
Internet Mathematics Vol. 6, No. 3: 373–398

Speeding Up Algorithms on
Compressed Web Graphs
Chinmay Karande, Kumar Chellapilla, and Reid Andersen

Abstract. A variety of lossless compression schemes has been proposed to reduce the
storage requirements of web graphs. One successful approach is virtual-node compres-
sion [Buehrer and Chellapilla 08], in which often-used patterns of links are replaced
by links to virtual nodes, creating a compressed graph that succinctly represents the
original. In this paper, we show that several important classes of web graph algo-
rithms can be extended to run directly on virtual-node-compressed graphs, such that
their running times depend on the size of the compressed graph rather than on that
of the original. These include algorithms for link analysis, estimating the size of ver-
tex neighborhoods, and a variety of algorithms based on matrix–vector products and
random walks. Similar speedups have been obtained previously for classical graph al-
gorithms such as shortest paths and maximum bipartite matching. We measure the
performance of our modified algorithms on several publicly available web graph data
sets, and demonstrate significant empirical speedups that nearly match the compression
ratios.

1. Introduction

Compression schemes can significantly reduce the number of bits per edge re-

quired to losslessly represent web graphs [Boldi and Vigna 04b, Boldi and Vi-

gna 04a]. One approach to implementing algorithms on compressed graphs is to

decompress the graph on the fly, so that a client algorithm does not need to know

how the underlying graph is compressed. Another approach is to design special-

ized algorithms that can directly use the compressed representation. It can be

© A K Peters, Ltd.
1542-7951/09 $0.50 per page 373

374 Internet Mathematics

Figure 1. The bipartite clique–star transformation.

shown that for certain compression schemes, such algorithms can be made to run

faster on the compressed graph than on the original [Feder and Motwani 95].

In virtual-node compression, a succinct representation of the graph is con-

structed by replacing dense subgraphs by sparse ones [Buehrer and Chellapilla 08].

In particular, a directed bipartite clique on the vertex set K is replaced by a star

centered at a new “virtual” node, with nodes in K being the leaves (see Fig-

ure 1). Applying this transformation repeatedly leads to a compressed graph

with significantly fewer edges and a relatively small number of additional nodes.

It is shown in [Feder and Motwani 95] that several classical graph algorithms

can be sped up using a similar type of virtual-node compression, in which an

undirected clique is transformed into a star. The authors showed that algorithms

for all-pairs shortest paths, bipartite matching, and edge and vertex connectivity

can be modified so their running times depend on the size of the compressed

graph rather than on that of the original. They also showed that dense graphs can

be significantly compressed by virtual-node compression; they gave an algorithm

that finds, for any graph with Ω(n2) edges, a compressed graph with O(n2/ logn)

edges. This result, combined with their sped-up algorithms, improved the worst-

case running time bounds for all-pairs shortest paths and bipartite matching.

Recently, it was demonstrated in [Buehrer and Chellapilla 08] that virtual-node

compression can achieve high compression ratios for web graphs. The authors

introduced a frequent-pattern mining algorithm for finding directed bipartite

cliques, and showed that their algorithm achieves compression ratios of four to

eight on a variety of page-level web graphs, which is comparable to state-of-

the-art compression methods based on gap coding [Boldi and Vigna 04b, Boldi

and Vigna 04a]. This high compression ratio reflects the frequent occurrence

of bipartite cliques in web graphs, which was observed earlier in the context of

community-finding [Kumar et al. 99].

In this paper, we show that a large class of web graph algorithms can be ex-

tended to run on virtual-node-compressed graphs, with running time speedups

proportional to the compression ratio. As a fundamental tool, we first show

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 375

that multiplication by the adjacency matrix of the graph can be performed in

time proportional to the size of the compressed graph. Using this matrix mul-

tiplication routine as a black box, we obtain significant speedups for numerous

popular web graph algorithms, including PageRank, HITS, and SALSA, and

various algorithms based on random walks. This multiplication routine can be

implemented in the sequential file access model, and can be implemented on a

distributed graph using a small number of global synchronizations.

We then consider a second approach to speeding up PageRank and SALSA,

this time using the computation of stationary vectors as a black box. We show

that by computing an appropriately modified PageRank directly on the com-

pressed graph, we can perform a simple transformation of the result to obtain

the PageRank of the original graph. With this approach, one can achieve a

speedup on the compressed graph using an existing PageRank implementation.

We discuss several tradeoffs between these two approaches, including the num-

ber of iterations required for convergence and the number of synchronizations

required in a distributed implementation.

We tested the performance of both of these approaches for PageRank and

SALSA on large publicly available web graphs, which we compressed using tech-

niques described in [Buehrer and Chellapilla 08]. For these graphs the compres-

sion ratios are roughly 4 to 6, and the speedup achieved by our algorithms is

roughly 2.5 to 4.5 times over the uncompressed versions. It is expected that the

speedup is close to the compression ratio but does not exactly match it, since

various operations that require O(|V |) time are not sped up.

The paper is organized as follows. In Section 2 we define virtual-node com-

pression schemes, describe algorithms for computing compressed representations

of graphs, and introduce notation. In Section 3 we present an algorithm for per-

forming fast matrix–vector multiplication on compressed graphs. In Section 4 we

describe an alternative approach to speeding up the computation of PageRank

and SALSA. In Section 5 we discuss additional applications, and in Section 6

we present experimental results. A conference version of this paper [Karande et

al. 09] appeared earlier. We have since expanded the discussion of the virtual-

node compression scheme in Section 2.2 as well as the experimental results in

Section 6.

2. Background

2.1. Graph Compression Using Virtual Nodes

We now describe how virtual-node compression is applied to a directed graph

G(V,E). This scheme is based on a graph transformation that replaces a directed

376 Internet Mathematics

bipartite clique by a directed star. A directed bipartite clique (or biclique) 〈S, T 〉
is a pair of disjoint vertex sets S and T such that for each u ∈ S and v ∈ T ,

there is a directed link from u to v in G. Given a biclique 〈S, T 〉, we form a new

compressed graph G′(V ′, E′) by adding a new vertex w to the graph, removing

all the edges in 〈S, T 〉, and adding a new edge uw ∈ E′ for each u ∈ S and a new

edge wv ∈ E′ for each v ∈ T . This transformation is depicted in Figure 1. Note

that the number of vertices increases by 1, while the number of edges decreases,

since |S| × |T | edges in E are replaced by |S|+ |T | edges in E′. We remark that

this is a directed bipartite version of the clique–star transformation from [Feder

and Motwani 95].

We call the node w a virtual node as opposed to the real nodes already present

in G. Note that the biclique–star transformation essentially replaces an edge uv

in G with a unique path u → w → v in G′ that acts as a placeholder for the

original edge. We will call such a path a virtual edge.

The biclique–star transformation may be performed again on G′. Virtual

nodes are allowed to be reused, so the bipartite clique 〈S′, T ′〉 found in G′ may

contain the virtual node w. In this case, the virtual edge path between u and v

in the resulting graph G′′ may be extended to u → w → w′ → v or u → w′ →
w → v. We can now define a virtual edge more formally: a path u → w1 →
· · · → wl → v in the compressed graph is a virtual edge if and only if w1, . . . , wl

are virtual nodes and u, v are real nodes with an edge from u to v in the original

graph G. Note that the definition of a virtual node encompasses those edges

uv ∈ E that remain in G′.
To obtain significant compression, the biclique–star transformation can then

be repeated many times. A graph obtained by this process is called a compres-

sion of G.

More generally, given two digraphs G(V,E) and G′(V ′, E′), we say that G′

is a compression of G if it can be obtained by applying a series of bipartite

clique–star transformations to G. We will denote this relation by G′ ≺ G. Any

compression G′ ≺ G satisfies the following properties, which are straightforward

to verify and were proved in [Buehrer and Chellapilla 08]. We provide sketches

of those proofs here.

Lemma 2.1. There is a one-to-one correspondence between the set of edges in G

and the set of virtual edges in G′.

Proof. If an edge uv ∈ E exists in G′, then the one-to-one correspondence is

clear, since uv is part of the set of virtual edges in G′. Otherwise, we look at the

biclique–star transformation that splits u→ v into u→ w → v. If both the edges

uw and wv exist in G′, then uv corresponds to the virtual edge u → w → v. If

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 377

not, we can continue the splitting of edges recursively to find a unique virtual

edge corresponding to uv.

Lemma 2.2. There exists no cycle in G′ consisting entirely of virtual nodes.

Proof. We will prove the lemma by recursion. Graph G did not contain such

a cycle to start with. Now consider the last biclique–star transformation that

changed the graph from G′′ to G′. If G′ contains a cycle on virtual nodes, then

either the same cycle existed in G′′ or the transformation produced two adjacent

edges u→ w → v of that cycle. Since both u, v are virtual nodes, a smaller cycle

on virtual nodes must exist in G′′.

We use the following notation for a compressed graph G′. The set of real

nodes in G′ is denoted by rV
′, and the set of virtual nodes is vV

′.

2.2. Finding Virtual Nodes Using Frequent Itemset Mining

The algorithms we describe in this paper can be applied to any compression of G,

but their performance depends on the properties of the compression. The most

important property is the number of edges and nodes in the compressed graph.

We will refer to the quantity |E|/|E′| as the compression ratio. In addition,

we want to bound the maximum length of any virtual edge. Clearly, longer

virtual edges are undesirable, since one can access the original edge only after

discovering the entire virtual edge.

An algorithm was introduced in [Buehrer and Chellapilla 08] that produces

compressions of web graphs with high compression ratio and small depth. This

algorithm finds collections of bicliques using techniques from frequent itemset

mining, and runs in time O(|E| log(|V |)). We will provide an overview of the

algorithm and highlight the properties that are important from our point of view.

Nodes in the graph are viewed as items, and the set of out-neighbors of a node

as an itemset. Therefore, a large frequent itemset corresponds to a large biclique

in the graph. First, the nodes are sorted by in-degree so that the most frequent

singleton item appears first. The nodes are then added to a prefix tree such that

every path from root to leaf in this tree corresponds to the set of out-neighbors

of a node in the graph. In fact, every subset of vertices on such a path in the tree

corresponds to a biclique in the graph. In each phase, the algorithm constructs

this prefix tree, heuristically identifies many disjoint bicliques as paths in the

tree, and performs the biclique–star transformation on all of them. The process

is then repeated. Virtual nodes added to the graph in one phase can be part of

the bicliques found in the next phase.

378 Internet Mathematics

Note that this compression scheme contains several heuristics that work well

in practice, but does not provide any guarantees with regard to the quality of

the compression. Nonetheless, it has a few desirable properties worth noting for

our purposes. It is reported in [Buehrer and Chellapilla 08] that the resulting

compressed graphs contain five to ten times fewer edges than the original, for

a variety of page-level web graphs. To obtain this compression, one typically

requires four to five phases of the algorithm. We will call the number of phases

used to compress G into G′ the depth of compression. Our bounds on the preci-

sion of our algorithm depend on the depth of compression. In our experiments,

our algorithm operates at a much higher precision than that guaranteed by our

theoretical bounds, and hence does not seem to be dependent on this property.

Henceforth, we will assume the use of this compression scheme when refer-

ring to compressed graphs, and we assume that the depth of the compression is

bounded by a small constant. Note that if the depth of compression is k, then

the worst case is that a virtual edge in the compressed graph may have length

at most 2k.

We remark that approximation algorithms for finding the best virtual-node

compressions were considered in [Feder et al. 03]. There, it is shown that find-

ing the optimal compression is NP-hard, but a good approximation algorithm

exists for the restricted problem of finding the best compression obtained from

a collection of vertex-disjoint cliques.

2.3. Combination of Structural and Representational Compression

Some existing graph compression techniques [Boldi and Vigna 04b, Boldi and

Vigna 04a] are representational. They choose an optimal encoding that requires

only a small number of bits to represent the graph. However, this provides

only storage reduction. Since the graph represented by this encoding is still the

original graph, any algorithm will require the same amount of computation. On

the other hand, the virtual-node compression scheme yields a smaller graph, and

we design algorithms that use the smaller graph to provide a speedup, apart

from the storage reduction. In fact, the representational compression schemes of

[Boldi and Vigna 04b, Boldi and Vigna 04a] can be used on top of virtual-node

compression to boost the storage reduction effect.

2.4. Notation

We consider directed graphs G(V,E) with no loops or parallel edges. We de-

note the set of in-neighbors and out-neighbors of node v by δGin(v) and δGout(v)

respectively.

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 379

We overload the symbol E to denote the adjacency matrix of the graph, where

E[u, v] =

{
1 If edge uv ∈ E,

0 otherwise.

When talking about probability distributions on the vertices of G, we will use

boldface letters such as p to denote a column vector of dimension |V |, unless
mentioned otherwise. When M is a matrix, we will use M [u] to represent the

row corresponding to vertex u and M [u, v] to represent the entry in row u and

column v.

Since we will be concerned with random walks on the Markov chain on the

underlying graph G, we will denote the probability of transition from u to v by

Pr(u, v). By W we will denote the random-walk matrix obtained by normalizing

each row of E to sum to 1. It is then clear that if p0 is the starting probability

distribution, then p1 = WTp0 is the distribution resulting from a single step of

the uniform random walk on the graph.

3. Speeding Up Matrix–Vector Multiplication

A large class of graph algorithms can be expressed succinctly and efficiently

in terms of multiplication by the adjacency matrix. Here we show that the

multiplication of a vector by the adjacency matrix of a graph can be carried

out in time proportional to the size of the graph’s compressed representation.

This matrix multiplication routine can be used as a black box to obtain efficient

compressed implementations.

3.1. Adjacency Matrix Multiplication

Proposition 3.1. Let G be a graph with adjacency matrix E, and let G′ ≺ G be a

compression of G. Then for any vector x ∈ �|V |, the matrix–vector product ETx

can be computed in time O(|E′|+ |V ′|). This computation needs only sequential

access to the adjacency list of G′ and does not require the original graph G.

Proof. First let us explore what the computation y = ETx looks like when the

uncompressed graph G is accessible.

Algorithm 1 performs a series of what are popularly called “push” operations:

The value stored at node u in x is “pushed” along the edge uv. This algorithm

simply encodes the following definition of y:

y[v] =
∑
uv∈E

x[u]. (3.1)

380 Internet Mathematics

Algorithm 1. (Multiply(E, x))

forall v ∈ V do
y[v] = 0;

end
forall Nodes u ∈ V do

forall Edges uv ∈ E do
y[v] = y[v] + x[u];

end

end

We extend this definition to compressed graphs, by extending the vector x

onto virtual nodes in the following fashion: For a virtual node v, we expand

x[v] as

x[v] =
∑

uv∈E′
x[u]. (3.2)

Armed with the above definition, we now provide the equation that computes

y using the compressed graph G′:

y[v] =
∑

uv∈E′
x[u]. (3.3)

We claim that definitions (3.1) and (3.3) of y are equivalent. This follows easily

from Lemma 2.2. Hence, using the recursive definition (3.2), we can expand the

terms corresponding to virtual nodes on the right side of equation (3.3) to obtain

exactly equation (3.1).

Although definitions (3.1) and (3.3) are equivalent, their implementations are

not. Note that the input vector x is not defined on virtual nodes. Moreover, due

to the recursive definition (3.2), these values have dependencies. For illustration,

consider the example in Figure 2, where w is a virtual node:

y[v] = x[u1] + x[u2] + x[u3] + x[u4] + x[u5] = x[u1] + x[u2] + x[w].

Hence, although the value of y[u] is encoded correctly by definitions (3.2) and

(3.3), it depends on x[w], which itself needs to be computed before the “push”

operation on edge wv is performed. The problem then simply becomes that of

arranging the “push” operations on edges incident upon virtual nodes.

Consider a virtual node v all of whose in-links originate from real nodes.

Lemma 2.2 guarantees the existence of such nodes. Clearly, when the push

operations on all the out-links of all the real nodes are finished, x[v] has been

computed. Now we can go ahead and “push” scores along all the out-links of v,

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 381

u1

u2

u3

u4

u5

v

u1

u2

u3

u4

u5

v

w

Figure 2. Push operations on a compressed graph.

which may in turn help complete the computation of x[w] for some other virtual

node w.

We now formalize by assigning a rank R(v) to each virtual node v using the

following recursive definition:

• If u is real for all uv ∈ E′, then R(v) = 0.

• Otherwise, R(v) = 1 + maxu∈δin(v)∩ vV R(u).

We now reorder the rows of the adjacency list representation of G′ in the

following manner:

1. Adjacency lists of real nodes appear before those of virtual nodes.

2. For two virtual nodes u and v, if R(u) < R(v) then the adjacency list of u

appears before that of v.

This reordering now imparts the following property to the adjacency list of

G′: For every virtual node v and any u such that uv ∈ E′, the adjacency list

of u appears before that of v. Therefore x[v] can be computed before we begin

to push scores along out-links of v. Algorithm 2 computes y = Etx using the

adjacency matrix E′ of G′ reordered as above.

Finally, note that the reordering can be performed during preprocessing by

computing the ranking functionR using a simple algorithm that requiresO(|E′|+
|V ′|) time.

Note that we can also speed up the computation of z = Ex in a similar

manner, by compressing the in-link graph rather than the out-link graph. The

same collection of virtual nodes can be used for both the in-link graph and the

out-link graph, leading to compressed in-link and out-link graphs with the same

values of |V ′| and |E′|. However, the in-links of virtual nodes in the compressed

graph must be stored separately, and they require a different ordering of virtual

nodes.

382 Internet Mathematics

Algorithm 2. (Compressed-multiply(E, x))

forall Real nodes v do
y[v] = 0;

end
forall Virtual nodes v do

x[v] = 0;
end
forall Nodes u ∈ V ′ do

forall Edges uv ∈ E′ do
if v is real then

y[v] = y[v] + x[u];
else

x[v] = x[v] + x[u];
end

end

end

3.2. Applications to Computation of Importance Metrics

The approaches described above can be used to speed up the canonical link-

analysis algorithms PageRank [Brin and Page 98, Page et al. 98], HITS [Klein-

berg 99], and SALSA [Lempel and Moran 00]. Here we briefly describe implemen-

tations of these algorithms using black-box compressed multiplication to provide

context for the following section. We defer the discussion of other applications

of adjacency matrix multiplication to Section 5.

These algorithms essentially perform several iterations of the power method,

for different graph-related matrices. Each iteration requires Θ(|E|+ |V |) opera-
tions on an uncompressed graph G. Given a compressed graph G′, each iteration

can be sped up to Θ(|E′|+|V ′|) operations using compressed-multiply. Typically

|V ′| is 20 to 40% larger than |V |, so the performance boost observed is deter-

mined mainly by the ratio |E′|/|E|. Alternative compressed implementations of

these algorithms will be described in more detail in the following section.

• PageRank: Given a graph G with adjacency matrix E, PageRank can be

computed by the following power method step:

xi+1 = (1− α)ET (D−1xi) + αj ,

where α is the jump probability and j is the jump vector. Refer to Sec-

tion 4.1 for a detailed definition of PageRank.

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 383

• HITS and SALSA: The HITS algorithm [Kleinberg 99] assigns a separate

hub score and authority score to each web page in a query-dependent graph,

equal to the top eigenvector of EET and ETE. SALSA can be viewed as a

normalized version of HITS, where the authority vector a and hub vector

h are the top eigenvectors of WT
r Wc and WcW

T
r , where Wr and Wc are

the row and column normalized versions of E.

4. Stochastic Algorithms on Compressed Graphs

In this section, we consider an alternative method for computing the station-

ary vectors for PageRank and SALSA using compressed graphs. We show that

the stationary vector in the original graph can be computed by computing the

stationary vector of a Markov chain running on the compressed graph, then pro-

jecting and rescaling. This allows us to compute PageRank or SALSA on the

original graph by running an existing implementation of the algorithm directly

on the compressed graph. The methods discussed above are specific to these

algorithms—we cannot apply them to compute the steady state of a general

stochastic metric. Refer to Section 5 for more detailed discussion of this point.

4.1. PageRank on Compressed Graphs

PageRank (introduced in [Brin and Page 98, Page et al. 98]) models a uniform

random walk on the Web graph performed by a so-called random surfer. The

matrix W as defined in Section 2.4 represents the underlying Markov chain. To

ensure ergodicity, we assume that the surfer clicks on a random link on a page

with probability 1 − α, 0 < α < 1. With probability α, she jumps to any page

in the graph, which she then chooses from the probability distribution j. Here

j is a vector of positive entries called the jump vector. This modification makes

the Markov chain ergodic, and hence, the equation governing the steady state

becomes

p =
(
(1− α)WT + αJ

)
p = LTp,

where J is simply the square matrix containing a copy of j in each column.

The power method can be efficiently applied to approximate the steady state

of this Markov chain in Θ(r(|E|+ |V |)) operations given an adjacency-list repre-

sentation of E, by multiplying the current distribution vector pi by (1− α)WT

and then adding the vector αj to it. Here, r is the number of power iterations

performed.

Our goal then is to run an algorithm similar to the above on a compression

G′ ≺ G such that just restricted to nodes in V , it models the jump-adjusted

384 Internet Mathematics

u x3

x2

x1

x4

x5x6x7

u x3

x2

x1

x4

x5x6x7

v u x3

x2

x1

x4

x5x6x7

v

w

G2G1G0

Figure 3. Illustration of the Δ function.

uniform random walk on G. From Lemma 2.1, if u ∈ G, then starting from u,

the walk can reach exactly the set δGout(u) using virtual edges. Let puv be the

probability that v is the first real node visited by the random walk on G′ when
starting from u. If we tweak the transition probabilities on G′ so as to have puv
equal to the probability of the transition u→ v in G, then we have a good model

of the original uniform random walk on G.

With this in mind, we now define some required notation. For a graph G

(compressed or otherwise), we define ΔG(u) as follows:

ΔG(u) =

{
1 if u is real,∑

w∈δGout(u)
ΔG(w) if u is virtual.

For example, in graphG2 in Figure 3, we have ΔG2(v) = 5 even though |δG2
out(v)| =

3, because the following five virtual edges leading to real nodes x1, . . . , x5 pass

through v: (1) (u → v → w → x1), (2) (u → v → w → x2), (3) (u → v → w →
x3), (4) (u→ v → x4), and (5) (u→ v → x5).

This configuration can be formed from the original graph G0 when a bipartite

clique involving u and x1, . . . , x3 is replaced by virtual node w and subsequently,

a bipartite clique involving u and w, x4, x5 was replaced by virtual node v. Refer

to Figure 3 for illustration.

We will assume that the values of this function are supplied to us along with the

compressed graph. Indeed, the value ΔG(v) is readily available to the compressor

algorithm (see [Buehrer and Chellapilla 08]) when it introduces the virtual node

v, and hence it needs to record only this entry associated with node v. This

increases the storage requirement for the compressed graph, but not by more than

a factor of 2, which itself is a generous, worst-case estimate since the proportion

of virtual nodes is very small. In practice, the extra storage required is close to

3 to 5% [Buehrer and Chellapilla 08]. Given the function ΔG(u), we define the

real out-degree of u in G:

ΓG(u) =
∑

w∈δGout(u)

ΔG(w).

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 385

For a real node u, ΓG(u) is nothing but the number of real nodes in G reachable

from u using a virtual edge. For a virtual node v, ΓG(v) = ΔG(v).

It is easy to verify that if G′ ≺ G, then for a node u ∈ G, ΓG′(u) = ΓG(u).

Moreover, if G is an uncompressed graph, then ΓG′(u) = |δGout(u)|.
How are the functions ΔG and ΓG relevant? Consider the edge uv in graph G2

in Figure 3: ΔG2(v) = 5 and ΓG2(u) = 7. Hence, virtual edges passing through

the virtual node v capture or encode five real out-neighbors of u in the original

graph G. Common sense tells us that to accurately model the uniform random

walk on G, the probability of the transition u→ v must be 5/7.

With this background, we can now define a random walk on a graph G′ com-

pressed from G that exhibits the desired modeling behavior:

1. The random walk on G′ is not uniform (unlike that on G). For example, for

the compressed graphG2 in Figure 3, we ensure that Pr(u, v) = 5·Pr(u, x6),

since v captures the virtual edges to five real neighbors of u. Similarly, we

keep Pr(v, w) = 3 · Pr(v, x4).

2. We ensure that the jump vector has zeros in entries corresponding to vir-

tual nodes. Similarly, transitions made from virtual nodes have zero jump

probability. This ensures that the Markov chain models exactly the uni-

form random walk on G.

Given graphs G′ ≺ G, jump probability α, and the jump vector j, we define

the random walk on G′ as follows:

1. Let X be the matrix of dimension |V ′| × |V ′| such that

X [u, v] =
ΔG′(v)

ΓG′(u)
.

2. We obtain Y from X by making adjustments for the jump probability:

Y [u, v] =

{
(1− α)X [u, v] if u is real,

X [u, v] if u is virtual.

3. Pad the jump vector j with zeros to obtain a jump vector j′ for G′. This

assigns the probability of a jump transition into a virtual node to be zero.

Let J ′ be the jump matrix containing copies of j′ in each column.

4. The desired Markov chain is given by the transition matrix MC(G′) = Z =

(Y + αJ ′T).

386 Internet Mathematics

Algorithm 3. (ComputePageRank(G, G′, α, j))

Compute Z = MC(G′)1

Compute the steady state p′ of the Markov chain represented by Z.2

Project p′ onto the set of real nodes to form p′′. Discard the values for3

virtual nodes.
Scale p′′ up to unit L1 norm to obtain p, which is the desired vector of4

PageRank values on G.

Just like MC(G), the irreducibility and aperiodicity of MC(G′) is ensured by

the jump vector j′. It makes the set of real nodes strongly connected, and since

every virtual node has a path to and from a real node, the resulting Markov

chain is ergodic. Hence it makes sense to talk about the steady state of MC(G′).
Algorithm 3 takes as input a graph G, its compressed representation G′, jump

probability α, and the jump vector j to compute PageRank on vertices of G

strictly using the graph G′.
From the schematic, it is clear that Algorithm 3 can be implemented to run

in time Θ(r(|E′|+ |V ′|)), where r is the desired number of power iterations. We

prove correctness of the algorithm in Theorem 4.1.

Theorem 4.1. The vector p computed by Algorithm 3 satisfies

p =
(
(1 − α)WT + αJ

)
p.

That is, p is the steady state of the jump-adjusted uniform random walk MC(G).

Proof. Although Algorithm 3 is not recursive, our proof will be. The recursion

will be based on the phases of compression mentioned in Section 2.1.

Let Gi(Vi, Ei) for 0 ≤ i ≤ k be a series of graphs

G′ = Gk ≺ Gk−1 ≺ · · · ≺ G1 ≺ G0 = G

such that Gi+1 is obtained from Gi by one phase of the clique–star transforma-

tions, i.e., by replacing many edge-disjoint bipartite cliques with virtual nodes.

The following property follows from this procedure: For uv ∈ Ei, if uv /∈ Ei+1,

then there exists a unique virtual edge u → w → v in Gi+1. This bound helps

us expand the equations governing the steady state of MC(Gi+1).

Let ji be the padded jump vector associated with MC(Gi). Let pi be the

steady state of MC(Gi). The following claim is crucial to the proof.

Claim 4.2. For all 0 ≤ i < k and u ∈ Vi, pi+1[u] = βipi[u], where βi is a constant

depending only on i.

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 387

Proof of Claim 4.2. For better readability, let

ai(v) =

{
(1 − α) if v ∈r Vi,

1 if v ∈v Vi,

be the jump multiplier. Then for any u ∈ Vi, the steady-state equation governing

pi+1[u] can be written as

pi+1[u] = αji+1[u] +
∑

v∈δ
Gi+1
in (u)

ai+1(v)
ΔGi+1(u)

ΓGi+1(v)
pi+1[v]. (4.1)

The first term in equation (4.1) is the contribution made by the jump vector

to pi+1[u]. But since ji+1 is obtained from ji by simple padding, ji+1[u] = ji[u].

To analyze the summation in equation (4.1), we split δ
Gi+1

in (u) into two parts:

Let Q = Vi ∩ δ
Gi+1

in be the set of in-neighbors of u already present in Gi. Let

Q′ = δ
Gi+1

in − Q be the set of virtual in-neighbors of u that were added during

the transformation from Gi to Gi+1. For v ∈ Q, the edge vu already existed in

Gi; hence we have

∑
v∈Q

ai+1(v)
ΔGi+1(u)

ΓGi+1(v)
pi+1[v] =

∑
v∈Q

ai(v)
ΔGi(u)

ΓGi(v)
pi+1[v]. (4.2)

Nodes in Q′ are “fresh” virtual nodes. Therefore, for v ∈ Q′, we have ai+1(v) =

1. We can expand the term pi+1[v] as follows:

∑
v∈Q′

ai+1(v)
ΔGi+1(u)

ΓGi+1(v)
pi+1[v] (4.3)

=
∑
v∈Q′

ΔGi+1(u)

ΓGi+1(v)

⎛
⎜⎝ ∑

w∈δ
Gi+1
in (v)

ai+1(w)
ΔGi+1(v)

ΓGi+1(w)
pi+1[w]

⎞
⎟⎠.

Recall the following properties for v ∈ Q′:

1. From the definition of Q′, the in-neighbors of v in Gi+1 are in fact in-

neighbors of u in Gi.

2. From the fact that edge-disjoint cliques are chosen for transformation from

Gi to Gi+1 (see Section 2.2), the sets δ
Gi+1

in (v) are disjoint over v ∈ Q′.

3. From Lemma 2.1, in Gi+1 we have⋃
v∈Q′

δ
Gi+1

in (v) = δGi

in (u)−Q.

4. For v a virtual node, ΔGi+1(v) = ΓGi+1(v).

388 Internet Mathematics

Using these properties, we can now write equation (4.3) as

∑
v∈Q′

ai+1(v)
ΔGi+1(u)

ΓGi+1(v)
pi+1[v] =

∑
w∈δ

Gi
in (u)−Q

ai(w)
ΔGi (u)

ΓGi(w)
pi+1[w]. (4.4)

Substituting (4.2) and (4.4) in equation (4.1), we get

pi+1[u] = αji[u] +
∑

v∈δ
Gi
in (u)

ai(v)
ΔGi(u)

ΓGi(v)
pi+1[v].

Compare this with the steady-state equation governing pi[u]:

pi[u] = αji[u] +
∑

v∈δ
Gi
in (u)

ai(v)
ΔGi(u)

ΓGi(v)
pi[v].

We conclude that the vector pi+1 when restricted to nodes in Vi satisfies

the same steady-state equations satisfied by pi. Since these equations uniquely

determine pi up to scaling, we arrive at the statement of Claim 4.2.

Successively using the statement of Claim 4.2, we see that there is a constant

β such that for all u ∈ V0, we have p
′[u] = pk[u] = βp0[u]. Hence p as computed

by Algorithm 3 satisfies

p =
(
(1 − α)W T + αJ

)
p.

The scaling ensures that p has unit L1 norm, and hence is the desired PageRank

vector.

Although Theorem 4.1 completes the theoretical analysis of our method, one

can begin to see a possible practical difficulty in the implementation of Algo-

rithm 3. If the value of the constant β is very small, the computed values of p′

will contain very few bits of accuracy, and the subsequent scaling up will only

maintain this precision. In what follows, we prove a lower bound on β.

Theorem 4.3. Let
G′ = Gk ≺ Gk−1 ≺ · · · ≺ G1 ≺ G0 = G

be any sequence of graphs as in the proof of Theorem 4.1. Let β = ‖p′′‖1/‖p‖1
be the scaling factor between p′′ and p in Algorithm 3. Then β ≥ 2−k.

Proof. Using definitions from the proof of Theorem 4.1, let βi be the scaling

factor between pi and pi+1. Then we shall prove that βi ≥ 1
2 . By telescoping

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 389

this bound, we will prove the theorem. Recall that any node v ∈ Vi+1 − Vi

is a freshly added virtual node. Hence, the only contributions to pi+1[v] come

from nodes in Vi. Moreover, any node u can contribute at most pi+1[u] to the

steady-state values of other nodes. Therefore,∑
v∈Vi+1−Vi

pi+1[v] ≤
∑
u∈Vi

pi+1[u].

Adding
∑

u∈Vi
pi+1[u] to the above equation, we have∑

v∈Vi+1−Vi

pi+1[v] +
∑
u∈Vi

pi+1[u] ≤ 2
∑
u∈Vi

pi+1[u]
∑

v∈Vi+1

pi+1[v]

≤ 2
∑
u∈Vi

βipi[u]1 ≤ 2βi.

Hence, β =
∏k−1

i=0 βi ≥ 2−k.

How does Theorem 4.3 help us? Note that it holds for any valid sequence of

transformations. We can then use the sequence of graphs Gi such that Gi is

the graph after i phases of edge-disjoint clique–star transformations as described

in [Buehrer and Chellapilla 08]. Since only four or five phases are required in

practice to obtain nearly the best possible compression, the above theorem then

concludes that we lose only four to five bits of floating-point accuracy when using

Algorithm 3.

4.2. SALSA on Compressed Graphs

SALSA [Lempel and Moran 00] is a link-analysis algorithm similar to HITS that

assigns each web page a separate authority score and hub score. Let G(V,E)

be the query-specific graph under consideration, with Wr and Wc being the row

and column normalized versions of E respectively. Then the authority vector a

and hub vector h are the top eigenvectors (corresponding to the eigenvalue 1) of

WT
r Wc and WcW

T
r respectively, satisfying the following recursive definition:

a = WT
r h, h = Wc a. (4.5)

We can view the above as the following single eigenvalue computation:[
a
h

]
= M

[
a
h

]
,

where M is the 2|V | × 2|V | matrix encoding the equations in (4.5).

Under reasonable assumptions that are described in [Lempel and Moran 00],

the solutions a and h to the above system are unique and with nonnegative

390 Internet Mathematics

entries. As with PageRank, the power method can be employed to compute

these eigenvalues.

We will provide a method to run the algorithm directly on a compressed graph

G′ to compute authority and hub scores on the original graph G. As expected,

we will start with the function ΔG. However, since SALSA involves pushing

authority scores back over in-links to a node, we also need the in-link counterpart

of ΔG. We define this function ΛG in a manner analogous to ΔG:

ΛG(u) =

{
1 if u is real,∑

w∈δGin(u)
ΛG(w) if u is virtual.

As noted in the case of ΔG, the values of ΛG can be precomputed during the op-

eration of the compression algorithm. Similarly, we define the in-degree analogue

of ΓG as

ΦG(u) =
∑

w∈δGin(u)

ΛG(w).

The reader can predict that analogous to our scheme for PageRank, we can now

design a modeling Markov chain on the compressed graph G′ by assigning the

probability of forward transition along the edge uv ∈ E′ to be ΔG′(v)/ΓG′(u)

and that of reverse transition to be ΛG′(u)/ΦG′(v). This is indeed the case.

However, since we deal with two different scores in the case of SALSA, we run

into a subtle issue even after these adjustments.

To understand the subtleties involved, let us view the directed graphs as flow

networks. Consider an edge uv ∈ E in the graph G and the corresponding virtual

edge u → w → v in the compressed graph G′. In the case of PageRank, only

one commodity—the PageRank score—flows through the network. Hence the

virtual nodes in compressed graphs merely delay the flow of PageRank between

real nodes. For example, p′[u] contributes to p′[w], which in turn contributes to

p′[v] as desired. In case of SALSA, the situation is different.

In the original graph G, the hub score from node u is pushed along a forward

edge (uv ∈ E) into the authority score bucket of node v, whereas the authority

score of node v is pushed along the reverse edge into the hub score of node u.

If we attempt to run the SALSA power iterations (albeit with weight adjust-

ments as noted above) unchanged on G′, h′[u] will contribute to a′[w] but never
to a′[v]. This clearly is erroneous modeling of the flow of scores in the original

graph, and it stems from the alternating behavior of authority and hub scores.

To tackle this issue, we need to draw upon our abstract idea that virtual

nodes merely “delay” the flow of scores within the network and hence must not

participate in the alternating behavior. (Recall that in the case of PageRank,

we barred virtual nodes from jump transitions.) Specifically, for a virtual edge

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 391

u → w → v, we must push the hub score h′[u] into the hub score h′(v), which
subsequently will contribute to a′[v] as desired. Indeed, this modification to the

definitions—formulated in the equations below—does the trick.

Definition 4.4. (SALSA on an uncompressed graph.)

ai+1[u] =
∑

v∈δGin(u)

1

|δGout(v)|
hi(v),

hi+1[u] =
∑

v∈δGout(u)

1

|δGin(v)|
ai(v).

Definition 4.5. (SALSA on a compressed graph.)

a′i+1[u] =

⎧⎨
⎩
∑

v∈δG
′

in (u)
ΔG′(u)
ΓG′(v) h

′
i(v) if u is real,∑

v∈δG
′

out(u)
ΛG′ (u)
ΦG′ (v)a

′
i(v) if u is virtual,

h′
i+1[u] =

⎧⎨
⎩
∑

v∈δG
′

out(u)
ΛG′ (u)
ΦG′ (v)a

′
i(v) if u is real,∑

v∈δG
′

in (u)
ΔG′(u)
ΓG′(v) h

′
i(v) if u is virtual.

As a sanity check, observe that our modifications do not alter the operation

of SALSA on uncompressed graphs; they simply extend it.

It is a matter of detail now to arrange the above equations into matrix form

and to implement power iterations to compute eigenvalues a′ and h′. For ease of
exposition, we can view this as computing the eigenvector

[
a′
h′
]
of the 2|V ′|×2|V ′|

matrix that encodes the above equations. Let us call this matrix M ′.
In contrast to PageRank, the irreducibility and aperiodicity of this Markov

chain is not immediately obvious. Aperiodicity can be obtained by introduc-

ing a nonzero probability α of nontransition on real nodes, i.e., modifying the

equations to

a′i+1[u] = αa′i[u] + (1 − α)
∑

v∈δG
′

in (u)

ΔG′(u)

ΓG′(v)
h′

i(v),

h′
i+1[u] = αh′

i[u] + (1− α)
∑

v∈δG
′

out(u)

ΛG′(u)

ΦG′(v)
a′i(v).

The irreducibility of M ′ follows from the irreducibility of M . We now give

an outline of the proof. Consider the support graph GM of matrix M . This

graph on 2|V | vertices is identical to the graph G′ constructed in [Lempel and

Moran 00], and it follows that it is bipartite. However, since M contains each

edge uv ∈ E in both directions, with the connectivity assumptions stated in

392 Internet Mathematics

[Lempel and Moran 00], GM has a single strongly connected component. Now

the irreducibility of M ′ follows from that of M by the observations that every

path between real nodes is kept intact during the compression and that every

virtual node has a path to and from a real node.

The following theorem proves the correctness of our solution. We omit the

proof, which is almost identical to that of Theorems 4.2 and 4.3.

Theorem 4.6. Let
[
a′
h′
]
and [ah] be top eigenvectors of M ′ and M respectively. Then,

(1) a′[u] = βa[u] and h′[u] = βh[u] for all u ∈ V (G);

(2) if k is the depth of compression of G′, then β ≥ 2−k.

4.3. Comparison of the Two Approaches

We now summarize the advantages and disadvantages of computing PageRank

and SALSA with the black-box multiplication algorithms of Section 3, and the

Markov chain algorithms from Section 4.

Although the Markov chain algorithms from Section 4 converge to eigenvectors

that are similar to the corresponding eigenvectors on the uncompressed graph,

the number of iterations required may change. Since the compression via virtual

nodes introduces longer paths in the graph, it may require a larger number of

power iterations to converge to the desired accuracy. We remark that the number

of iterations required may increase by at most a factor of the longest virtual edge.

The black-box methods from Section 3 simply speed up each individual itera-

tion, so the number of iterations required is identical. As a result, the black-box

methods usually result in better speedup ratios.

The number of iterations required by the Markov chain algorithm and the

overall comparison in speedup ratios is examined experimentally in Section 6.

Since the Markov chain methods involve only changing transition probabil-

ities, an existing implementation of say PageRank can be run directly on the

compressed graph, with appropriately modified weights, to compute PageRank

in the original uncompressed graph. This allows us to take advantage of existing

optimized implementations and heuristics.

Both methods can be efficiently parallelized. Black-box multiplication requires

that certain sets of virtual nodes be pushed before others, requiring a small num-

ber of global synchronizations in each iteration. For the Markov chain method,

any parallel algorithm for computing PageRank or SALSA can be used, some of

which require few if any global syncs [McSherry 05, Kempe and McSherry 08]. In

a large-scale parallel implementation, the cost of global syncs can be prohibitive,

so in this case the Markov chain method may be preferable.

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 393

We remark that the Markov chain methods are not directly applicable to HITS,

because the scaling step involved after every iteration destroys correctness.

Finally, the black-box method for SALSA needs lists of in-links of virtual nodes

and separate orderings on virtual nodes with respect to in-links and out-links.

This adds to the storage required for the compressed graph, apart from slowing

the algorithm down to a small extent.

5. Applications

Many algorithms can be sped up using compressed graphs, but they require tech-

niques different from those described in this paper. Several examples were consid-

ered in [Feder and Motwani 95], including algorithms for computing breadth-first

search and other shortest-path algorithms.

Here we describe a few examples of algorithms that can be written in terms

of adjacency matrix multiplication, and thus can be sped up using compressed-

multiply as a subroutine. Many of these algorithms perform several iterations,

and each iteration is dominated by the time required to compute the matrix–

vector product.

Random walk distributions. The task is to compute the distribution of a random walk

after T steps, starting from the initial distribution p0. This can be done in T

iterations by computing pt+1 = ETD−1pt, where D is the diagonal matrix such

that D(i, i) is the out-degree of vertex i. Given pt, we first compute D−1pt in

time O(|V |), and then use compressed-multiply to compute pt+1 = ET (D−1pt).

The time per iteration is O(|V |) +O(|E′|+ |V ′|) = O(|E′|+ |V ′|).
Eigenvectors and spectral methods. The largest eigenvectors of the adjacency matrix E

can be computed using the power method, which requires repeatedly multiplying

an initial vector by E. In each iteration we must also subtract the projections

onto the larger eigenvectors and normalize, which can be done in O(|V |) time per

iteration, so the time required per iteration is O(|E′|+ |V ′|). The power method

can also be used to compute the few smallest eigenvectors of the Laplacian matrix

L = D−E, which are useful for spectral partitioning [Chung 97] and transductive

learning on graphs [Zhou et al. 07].

Top singular vectors. The top singular vectors of E, which are the top eigenvectors of

ETE and EET , can also be computed using the power method. A single iteration

requires first multiplying by ET using the compressed out-link graph and then

multiplying by E using the compressed in-link graph. Since the compressed in-

link graph and out-link graph have the same values of |E′| and |V ′|, the time

per iteration is O(|E′|+ |V ′|).

394 Internet Mathematics

As an application, [Kannan and Vinay 99] introduced an algorithm for find-

ing dense subgraphs of directed graphs, whose main step is computing the top

singular vectors of E.

Estimating the size of neighborhoods. An algorithm is introduced in [Becchetti et al. 06]

for estimating the number of nodes within r steps of each node in a graph, based

on probabilistic counting. Each node stores a k-bit vector initialized to all zeros.

Initially, some randomly chosen bit positions are flipped to ones. The algorithm

then performs r iterations, and in each iteration each node’s bit vector becomes

the bitwise or of its own bit vector and the bit vectors of its neighbors. This

iteration can be viewed as multiplication by the adjacency matrix, where the

sum operation is replaced by bitwise or.

Multiplying a sparse vector by an adjacency matrix. Given a sparse vector x, where S is the set

of vertices with nonzero entries in x, we can compute E ·x using the method from

Section 3, except we need to push only from real nodes with nonzero values, and

through the virtual edges incident on those nodes. This requires time propor-

tional to L · out-degree(S), where L is an upper bound on the length of a virtual

edge. Similarly, we can compute ATx in time proportional to L · in-degree(S).
These operations require random access to the adjacency information of the

compressed graph, as opposed to the algorithms in earlier sections that require

only sequential disk access to the compressed graph. Using sparse vector mul-

tiplication as a primitive, we can implement algorithms that examine only a

portion of the entire graph, including algorithms for finding communities [An-

dersen and Lang 06] and computing personalized PageRank [Haveliwala 03, Jeh

and Widom 03].

Potential extension of the stochastic methods. We would like to point out that the stochastic

methods from Section 4 are specific to PageRank and SALSA. We cannot apply

them to compute the steady state of a general stochastic matrix. In the case

of PageRank and SALSA, the virtual-node compression preserves a memoryless

property that allows us to construct a Markov chain on the compressed graph

that simulates the original stochastic process.

6. Experiments

We implemented the methods discussed in Sections 3 and 4 for PageRank and

SALSA on web graphs compressed using techniques described in [Buehrer and

Chellapilla 08]. We compared them against standard versions of PageRank and

SALSA running on uncompressed graphs.

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 395

Uncompressed Compressed Ratio

Nodes # Edges # Nodes # Edges

eu-2005 862,664 19,235,140 1,196,536 4,429,375 4.34

uk-2005 39,459,925 936,364,282 47,482,140 151,456,024 6.18

Table 1. Data sets.

Uncompressed Black-Box Markov Chain

Time/Iteration (sec) 5.37 1.58 1.50

No. of Iterations 19 19 50

Speedup 1 3.40 1.36

Table 2. PageRank, eu-2005.

System. We ran the algorithms on a standard workstation with 16 GB RAM and

a quad-core Intel Xeon processor at 3.0 GHz. Only one of the available cores

was used, since the implementation is single-threaded. This does not limit the

generality of the performance boost, since as discussed in Section 4.3, the Markov

chain methods are highly parallelizable and the black-box multiplication methods

require only a small amount of synchronization between threads.

Implementation. Our programs strictly followed the sequential file access paradigm,

wherein the graph files are stored only on disk in the adjacency list format.

We used O(|V |) bits of random access memory to hold the intermediate score

vectors.

Data sets. We used the public data sets eu-2005 and uk-2005 hosted by Laboratory

for Web Algorithmics1 at Università degli Studi di Milano. Many of these web

graphs were generated using UbiCrawler [Boldi et al. 04] by various labs in

the search community. Statistics for these two data sets appear in Table 1. The

comparative performance of PageRank algorithms is tabulated in Tables 2 and 3.

Note that the speedup ratios consider the total time required, as opposed to the

time per iteration, since the numbers of iterations differ.

Both the black-box and Markov chain methods show an improvement in the

time per iteration over the uncompressed versions of the algorithms. However,

as described in Section 4.3, the Markov chain method requires more iterations to

converge to the same accuracy, bringing down the net performance boost. This

is due to the introduction of longer paths in the graph during compression. Also

note that the overall speedup ratios do not exactly match the reduction in the

number of edges. This is due to the fact that both these algorithms perform

some bookkeeping operations such as zeroing the variables, which require time

1See http://law.dsi.unimi.it.

396 Internet Mathematics

Uncompressed Black-Box Markov Chain

Time/Iteration (sec) 263.52 60.80 60.06

No. of Iterations 21 21 53

Speedup 1 4.33 1.74

Table 3. PageRank, uk-2005.

Uncompressed Black-Box Markov Chain

Time/Iteration (sec) 5.48 2.37 1.97

No. of Iterations 91 91 100

Speedup 1 2.31 2.70

Storage Reduction 1 2.36 3.21

Table 4. SALSA; eu-2005.

proportional to the number of nodes. These parts of the algorithm are not sped

up, and in fact require slightly more operations in the compressed graphs due to

the increased number of nodes.

Results for SALSA are depicted in Tables 4 and 5. Again, the algorithms

achieve significant speedup over the uncompressed versions. We observe that in

the case of SALSA, the Markov chain method performs better than the black-box

method. This appears to be due to two reasons:

1. The difference in the number of iterations required between the two meth-

ods is smaller for SALSA than for PageRank. This is because the conver-

gence rate of SALSA is less sensitive to path lengths.

2. To compute SALSA, we need to perform separate passes over out-links and

in-links of the virtual nodes. As explained in Section 4.3, the black-box

algorithm for SALSA requires distinct orderings of the virtual nodes for the

in-link graph and out-link graph. The Markov chain method has a slight

advantage here because it can use the same ordering of virtual nodes.

We remark that the Markov chain method for SALSA also requires slightly

less storage on disk, since it needs to store only one ordering of the virtual nodes.

Precision of the Markov chain methods. In practical terms, Theorems 4.3 and 4.6 guarantee

that at most k bits of precision are lost during the run of PageRank or SALSA on

Uncompressed Black-Box Markov Chain

Time/Iteration (sec) 265.94 84.22 68.80

No. of Iterations 104 104 124

Speedup 1 3.16 3.24

Storage Reduction 1 3.47 4.54

Table 5. SALSA; uk-2005.

Karande et al.: Speeding Up Algorithms on Compressed Web Graphs 397

a compressed graph, where k is the depth of the compression. However, during

the empirical studies outlined in this section, we found that the scaling constant

β as defined in Theorem 4.3 was always greater than 1/2, which corresponds to

the loss of at most one bit of information on average. Therefore, loss of precision

does not seem to be an issue when these methods are used in practice.

References

[Andersen and Lang 06] Reid Andersen and Kevin J. Lang. “Communities from Seed
Sets.” In Proceedings of the 15th international conference on World Wide Web, pp.
223–232. New York: ACM, 2006.

[Becchetti et al. 06] Luca Becchetti, Carlos Castillo, Debora Donato, Stefano Leonardi,
and Ricardo Baeza-Yates. “Using Rank Propagation and Probabilistic Counting for
Link-Based Spam Detection.” In Proceedings of the Workshop on Web Mining and
Web Usage Analysis (WebKDD). New York: ACM Press, 2006.

[Boldi and Vigna 04a] Paolo Boldi and Sebastiano Vigna. “The Webgraph Framework
I: Compression Techniques.” In Proceedings of the 13th International Conference on
World Wide Web, pp. 595–602. New York: ACM Press, 2004.

[Boldi and Vigna 04b] Paolo Boldi and Sebastiano Vigna. “The Webgraph Framework
II: Codes for the World-Wide Web.” In Proceedings of the Conference on Data
Compression, p. 528. Washington, DC: IEEE Computer Society, 2004.

[Boldi et al. 04] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vi-
gna. “Ubicrawler: A Scalable Fully Distributed Web Crawler. Software: Practice &
Experience 34:8 (2004), 711–726.

[Brin and Page 98] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale
Hypertextual Web Search Engine.” Computer Networks and ISDN Systems 30:1–7
(1998), 107–117.

[Buehrer and Chellapilla 08] Gregory Buehrer and Kumar Chellapilla. “A Scalable
Pattern Mining Approach to Web Graph Compression with Communities.” In
WSDM, pp. 95–106, 2008.

[Chung 97] Fan R. K. Chung. Spectral Graph Theory, CBMS Regional Conference
Series in Mathematics 92. Providence: American Mathematical Society, 1997.

[Feder and Motwani 95] Tomás Feder and Rajeev Motwani. “Clique Partitions, Graph
Compression and Speeding-Up Algorithms.” J. Comput. Syst. Sci. 51:2 (1995), 261–
272.

[Feder et al. 03] Tomás Feder, Adam Meyerson, Rajeev Motwani, Liadan O’Callaghan,
and Rina Panigrahy. “Representing Graph Metrics with Fewest Edges.” In STACS
2003: 20th Annual Symposium on Theoretical Aspects of Computer Science Berlin,
Germany, February 27–March 1, 2003, Proceedings, Lecture Notes in Computer
Science 2607, pp. 355–366. Berlin: Springer, 2003.

[Haveliwala 03] Taher H. Haveliwala. “Topic-Sensitive Pagerank: A Context-Sensitive
Ranking Algorithm for Web Search.” IEEE Trans. Knowl. Data Eng. 15:4 (2003),
784–796.

398 Internet Mathematics

[Jeh and Widom 03] Glen Jeh and Jennifer Widom. “Scaling Personalized Web
Search.” In Proceedings of the 12th International Conference on World Wide Web,
pp. 271–279. New York: ACM, 2003.

[Kannan and Vinay 99] R. Kannan and V. Vinay. “Analyzing the Structure of Large
Graphs.” Manuscript, 1999.

[Karande et al. 09] Chinmay Karande, Kumar Chellapilla, and Reid Andersen.
“Speeding Up Algorithms on Compressed Web Graphs.” In Proceedings of the Sec-
ond ACM International Conference on Web Search and Data Mining, pp. 272–281.
New York: ACM, 2009.

[Kempe and McSherry 08] David Kempe and Frank McSherry. “A Decentralized Al-
gorithm for Spectral Analysis.” J. Comput. Syst. Sci. 74:1 (2008), 70–83.

[Kleinberg 99] Jon M. Kleinberg. “Authoritative Sources in a Hyperlinked Environ-
ment.” Journal of the ACM 46:5 (1999), 604–632.

[Kumar et al. 99] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and An-
drew Tomkins. “Trawling the Web for Emerging Cyber-Communities.” Computer
Networks 31:11–16 (1999), 1481–1493.

[Lempel and Moran 00] R. Lempel and S. Moran. “The Stochastic Approach for Link-
Structure Analysis (SALSA) and the TKC Effect.” Computer Networks (Amsterdam,
Netherlands: 1999) 33:1–6 (2000), 387–401.

[McSherry 05] Frank McSherry. “A Uniform Approach to Accelerated PageRank Com-
putation.” In Proceedings of the 14th International Conference on World Wide Web,
pp. 575–582. New York: ACM, 2005.

[Page et al. 98] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd.
“The Pagerank Citation Ranking: Bringing Order to the Web.” Technical report,
Stanford Digital Library Technologies Project, 1998.

[Zhou et al. 07] Dengyong Zhou, Christopher J. C. Burges, and Tao Tao. “Transduc-
tive Link Spam Detection.” In Proceedings of the 3rd International Workshop on
Adversarial Information Retrieval on the Web, pp. 21–28, New York: ACM, 2007.

Chinmay Karande, Georgia Institute of Technology, College of Computing, 266 Ferst
Drive, Atlanta, GA 30332 (ckarande@cc.gatech.edu)

Kumar Chellapilla, Microsoft, One Microsoft Way, Redmond, WA 98052
(kumarc@microsoft.com)

Reid Andersen, Microsoft, One Microsoft Way, Redmond, WA 98052
(reidan@microsoft.com)

Received June 30, 2009; accepted June 3, 2010.

