in Section 4 to derive the number of self-loops and the threshold for
the appearance of the giant component. At the end we compare our results to
previous work and draw a conclusion.

2. Mixing Time of SESP

We use the following standard consequence (see, for example, [Dyer et al. 00,
Theorem 2.1]) of the coupling lemma [Aldous 83] to prove an upper bound on
the mixing time of the SESP Markov chain.

Lemma 2.1. Let (Xt, Yt) be a coupling of a Markov chain and let ρ be any
integer-valued metric defined on Ω × Ω. Suppose that there exists β ≤ 1 such
that E[ρ(Xt+1 , Yt+1)] ≤ βρ(Xt, Yt) for all t and all (Xt, Yt) ∈ Ω × Ω. Let D be
the maximum value that ρ achieves on Ω × Ω. If β < 1, then the mixing time
tmix(ε) of the Markov chain satisfies

tmix(ε) ≤ log(Dε−1)
(1 − β)

.

We now use the above tool to prove the optimal mixing time of the SESP
Markov chain.
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Proof of Theorem 1.3. The transition probabilities (1.1) imply that P (x, y) > 0 if and
only if P (y, x) > 0, and the Markov chain therefore has an underlying undirected
graph induced on the states Ω, where x and y are connected by an edge if and
only if P (x, y) > 0. Let h(x, y) denote the length of the shortest path between
the two states x and y in this undirected graph.

The central idea of the proof is to define a coupling (X,X ′) ∈ Ω × Ω of the
Markov chain such that we can use the shortest path distance h(x, x′) (which is
clearly a metric) and apply Lemma 2.1. Let X be an exact copy of the SESP
Markov chain with the transition probabilities described in (1.1). Our goal is to
design X ′ in such a way that the expected distance between X and X ′ decreases
after every transition. Note that for all x, x′ ∈ Ω, the distance h(x, x′) counts
exactly the number of half-edges that are in x connected to vertices different
from those in x′. We are therefore tempted to define X ′ such that it selects the
same half-edge as X and rewires it to the same vertex as in X. But this would
not be a valid coupling, since the marginal transition probabilities of X ′ would
be different from those in the original SESP Markov chain. We therefore have
to change this idea slightly to create a formally correct coupling of the Markov
chain.

To describe the transition probabilities of X ′ we let d(v) denote the degree of
vertex v in X, and d′(v) the degree of v in X ′. Assume without loss of generality
that in X we have selected half-edge e1

i and rewired it to vertex vp . Then if
f(d(vp)) ≥ f(d′(vp)), we rewire e1

i in X ′ to vertex vp with probability

f(d′(vp))
f(d(vp))

,

and with probability(
1 − f(d′(vp))

f(d(vp))

)
f(d′(vq )) − f(d(vq ))

∆

to

vq ∈ U ′ := {v|f(d′(v)) > f(d(v))},

where

∆ :=
∑

vl ∈U ′
f(d′(vl)) − f(d(vl)).

We furthermore define

U := {v|f(d(v)) > f(d′(v))}
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and observe that

∆ :=
∑

vl ∈U ′
f(d′(vl)) − f(d(vl)) =

∑
vl ∈U

f(d(vl)) − f(d′(vl))

for linear preference functions. If f(d(vp)) < f(d′(vp)), we rewire e1
i to vp .

It remains to show that the marginal transition probabilities of X ′ are equal
to the transition probabilities of SESP. The marginal edge-selection probability
in X ′ is clearly 1/2m for every half-edge. The vertex-selection probability for a
vertex vi with f(d′(vi)) ≤ f(d(v)) is

f(d(vi))
n〈f〉

f(d′(vi))
f(d(vi))

=
f(d′(vi))

n〈f〉 .

For a vertex with f(d′(vi)) > f(d(v)), the vertex selection probability is

f(d(vi))
n〈f〉 +

∑
vl ∈U

f(d(vl))
n〈f〉

(
1 − f(d′(vl))

f(d(vl))

)
f(d′(vi)) − f(d(vi))

∆

=
f(d(vi))

n〈f〉 +
f(d′(vi)) − f(d(vi))

n〈f〉∆
∑
vl ∈U

f(d(vl)) − f(d′(vl)) =
f(d′(vi))

n〈f〉 .

We observe that the distance between the states x and x′ of the coupling
(X,X ′) decreases if a half-edge that is on a vertex in X different from that in X ′

is selected and rewired to the same vertex in X and X ′. Similarly, the distance
increases if a half-edge that is on the same vertex in both states is selected
and rewired to different vertices. Therefore, we can calculate the expectation of
h(Xt+1 ,X

′
t+1) as a function of h(Xt,X

′
t):

E[h(Xt+1 ,X
′
t+1)]

= h(Xt,X
′
t) −

h(Xt,X
′
t)

2m

(
1 −

∑
vl ∈U

f(d(vl))
n〈f〉

(
1 − f(d′(vl))

f(d(vl))

))

+
(

1 − h(Xt,X
′
t)

2m

) ∑
vl ∈U

f(d(vl))
n〈f〉

(
1 − f(d′(vl))

f(d(vl))

)

= h(Xt,X
′
t) −

h(Xt,X
′
t)

2m
+

1
n〈f〉

∑
vl ∈U

f(d(vl)) − f(d′(vl))

= h(Xt,X
′
t) −

h(Xt,X
′
t)

2m
+

a

n〈f〉
∑
vl ∈U

d(vl) − d′(vl)

≤ h(Xt,X
′
t) −

h(Xt,X
′
t)

2m
+

a · h(Xt,X
′
t)

n〈f〉
= h(Xt,X

′
t)
(

1 − (a2m + nb) − a2m

2mn〈f〉
)

= h(Xt,X
′
t)
(

1 − b

nk〈f〉

)
. (2.1)
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There are 2m half-edges that can be connected to different vertices in x and y,
which means that the distance between two states is always at most D := 2m. We
can therefore finish the proof by applying Lemma 2.1 and (1.2) to the coupling
(X,X ′) that satisfies (2.1).

The following lemma was proven as [Luczak 08, Corollary 4.4].

Lemma 2.2. Suppose that there are a constant 0 < β < 1 and two copies (X,X ′) of
a Markov chain with Wasserstein distance

distW (X1 ,X
′
1) ≤ α

for all x0 , x
′
0 ∈ Ω with h(x0 , x

′
0) = 1. Then if the Markov chain has stationary

distribution π, it follows for all u > 0 and every 1-Lipschitz function f that

Pr(|f(X) − E[f(X)]| ≥ u) ≤ 2e−u2 (1−β 2 )/2β 2
,

where X is a random variable with distribution π.

Proof of Theorem 1.4. It follows from the Kantorovich–Rubinstein theorem (see
[Luczak 08] or for a more general discussion [Dudley 02]) that the Wasserstein
distance at time 1 of two SESP Markov chains Yt and Y ′

t with starting states y0

and y′
0 is bounded by

distW (Y1 , Y
′
1 ) ≤ E[h(X1 ,X

′
1)|x0 = y0 , x

′
0 = y′

0 ],

where (X,X ′) is an arbitrary coupling of the Markov chain. Hence we can use
the coupling defined above and conclude that for x0 , x

′
0 with h(x0 , x

′
0) = 1, the

Wasserstein distance is bounded by

distW (X1 ,X
′
1) ≤

(
1 − b

nk〈f〉

)
.

Considering Lemma 2.2, this proves the theorem.

Note that many graph properties such as the number of isolated vertices,
the number of self-loops, and the maximum degree are 1-Lipschitz functions.
For some properties we derive the same bound by applying Theorem 1.7 and
Azuma’s inequality. However, this result is helpful only for functions f for which
E[f ] = Ω

(√
n log n

)
, because otherwise, by Markov’s inequality we already get

a stronger bound.
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Figure 1. Transition diagram of the degree Markov chain.

3. The Degree Sequence

In order to analyze the degree sequence in the stationary distribution, we cal-
culate the probability P (k) that an arbitrary vertex is of degree k. Then we
show that the number of vertices of degree k is sufficiently concentrated around
its expectation E[N(k)] = n · P (k). In one step of Process 1.2, a particular ver-
tex v gains a half-edge with probability f(d(v))/(n〈f〉) and loses a half-edge
with probability d(v)/(2m). For a linear preference function, the average value
〈f〉 = ak + b is a constant that does not depend on the degree distribution P (k).
We therefore observe that the degree of any vertex v at time t + 1 depends only
on the degree of v at time t. Thus, the random variable that measures the degree
of a vertex v at time t is an ergodic Markov chain that has the unique station-
ary distribution P (k) for 0 ≤ k ≤ 2m. We will refer to this chain as the degree
Markov chain (DMC). The states of the DMC are the possible degrees that the
vertex can take (ΩDMC := {0, 1, . . . , 2m}). Note that SESP consist of n instances
of the DMC, which are all controlled by a single source of randomness.

The probability for a transition from state x = k to state y = k + 1 is

P (x, y) =
(

1 − k

2m

)
f(k)
n〈f〉 ,

since this transition requires the event that no half-edge of the vertex be removed
and the event that the vertex be selected for rewiring. The remaining transition
probabilities result from analogical reasoning. Table 1 lists all transition proba-
bilities of the DMC.

We now use the DMC to prove Theorem 1.5.

Proof of Theorem 1.5. The DMC is a birth-and-death chain (see [Levin et al. 09,
Section 2.5]) and therefore reversible. Hence we can calculate P (k) from P (0) by

P (k) =
P (k − 1, k)
P (k, k − 1)

P (k − 1) =

(
k−1∏
i=0

P (i, i + 1)
P (i + 1, i)

)
· P (0)

=
∏k−1

i=0 (2m − i)f(i)∏k
i=1 i(n〈f〉 − f(i))

P (0).
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x y P (x, y) P (y, x)

k k + 1
(

1 − k

2m

)
f (k)
n〈f 〉

k + 1
2m

(
1 − f (k + 1)

n〈f 〉
)

k k − 1
k

2m

(
1 − f (k)

n〈f 〉
) (

1 − k − 1
2m

)
f (k − 1)

n〈f 〉

k k

(
1 − k

2m

)(
1 − f (k)

n〈f 〉
)

+
k

2m

f (k)
n〈f 〉

Table 1. Transition probabilities for the degree Markov chain (DMC).

The normalization condition gives us

P (0) = 1

/
2m∑
k=0

k∏
i=1

f(i − 1) · (2m − i + 1)
i · (n〈f〉 − f(i))

. (3.1)

Hence for 0 ≤ k ≤ 2m,

P (k) =
k∏

i=1

f(i − 1) · (2m − i + 1)
i · (n〈f〉 − f(i))

/
2m∑
j=0

j∏
i=1

f(i − 1) · (2m − i + 1)
i · (n〈f〉 − f(i))

. (3.2)

For a = 0 we observe by a straightforward calculation that Gn,a,k is the bino-
mial random graph for which

P (k) =
(

2m

k

)(
1
n

)k (
n − 1

n

)2m−k

. (3.3)

For a > 0 we can rewrite the numerator of (3.2) using the gamma function:

k∏
i=1

f(i − 1) · (2m − i + 1)
i · (n〈f〉 − f(i))

=
∏k−1

i=0 (ai + b)
k!

∏2m
i=2m−k+1 i∏2m−1

i=2m−k (ai + b(n − 1))

=
ak
∏k−1

i=0

(
i + b

a

)
k!

Γ(2m + 1)
Γ(2m − k + 1)

1
ak
∏2m−1

i=2m−k (i + b
a (n − 1))

=
Γ(k + b

a )
Γ( b

a )Γ(k + 1)
Γ(2m + 1)

Γ(2m − k + 1)
Γ(2m − k + b

a (n − 1))
Γ(2m + b

a (n − 1))
.
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Figure 2. This illustration shows a plot of the exact stationary distribution of the
Markov chain (3.2) against the approximation (3.6) and the degree distribution
of a network after 107 simulation steps of SESP. All data are for the preference
function f (k) = 0.9k + 0.1 and a network of size n = 1000 and m = 2000.

By applying Stirling’s approximation of the gamma function (see Lemma 6.1)
we can show that

Γ(k + b
a )

Γ( b
a )Γ(k + 1)

Γ(2m + 1)
Γ(2m − k + 1)

Γ(2m − k + b
a (n − 1))

Γ(2m + b
a (n − 1))

= O
(
c−k
2 · k−1+ b

a

)
, (3.4)

where c2 := 1 + b/ak. Note that Lemma 6.1 states that for 0 ≤ k ≤ ( 2+ε
log c2

) log m,
the asymptotic upper bound is tight.

We use (3.4) to simplify the denominator of (3.2). There is some constant c

such that
2m∑
j=0

j∏
i=1

f(i − 1) · (2m − i + 1)
i · (n〈f〉 − f(i))

=
2m∑
k=0

O

((
1 +

b

ak

)−k
)

≤ c ·
∞∑

k=0

(
1 +

b

ak

)−k

.

Since this infinite sum converges, we conclude that

P (k) = O
(
c−k
2 · k−1+b/a

)
. (3.5)
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The exponential cutoff (c−k
2 ) of the degree distribution already indicates that

the probability for vertices of large degree is small. We now show that for ε > 0,
there are a.a.s. no vertices of degree larger than kmax := ( 2+ε

log c2
) log m. By union

bound and (3.5), the probability that there is a vertex of degree at least kmax is
at most

n

2m∑
i=km a x

P (kmax) ≤ 2m · n/(1 +
b

ak

)km a x

= o(1).

Therefore, in the stationary distribution of SESP the maximum degree of a graph
is asymptotically almost surely at most ( 2+ε

log c2
) log m, and P (k) simplifies for all

k ≤ ( 2+ε
log c2

) log m to

P (k) = Θ
(
c−k
2 · k−1+b/a

)
. (3.6)

The number of vertices of degree k divided by two is a function from the
state space of the Markov chain to the real numbers. The function is 1-Lipschitz
because in one step of SESP, the number of vertices of degree k increases or
decreases by at most two, and therefore

∀x,x ′∈Ω :
|Nx(k) − Nx ′(k)|

2d(x, x′)
≤ 1.

Corollary 1.6 is a simple consequence of the above observation and Theo-
rem 1.4. Note that we use Nx(k) for the number of vertices of degree k in graph
x, which is slightly different from our usual notation.

3.1. Relation to the Configuration Model

The configuration model (see [Bollobás 80, Janson et al. 00]) is the standard
method for studying random regular graphs and random graphs of a given de-
gree sequence. For a degree sequence d(v1), d(v2), . . . , d(vn ), the first step is to
construct the n vertices containing the 2m labeled half-edges. Then a configu-
ration (a pairing of the 2m half-edges) is chosen uniformly at random from all
possible configurations. The multigraph that corresponds to the chosen configu-
ration can be constructed by inserting an edge between every pair of half-edges.
There are

(2m − 1)!! = (2m − 1) · (2m − 3) · · · 3 · 1 =
(2m)!
2m m!

(3.7)

different configurations for 2m half-edges.
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Recall that the state space of the SESP Markov chain Ω consists of all possi-
ble multigraphs on n labeled vertices and 2m labeled half-edges. A multigraph
s ∈ Ω is represented by a vector that contains for every vertex v the set of ad-
jacent half-edges H(v) as defined in Section 1.1. We partition these states such
that two graphs are in the same partition if and only if they exhibit the same
degree sequence d(v1), . . . , d(vn ). Let Ω′ be the state space defined by all degree
sequences, and for a partitioning Ω′ of the state space Ω, let φ(v) : Ω → Ω′ be
the unique x in Ω′ such that v is an element of x. We will use the following
lemma to prove that in the stationary distribution of SESP, all multigraphs of
the same degree sequence appear with equal probability as in the configuration
model. This means that we can use the configuration model to study Gn,a,k .

Note that a degree distribution is often given as the number of vertices of
a certain degree N(1), N(2), . . . , N(2m) and not as the sequence of the de-
grees d(v1), . . . , d(vn ). But obviously for a fixed N(1), N(2), . . . , N(2m), every
sequence of degrees (that matches N(1), N(2), . . . , N(2m)) appears with the
same probability, since it is only a matter of relabeling the initial graph.

Lemma 3.1. If Ω′ is a partition of the ergodic Markov chain Ω, P, π that satisfies

∀x,y∈Ω ′∀u,v∈y :
∑
s∈x

P (s, u) =
∑
s∈x

P (s, v) (3.8)

and

∀x,y∈Ω ′∀u,v∈x :
∑
s∈y

P (u, s) =
∑
s∈y

P (v, s), (3.9)

then

∀v∈Ω : π(v) =

∑
u∈φ(v ) π(u)

|φ(v)| .

Proof. Because of ergodicity it is sufficient to show that for all v ∈ Ω,

∑
w∈Ω

P (w, v)

∑
u∈φ(w ) π(u)

|φ(w)| =

∑
s∈φ(v ) π(s)

|φ(v)|

is satisfied. First note that

∀x∈Ω ′∀u∈x∀v∈Ω :
∑
w∈x

P (w, v)
(3.8)
=

1
|φ(v)|

∑
s∈φ(v )

∑
w∈x

P (w, s) (3.10)

(3.9)
=

|x|
|φ(v)|

∑
s∈φ(v )

P (u, s). (3.11)
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Hence for arbitrary v ∈ Ω,

∑
w∈Ω

P (w, v)

∑
u∈φ(w ) π(u)

|φ(w)| =
∑
x∈Ω ′

1
|x|
∑
u∈x

π(u)
∑
w∈x

P (w, v)

(3.10)
=

1
|φ(v)|

∑
x∈Ω ′

∑
u∈x

π(u)
∑

s∈φ(v )

P (u, s)

=
1

|φ(v)|
∑

s∈φ(v )

∑
w∈Ω

P (u, s)π(u) =

∑
s∈φ(v ) π(s)

|φ(v)|

always holds.

We now use Lemma 3.1 to prove that for every degree sequence s ∈ Ω′ and
every multigraph with labeled vertices and half-edges Gi ∈ s, the stationary dis-
tribution is π(Gi) =

∑
u∈s π(u)/|s|.

Proof of Theorem 1.7. To apply Lemma 3.1 we need to show only that the SESP
Markov chain satisfies (3.8) and (3.9). We first prove (3.8) for arbitrary degree
sequences x, y ∈ Ω′.

We first assume that x �= y. If there is a positive transition probability from a
state s in x to a state w in y, this means that there are one half-edge e and two
vertices v and v′ such that

Hs(v) = Hw (v) ∪ {e} and Hw (v′) = Hs(v′) ∪ {e},
and for all other vertices, u ∈ V − {v, v′} Hs(u) = Hw (u). Then a transition
from s to w happens if and only if e is selected and rewired to v′. Thus, there
are nonzero transition probabilities from x to y if and only if there is exactly one
pair of vertices v, v′ such that

dx(v) = dy (v) + 1 and dx(v′) = dy (v′) − 1.

Then each multigraph w ∈ y has exactly dy (v′) different multigraphs s ∈ x that
have transition probability

P (s, w) =
1

2m

a · dx(v′) + b

n(ak + b)
,

and hence (3.8) is satisfied.
If x = y, then for all s, w ∈ x, P (s, w) > 0 implies that s = w, and therefore

(3.8) is satisfied, because

P (s, s) = P (w,w) =
∑
v∈V

dx(v)
2m

a · dx(v) + b

n(ak + b)
.
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The above observations can be applied analogically to show that (3.9) is also
satisfied.

We observe that for a given degree sequence d(v1), d(v2), . . . , d(vn ) every la-
beling of the half-edges appears with the same probability. Choosing a labeling
of the half-edges uniformly at random and connecting the two half-edges of each
edge is equivalent to choosing a pairing of the half-edges uniformly at random
out of all (2m − 1)!! pairings.

3.2. Properties of the Degree Sequence

In [Molloy and Reed 95, Molloy and Reed 00] the authors defined the following
natural properties for degree sequences of large graphs. An asymptotic degree
sequence is a sequence of integer-valued functions D = d0(n), d1(n), . . . such that

1. di(n) = 0 for i ≥ n,

2.
∑

i≥0 di(n) = n.

An asymptotic degree sequence D is well behaved if:

1. D is smooth, which means that there exist constants λi such that

lim
n→∞

di(n)
n

= λi,

where n denotes the total number of vertices and di(n) the number of
vertices of degree i.

2. For all ε > 0 there exists n0 such that for all n > n0 and for all i ≥ 0,∣∣∣∣ i(i − 2)di(n)
n

− i(i − 2)λi

∣∣∣∣ < ε.

3.

L(D) = lim
n→∞

∑
i≥1

i(i − 2)di(n)
n

exists, and the sum approaches the limit uniformly, i.e., if L(D) is finite,
then for all ε > 0, there exist i∗, n0 such that for all n > n0 ,∣∣∣∣∣

i∗∑
i=1

i(i − 2)di(n)
n

− L(D)

∣∣∣∣∣ < ε,
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or if L(D) is infinite, then for all T > 0, there exist i∗, n0 such that for all
n > n0 ,

i∗∑
i=1

i(i − 2)di(n)
n

> T.

An asymptotic degree sequence D is sparse if

∑
i≥0

idi(n)
n

= K + o(1)

for some constant K.

Lemma 3.2. For constant k, the degree sequence of Gn,a,k is whp a well-behaved
and sparse asymptotic degree sequence.

Proof. By Theorem 1.7, we can fix a graph G ∼ Gn,a,k by first exposing its
degree sequence N(0), . . . , N(2m) and then choosing a random multigraph of
that degree sequence by employing the configuration model. We show that
the degree sequence is well behaved whenever the maximum degree is at most
kmax := ( 3

log c2
) log m and

∀0≤k≤km a x : n · P (k) −
√

n log n ≤ N(k) ≤ n · P (k) +
√

n log n (3.12)

holds. Note that n · P (k) = E[N(k)], and the two events are therefore by Corol-
lary 1.6 and Theorem 1.5 satisfied with probability at least

1 −
(

3
log c2

)
log m · 2n−1/(4c1 ) − o(1) = 1 − o(1).

It remains to show that the degree sequence d0(n), . . . , d2m (n) =
N(0), . . . , N(2m) is well behaved if (3.12) is satisfied and the maximum
degree is at most kmax.

Clearly,
∑

i≥0 di(n) = n and di(n) = 0 for i > n − 1. Let λi := P (i) for i ≤
kmax := ( 3

log c2
) log m and λi = 0 for larger i. Because of (3.12),

di(n)
n

= λi ± O

(√
n log n

n

)
,

and therefore

lim
n→∞

di(n)
n

= λi.
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For i > kmax, we have that∣∣∣∣ i(i − 2)di(n)
n

− i(i − 2)λi

∣∣∣∣ = 0,

while if i ≤ kmax, then∣∣∣∣ i(i − 2)di(n)
n

− i(i − 2)λi

∣∣∣∣ =
∣∣∣∣i(i − 2)

O(
√

n log n)
n

∣∣∣∣ = o(1),

where the last equality follows from i ≤ kmax, and therefore the second condition
for a well-behaved degree sequence is satisfied. For the third condition, we inspect
L(D):

L(D) = lim
n→∞

(∑
i≥1

i(i − 2)λi +
km a x∑
i=1

i(i − 2)
O(
√

n log n)
n

)

= lim
n→∞

(∑
i≥1

i(i − 2)λi + o(1)

)
=

∞∑
i=1

i(i − 2)λi. (3.13)

This means that the limit exists, and because

λi = O

((
1 +

b

ak

)−i)
,

the sum
∞∑

i≥1

i(i − 2)λi

converges. Hence for all ε > 0 there exists a constant i∗ such that
∞∑

i=i∗+1

i(i − 2)λi < ε,

and therefore for some n0 and all n > n0 ,∣∣∣∣∣
i∗∑

i=1

i(i − 2)di(n)
n

− L(D)

∣∣∣∣∣ (3.13)
=

∣∣∣∣∣
i∗∑

i=1

i(i − 2)
di(n)

n
−

∞∑
i=1

i(i − 2)λi

∣∣∣∣∣
=

∣∣∣∣∣
i∗∑

i=1

i(i − 2) (di(n)/n − λi) −
∞∑

i=i∗+1

i(i − 2)λi

∣∣∣∣∣
=

∣∣∣∣∣o(1) −
n∑

i=i∗+1

i(i − 2)λi

∣∣∣∣∣ < ε.
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Note that [Fernholz and Ramachandran 07] defines a similar set of properties, for
which the authors proved that the diameter of random graphs satisfying those
properties is c ln n + o(ln n). By combining their results and our framework, it
might be possible to prove that the diameter of Gn,a,k is O(ln n).

4. Applications

In this section we demonstrate how our main results can be used to study proper-
ties of Gn,a,k . We can use the configuration model (Theorem 1.7) and the degree
distribution (Theorem 1.5 and Corollary 1.6) to calculate the expectation of ran-
dom variables in Gn,a,k . As long as those random variables can be formulated
as 1-Lipschitz functions, we can then apply Theorem 1.4 to derive bounds on
their concentration. The weakness of SESP is that it is not restricted to simple
graphs, which means that it can produce graphs with self-loops. In [Dorogovtsev
and Mendes 03], the authors indicated that the number of self-loops is small.
In Section 4.1 we give a short rigorous proof of this fact. In Section 4.2 we use
a result that was derived for the configuration model to study the emergence
of the giant component in Gn,a,k . This exemplifies how known results can be
transferred from the configuration model to Gn,a,k .

4.1. Self-Loops

We now use the configuration model to derive the number of self-loops in Gn,a,k .
Note that in the configuration model, the probability that two specific half-edges
are connected is exactly

(2m − 3)!!
(2m − 1)!!

=
1

2m − 1
. (4.1)

The expected number of self-loops attached to a vertex of degree k is
(
k
2

) 1
2m−1 ,

since there are
(
k
2

)
pairs of half-edges that are connected with probability 1

2m−1 .
We can calculate the expected number of self-loops on an arbitrary vertex by
summing over all possible degrees k:

∑
k

p(k)
(

k

2

)
1

2m − 1
=

〈(k2)〉
2m − 1

.

Therefore, the expected number of self-loops in the graph is
n ·〈(k

2 )〉
2m−1 . In Gn,a,k ,

〈(
k

2

)〉
= O

(
2m∑
k

k1+ b
a

(
1 +

b

ak

)−k
)

= O(1),
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because the infinite sum
∞∑
k

k1+ b
a

(
1 +

b

ak

)−k

converges.

4.2. The Giant Component

In 1995, Molloy and Reed [Molloy and Reed 95, Molloy and Reed 00] discovered
the critical point for random graphs of a given asymptotic degree sequence. For
a sequence of nonnegative real numbers λ0 , λ1 , . . . , they showed that a random
graph that has approximately λin vertices of degree i has a.a.s. a giant compo-
nent if

∑
i(i − 2)λi > 0, while if

∑
i(i − 2)λi < 0, then a.a.s. all components are

small.
Molloy and Reed introduced two lemmas on configurations to prove their

results on random simple graphs. We merge those two lemmas, [Molloy and
Reed 95, Lemmas 3 and 7], into the following one.

Lemma 4.1. For a well-behaved and sparse asymptotic degree sequence D,
let Q(D) :=

∑
i≥0 i(i − 1)λi,

∑
i≥0 idi(n)/n = K + o(1), v = −Q(D)/K, R =

150/v2 , and let F be a random configuration with n vertices and degree sequence
D. If Q(D) < 0 and if for some function 0 ≤ ω(n) ≤ n1/8−ε , F has no vertices
of degree greater than ω(n), then F a.a.s. has no component with more than
α = �Rω(n)2 log n� vertices. If Q(D) > 0, then there exist constants ζ1 , ζ2 > 0
dependent on D such that a.a.s. F has a component with at least ζ1n vertices
and ζ2n cycles.

In Section 3.2 we showed that G ∼ Gn,a,k a.a.s. meets the conditions of Lemma
4.1 with λi := P (i) for i ≤ kmax := ( 3

log c2
) log m, and P (i) = 0 otherwise. There-

fore, a graph G ∼ Gn,a,k has a.a.s. a giant component if Q(D) > 0, while if
Q(D) < 0, then almost surely all components have size o(n). This is formulated
in the following lemma.

Lemma 4.2. Let Q =
∑km a x

k=1 k(k − 2)P (k), where

P (k) =
k∏

i=1

f(i − 1) · (2m − i + 1)
i · (n〈f〉 − f(i))

/ 2m∑
j=0

j∏
i=1

f(i − 1) · (2m − i + 1)
i · (n〈f〉 − f(i))

and

kmax :=
(

3
log c2

)
log m.



482 Internet Mathematics

Then for Q > 0, G ∼ Gn,a,k has a.a.s. a component of Θ(n) vertices, while for
Q < 0, there is a.a.s. no component with more than O(log2 n) vertices.

Lemma 4.2 characterizes for which parameters a and k the giant component
in Gn,a,k emerges. The goal is to determine a simpler function of a and k that
decides whether Gn,a,k has a giant component. We believe that Q < 0 if k < b

and that Q > 0 if k > b.

Conjecture 4.3. Let G ∼ Gn,a,k . Then for k > b, G has a.a.s. a component of size
Θ(n), and for k < b, there is a.a.s. no component of size larger than O(log2 n).

The cases a = b and b = 1 as well as numerical calculations confirm this con-
jecture. We now show that the conjecture is true for a = b and b = 1.

In (3.3) we derived that the degree distribution for b = 1 and a = 0 is

P (k) =
(

2m

k

)(
1
n

)k (
n − 1

n

)2m−k

.

Let c be a constant. Then for m = c(n − 1) it follows that

Q =
(

n − 1
n

)2c(n−1) km a x∑
i=1

i(i − 2)
(

2c(n − 1)
i

)
(n − 1)−i

=
(

n − 1
n

)2c(n−1)
(
−2c +

km a x∑
i=3

i(i − 2)
(

2c(n − 1)
i

)
(n − 1)−i

)
.

For c < 1/2, this means that Q < 0, because

−2c +
km a x∑
i=3

i(i − 2)
(

2c(n − 1)
i

)
(n − 1)−i ≤ −2c +

∑
i≥3

i(i − 2)
(2c)i

i!
< 0,

while Q > 0 for c > 1/2, since

−2c +
km a x∑
i=3

i(i − 2)
(

2c(n − 1)
i

)
(n − 1)−i =−2c +

km a x∑
i=3

i(i − 2)
(2c)i

i!
(1 − o(1)) > 0

for n large enough.
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Another case for which we derive a threshold for the giant component is
a = b = 1/2. Then Q in Lemma 4.2 simplifies to

Q =
1
c

km a x∑
i=1

i(i − 2)
i∏

k=1

(a(k − 1) + b)(2m − k + 1)
k(a(2m − k) + b(n − 1))

=
1
c

b2m

a(2m − 1) + b(n − 1)

(
−1 +

km a x∑
i=3

(i − 2)
(i − 1)!

i∏
k=2

(
k − 1 + b

a

) (
k − k−1

n

)
k + b(n−1)

an − k
n

)
,

where c is the normalization term of P (k). Therefore Q
(<)
> 0 if and only if

Q′ :=
km a x∑
i=3

i(i − 2)
i∏

k=2

k − k−1
n

k + 1 − k+1
n

(<)
> 1.

For k = 1/2 − ε,

Q′ =
km a x∑
i=3

i(i − 2)
i∏

k=2

(
1 − 1 − 2

n
3
2 − ε − k+1

n

)
<
∑
i≥3

i(i − 2)
(

1
3

)i−1

= 1,

because

f(z) := 1 − 1
(1 − z)2 +

2z

(1 − z)3 =
∑
i≥0

(i + 2)izi+1

and f(1/3) = 1. For k = 1/2 + ε,

Q′ =
km a x∑
i=3

i(i − 2)
i∏

k=2

(
1 − 1 − 2

n
3
2 + ε − k+1

n

)
i+1<εn/2

>

km a x∑
i=3

i(i − 2)
(

1 + ε

3 + ε

)i−1

> 1

for n large enough, since f( 1+ε
3+ε ) = 1 + ε

( 3+ε
2

)2 .

5. Conclusion

In this paper we have described a new way of looking at nongrowing networks. By
considering the stationary distribution of SESP, we defined a new random graph
model Gn,a,k and developed a framework to study its properties. We underlined
the relevance of this new approach by showing that the model has optimal mixing
time and therefore reaches the stationary phase in O(m log m) steps. This means
that a real-world network (for which the model fits) is with high probability
already in the stationary state.

A different approach was chosen in [Evans and Plato 07], where the authors
solved a mean-field equation for the degree distribution after step t of the process.
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If we look at their solution for t = ∞, we get

P (k) ≈ k
−1+ p r

p p
k · pk

p (5.1)

for their preference function f(k) = pp
k

2m + pr
1
n , where pp + pr = 1.

Note that for

pp =
a

a + b
k

and pr =
b

ak + b
,

the two models are equivalent. By substituting our pp and pr into (5.1), yielding

P (k) ≈ k
−1+( b

a k + b
)k
/

( a

a + b / k
) ·
(

a

a + b/k

)k

=
1

(1 + b
ak

)k
· k−1+b/a ,

we see that our solution confirms their result in the limit.
We believe that our framework can be used similarly to the methods known

from traditional random graph models such as the Erdős–Rényi model and the
configuration model. The discussion of the giant component in Section 4.2 illus-
trates the building blocks of the framework. The equivalence to the configura-
tion model (Theorem 1.7) and the concentration of 1-Lipschitz functions (Theo-
rem 1.4) allows us to apply a result of [Molloy and Reed 95]. We therefore used the
degree distribution (derived in Section 3) to analyze the value of

∑
k(k − 2)P (k).

A natural question for future research is to develop an analogical theory for
simple graphs. The natural attempt to ignore step 4 of Process 1.1 whenever
it would create a self-loop or a multiedge leads to considerable difficulties in
the process analysis (see [Hruz et al. 08]). To overcome these obstacles, we see
basically two possibilities. Either one studies multigraphs and uses the fact, which
we prove in the present paper, that there is only a very small number of self-loops
(and analogically multiple edges), or one tries to study new meaningful processes
that create scale-free distributions.

6. Asymptotic Degree Sequences

The following technical lemma is used in Section 3.

Lemma 6.1. For n = 2m/k and 0 ≤ k ≤ 2m,

Γ(k + b
a )

Γ(k + 1)
Γ(2m + 1)

Γ(2m − k + 1)
Γ(2m − k + b

a (n − 1))
Γ(2m + b

a (n − 1))
= O(k−1+ b

a c−k
2 ),
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and for 0 ≤ k ≤
(

2+ε
log c2

)
log m,

Γ(k + b
a )

Γ(k + 1)
Γ(2m + 1)

Γ(2m − k + 1)
Γ(2m − k + b

a (n − 1))
Γ(2m + b

a (n − 1))
= Θ(k−1+ b

a c−k
2 ),

where c2 := 1 + b
ak

.

Proof. We use Stirling’s approximation

Γ(z) =
√

2πz
(z

e

)z
(

(1 + O

(
1
z

))

to obtain

Γ(k + b
a )

Γ(k + 1)
=

√
k + b

a

k + 1
e1− b

a

(
k + b

a

k + 1

)k (
k + b

a

) b
a

(k + 1)
Θ(1) = Θ(k−1+ b

a ), (6.1)

where we have used (1 +
b
a −1
k+1 )k = Θ(1), which follows from well-known features

of the exponential function. For n = 2m/k we apply again the above Stirling’s
approximation to the remaining terms:

Γ(2m + 1)
Γ(2m − k + 1)

Γ(2m − k + b
a (n − 1))

Γ(2m + b
a (n − 1))

=

√
(2m + 1)

(
2m − k + b

a (n − 1)
)

(2m − k + 1)
(
2m + b

a (n − 1)
) ( 2m + 1

2m − k + 1

)2m−k+1

(2m + 1)k

·
(

2m − k + b
a (n − 1)

2m + b
a (n − 1)

)2m−k+ b
a (n−1)

1(
2m + b

a (n − 1)
)k · Θ(1)

=
(

2m + 1
2m − k + 1

)2m−k+1+ 1
2

(2m + 1)k

(
2m − k + b

a (n − 1)
2m + b

a (n − 1)

)2m−k+ b
a (n−1)+ 1

2

· 1(
2m + b

a (n − 1)
)k Θ(1)

= Θ

((
2m + 1

2m − k + 1

)2m−k+1+ 1
2
(

2mc2 − k

2mc2

)2mc2 −k+ 1
2

c−k
2

)
,

where c2 := 1 + b
ak

. We furthermore observe that

φ(k) :=
(

2m + 1
2m − k + 1

)2m−k+1+ 1
2
(

2mc2 − k

2mc2

)2mc2 −k+ 1
2
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is monotonically decreasing for k ∈ {0, . . . , 2m} and m large enough. Since
φ(0) = 1, we conclude that

Θ

((
2m + 1

2m − k + 1

)2m−k+1+ 1
2
(

2mc2 − k

2mc2

)2mc2 −k+ 1
2

c−k
2

)
= O

(
c−k
2

)
.

For 0 ≤ k( 2+ε
log c2

) log m, we have

φ(k) =
(

1 − k

2m + 1

)−(2m+1)+k−1/2 (
1 − k

2mc2

)2mc2 −k+1/2

= (1 + o(1))e−
k 2 −k / 2
2 m + 1 + k 2 −k / 2

2 m c 2

≥ (1 + o(1))e−
k

2 m

(
1− 1

c 2

)
(k−1/2)

≥ (1 + o(1))m−
(

2 + ε
l o g c 2

)
(1− 1

c 2 )(k −1 / 2 )

2 m = Θ(1).
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