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Cost-Balancing Tolls for Atomic
Network Congestion Games
Dimitris Fotakis and Paul G. Spirakis

Abstract. We investigate the existence of optimal tolls for atomic symmetric net-
work congestion games with unsplittable traffic and arbitrary nondecreasing latency
functions. We focus on pure Nash equilibria, and consider a natural toll mechanism,
which we call cost-balancing tolls. A set of cost-balancing tolls turns every path with
positive traffic on its edges into a minimum-cost path. Hence any given configuration
is induced as a pure Nash equilibrium of the modified game with the corresponding
cost-balancing tolls. We show how to compute in linear time a set of cost-balancing
tolls for the optimal solution such that the total amount of tolls paid by any player in
any pure Nash equilibrium of the modified game does not exceed the latency on the
maximum-latency path in the optimal solution. Our main result is that for conges-
tion games on series-parallel networks with strictly increasing latency functions, the
optimal solution is induced as the unique pure Nash equilibrium of the game with the
corresponding cost-balancing tolls. To the best of our knowledge, only linear conges-
tion games on parallel links were known to admit optimal tolls prior to this work. To
demonstrate the difficulty of computing a better set of optimal tolls, we show that
even for two-player linear congestion games on series-parallel networks, it is NP-hard
to decide whether the optimal solution is the unique pure Nash equilibrium or there is
another pure Nash equilibrium of total cost at least 6/5 times the optimal cost.

1. Introduction

Congestion games provide a natural model for noncooperative resource alloca-
tion in large-scale communication networks and have been the subject of in-
tensive research in algorithmic game theory. In an (atomic) congestion game
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[Rosenthal 73], a finite set of noncooperative players, each controlling an un-
splittable unit of traffic, compete over a finite set of resources. All players using
a resource experience a latency given by a nonnegative and nondecreasing func-
tion of the resource’s traffic (or congestion). Among a given set of resource
subsets (or strategies), each player selects one selfishly, trying to minimize her
individual cost, that is, the sum of the latencies on the resources in the chosen
strategy. A natural solution concept is that of a pure Nash equilibrium, a con-
figuration in which no player can decrease her individual cost by unilaterally
changing her strategy.

At the other end, the network manager seeks to minimize the social cost mea-
sured by the total cost incurred by all players. It is well known that a Nash
equilibrium does not need to optimize the social cost. To mitigate the perfor-
mance degradation due to the players’ noncooperative and selfish behavior, the
network manager can introduce economic incentives that influence the players’
selfish choices and act to induce an optimal network configuration.

Economic incentives can be naturally modeled by nonnegative per-unit-of-
traffic tolls (also called taxes or prices) assigned to the resources. The tolls
are levied by the network manager and constitute an additional cost factor
that the players should take into account. In the modified congestion game
with tolls, a player’s cost for using a resource is equal to the latency due to
the resource’s congestion plus the toll for using the resource. The player’s
individual cost for adopting a strategy is equal to the sum of the latencies
and the tolls for the resources in the chosen strategy. Although tolls increase
the players’ individual costs, they do not affect the social cost, because they
are payments inside the system and can be feasibly refunded to the players.
The goal is to find a set of moderate and efficiently computable optimal tolls
that make the Nash equilibria of the modified game coincide with the optimal
solution.

1.1. Related Work

In the nonatomic setting, where there is an infinite number of players each con-
trolling an infinitesimal amount of traffic, the existence and the efficiency of
optimal tolls has been investigated extensively (see, e.g., [Cole et al. 03b, Cole et
al. 03a] and references therein). A classical result is that the optimal solution is
realized as the Nash equilibrium of a nonatomic congestion game with marginal
cost tolls [Beckmann et al. 56]. In simple words, the performance degradation
due to the selfish and noncooperative behavior of nonatomic players can be elim-
inated by an appropriate set of tolls. Unfortunately, marginal cost tolls fail to
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induce the optimal solution even for simple congestion games with unsplittable
traffic.1

Recent work on tolls for nonatomic congestion games was motivated by the
limitations of marginal cost tolls. The first to consider heterogeneous players
who may have a different valuation of time (latency) in terms of money (toll)
was [Cole et al. 03b], in which the authors established the existence of optimal
tolls for nonatomic symmetric network congestion games. Their proof was based
on Brouwer’s fixed-point theorem and was nonconstructive. Furthermore, Cole et
al. showed how to compute a set of optimal tolls efficiently if the number of player
types is finite and the latency functions are convex. [Fleischer 05] extended the
results of [Cole et al. 03b] and proved that the optimal toll on each edge need not
exceed the latency of the maximum latency path in the optimal solution times the
maximum valuation of time. For series-parallel networks, Fleischer showed how
to compute a set of optimal tolls efficiently even if there are infinitely many player
types. Subsequently, [Fleischer et al. 04] and [Karakostas and Kolliopoulos 04]
independently proved that the existence of optimal tolls for nonatomic congestion
games with heterogeneous players and arbitrary strategies follows from linear
programming duality. Therefore, optimal tolls can be computed efficiently by
solving a linear program.

For nonatomic congestion games, the Nash equilibrium is essentially unique
(under mild assumptions on the latency functions; see, e.g., [Roughdarden and
Tardos 02]). Hence the tolls of [Beckmann et al. 56, Cole et al. 03b, Fleischer 05,
Fleischer et al. 04, Karakostas and Kolliopoulos 04] induce the optimal solution
as the unique equilibrium of the game with tolls.2 On the other hand, atomic
congestion games (even with splittable traffic) may admit many different Nash
equilibria. Therefore, when considering atomic games, one has to distinguish
between the case in which a set of tolls weakly enforces the optimal solution, in
the sense that the optimal solution is realized as some (pure) Nash equilibrium
of the game with tolls, and that in which a set of tolls strongly enforces the
optimal solution, in the sense that the optimal solution is realized as the unique
(pure) Nash equilibrium of the game with tolls.

1Let de(x) be the (differentiable) latency function of a resource e, let d′e(x) denote the first
derivative of de(x), and let oe be the traffic of e in the optimal solution. Then the marginal
cost toll of e is oed′e(oe). For a congestion game with unsplittable traffic where marginal cost
tolls fail to induce the optimal solution, consider two players and two parallel links with latency
functions d1(x) = x/2 and d2(x) = (1+ε)x, for some ε ∈ (0, 1/2). In the optimal configuration,
there is one player on every link, while in the unique pure Nash equilibrium, both players
choose the first link. The latter configuration remains the unique pure Nash equilibrium of the
modified game with marginal cost tolls.

2The uniqueness of the Nash equilibrium in nonatomic games is also exploited by the algo-
rithm of [Kaporis and Spirakis 06], which computes the smallest fraction of coordinated players
required by a Stackelberg routing strategy to induce the optimal solution.
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For atomic congestion games with splittable traffic and heterogeneous players,
[Swamy 07] proved that a set of tolls that weakly enforce the optimal solution can
be computed efficiently by solving a convex program. For homogeneous players
with splittable traffic, [Cominetti et al. 06] presented a set of tolls that reduces
the price of anarchy,3 though it is not known whether it weakly enforces the
optimal solution.

To the best of our knowledge, the only work prior to ours that investigates
the efficiency of tolls for atomic congestion games with unsplittable traffic is
[Caragiannis et al. 06], which considered games with linear latency functions and
homogeneous players, and investigated how much tolls can improve the price of
anarchy. On the negative side, they presented a simple asymmetric game for
which the price of anarchy remains at least 1.2 under any set of tolls. Therefore,
asymmetric congestion games do not necessarily admit tolls that strongly enforce
the optimal solution. On the positive side, Caragiannis et al. presented a set
of tolls that strongly enforces the optimal solution for linear congestion games
on parallel links. In addition, they presented two efficiently computable toll
mechanisms that improve the price of anarchy for linear games with arbitrary
strategies. The first mechanism [Caragiannis et al. 06, Theorem 3] is simple
and improves the pure price of anarchy to 2.155 (from 2.5 [Awerbuch et al. 05,
Christodoulou and Koutsoupias 05]). The second mechanism [Caragiannis et
al. 06, Theorem 5] applies to the more general setting of mixed equilibria and
weighted players, and improves the price of anarchy to 2 (from 2.618 [Awerbuch
et al. 05, Christodoulou and Koutsoupias 05]). However, the former mechanism
may not weakly enforce the optimal solution even for linear games on parallel
links, while the latter mechanism may not strongly enforce the optimal solution
even for linear games on series-parallel networks.4

1.2. Contribution

Despite the considerable interest in optimal toll mechanisms for atomic and
nonatomic congestion games, it is still unknown whether there is an optimal
toll mechanism for symmetric games with unsplittable traffic. This is true even

3The price of anarchy [Koutsoupias and Papadimitriou 99] is a widely accepted measure
of the performance degradation due to the players’ noncooperative and selfish behavior. The
(pure) price of anarchy is the worst-case ratio of the total cost of a (pure) Nash equilibrium
to the optimal total cost. For a survey on the price of anarchy for congestion games, see, e.g.,
[Gairing et al. 05].

4For a game in which the tolls of [Caragiannis et al. 06, Theorem 3] do not weakly enforce the
optimal solution, consider two players and two parallel links with latency functions d1(x) = x/2
and d2(x) = x. For a game on a series-parallel network in which the tolls of [Caragiannis et
al. 06, Theorem 5] do not strongly enforce the optimal solution, consider the instance of Figure
1.b with k = 2, q1 = q2 = 2, and a (slightly different) latency function d(s,t)(x) = (3 + ε)x,
where ε ∈ (0, 1), for the direct (s, t) edge.
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for relatively simple symmetric network congestion games, such as games on
series-parallel networks and games on parallel links with nonlinear latencies.

In this work, we investigate the existence of optimal tolls for symmetric net-
work congestion games with unsplittable traffic, homogeneous players, and ar-
bitrary nondecreasing latency functions. We focus on pure Nash equilibria, and
consider a natural toll mechanism, which we call cost-balancing tolls. Cost-
balancing tolls are motivated by the optimal tolls for nonatomic games [Cole et
al. 03b, Fleischer 05, Fleischer et al. 04, Karakostas and Kolliopoulos 04]. A
set of cost-balancing tolls turns every path with positive traffic on its edges into
a minimum-cost path (the optimal tolls for linear congestion games on paral-
lel links [Caragiannis et al. 06] are also based on the same principle). Hence
any given configuration is induced as a pure Nash equilibrium of the game with
the corresponding cost-balancing tolls. We show how to compute in linear time
a set of cost-balancing tolls for the optimal configuration such that the total
amount of tolls paid by any player in any pure Nash equilibrium of the modified
game does not exceed the latency on the maximum latency path in the optimal
configuration. Roughly speaking, we prove that the optimal solution is weakly
enforceable by a set of moderate cost-balancing tolls computable in linear time.
Moreover, we present a simple example whereby the optimal solution cannot be
weakly enforced by tolls substantially smaller than the cost-balancing tolls.

Motivated by the recent interest in analyzing toll mechanisms (see, e.g., [Fleis-
cher 05]) and Stackelberg routing strategies (see, e.g., [Correa and Stier-Moses 07,
Swamy 07]) for games on series-parallel networks, we study the efficiency of
cost-balancing tolls for such games. Our main result is that for congestion
games on series-parallel networks with increasing latencies, the optimal solu-
tion is strongly enforceable by the corresponding cost-balancing tolls. Therefore,
congestion games on series-parallel networks with increasing latencies admit a
set of moderate optimal tolls computable in linear time. To the best of our
knowledge, only linear congestion games on parallel links were known to ad-
mit optimal tolls [Caragiannis et al. 06, Theorem 1] prior to this work. Our
result is considerably stronger, since it applies to arbitrary increasing latency
functions and to series-parallel networks, which are significantly more complex
than parallel-link networks. On the negative side, we show that if the network is
not series-parallel, the cost-balancing tolls may not strongly enforce the optimal
solution even for linear latency functions.

Given the existence of an efficiently computable optimal toll mechanism for
congestion games on series-parallel networks, it is natural to ask for a set of
optimal tolls that minimizes some objective function (e.g., sum of tolls, maximum
toll) on the amount of tolls assigned to the edges of the network. To demonstrate
the difficulty of computing a better set of optimal tolls, we prove that even for



�

�

“imvol5” — 2010/1/6 — 11:17 — page 348 — #6
�

�

�

�

�

�

348 Internet Mathematics

two-player linear congestion games on series-parallel networks, it is NP-hard to
distinguish between the case in which the optimal solution is the unique pure
Nash equilibrium (and thus any set of tolls serves only to increase the players’
disutility) and that in which there is another pure Nash equilibrium of total cost
at least 6/5 times the optimal cost (and hence a set of tolls is required to strongly
enforce the optimal solution).

1.3. Organization

We start by formalizing the model and presenting some useful definitions and
notation in Section 2. In Section 3, we formally define cost-balancing tolls,
present a simple linear-time algorithm for computing a set of moderate cost-
balancing tolls, and show that the optimal solution is weakly enforceable by them
(Theorem 3.4). Our main result is established in Section 3.3, where we prove
that for congestion games on series-parallel networks with increasing latencies,
the optimal solution is strongly enforceable by cost-balancing tolls (Theorem
3.7). We conclude by showing that even for simple games on series-parallel
networks, it is NP-hard to decide whether the use of tolls is really necessary to
strongly enforce the optimal solution (Theorem 4.1 in Section 4).

2. Model, Definitions, and Notation

For a vector x = (x1, . . . , xn), we set x−i = (x1, . . . , xi−1, xi+1, . . . , xn) and
(x−i, x

′
i) = (x1, . . . , xi−1, x

′
i, xi+1, . . . , xn). For any integer k ≥ 2, we set [k] =

{1, . . . , k}.

2.1. Congestion Games

A congestion game is a tuple Γ(N, E, (Σi)i∈N , (de)e∈E), where N denotes the set
of players, E denotes the set of resources, Σi ⊆ 2E \ {∅} denotes the strategy
space of each player i, and de : N �→ R≥0 is a nondecreasing latency function
associated with each resource e ∈ E. A congestion game is symmetric if all
players share the same strategy space. A congestion game is linear if the latency
function of each resource e is de(x) = aex + be, where ae, be ≥ 0.

A configuration is a vector σ = (σ1, . . . , σn) consisting of a strategy σi ∈
Σi for each player i ∈ N . For every resource e, σe = |{i ∈ N : e ∈ σi}|
denotes the congestion induced on e by σ. The individual cost of each player i

in the configuration σ is ci(σ) =
∑

e∈σi
de(σe). A configuration σ is a pure Nash

equilibrium if no player can improve her individual cost by unilaterally changing
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her strategy. Formally, σ is a Nash equilibrium if for every player i and every
strategy si ∈ Σi, ci(σ) ≤ ci(σ−i, si).

We say that a congestion game Γ admits a unique pure Nash equilibrium if
all pure Nash equilibria of Γ induce the same congestion on every resource. It
is proved in [Rosenthal 73] that the pure Nash equilibria of a congestion game
correspond to the local optima of a natural potential function. Therefore, every
congestion game admits a pure Nash equilibrium, which is not necessarily unique.

In the following, we let n denote the number of players, and m the number of
resources. We restrict our attention to symmetric network congestion games, in
which the players’ strategies are determined by a directed network G(V, E) with
a distinguished source s and destination t. The network edges play the role of
the resources, and the common strategy space of all players is the set of simple
s-t paths in G, denoted by P .

2.2. Flows and Configurations

Let G(V, E) be a directed network with source s and destination t. An s-t flow f

is a vector (fe)e∈E ∈ R
m
≥0 that satisfies the flow conservation at all vertices other

than s and t. Formally, for all u ∈ V \{s, t}, ∑
v:(v,u)∈E f(v,u) =

∑
v:(u,v)∈E f(u,v).

The volume of an s-t flow, denoted by |f |, is the total flow leaving s; formally,
|f | =

∑
v:(s,v)∈E f(s,v). A flow is acyclic if there is no cycle in G with positive

flow on all its edges. For a flow f and a path p ∈ P , we let fmin
p = mine∈p{fe}.

Given a configuration σ for a symmetric network congestion game, we refer
to the congestion vector (σe)e∈E as the flow induced by σ. We note that many
different configurations may induce the same flow. We say that a flow σ is feasible
if there is a configuration inducing congestion σe on every edge e. We slightly
abuse notation by letting the same symbol denote both a configuration and the
feasible flow induced by it.

2.3. Social Cost

We evaluate configurations and the corresponding feasible flows using the objec-
tive of total cost. The total cost C(σ) of a configuration σ is the sum of players’
costs in σ. Formally,

C(σ) =
n∑

i=1

ci(σ) =
∑

e∈E

σede(σe) .

The optimal configuration, denoted by o, minimizes the total cost C(o) among
all configurations in Pn. In the following, we let o denote both the optimal
configuration and the optimal flow induced by it.
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Every s-t network with nondecreasing latency functions admits an integral
acyclic min-cost flow of volume n computable in polynomial time if the xde(x)
are convex. Therefore, if the xde(x) are convex, an optimal configuration for
a symmetric network congestion game can be computed in polynomial time by
a min-cost flow computation followed by a flow decomposition in n s-t paths.
For series-parallel networks with nondecreasing latency functions, an optimal
configuration can be computed in O(m + n log m) time by the greedy algorithm
[Bein et al. 85].

2.4. Tolls

We consider a scenario in which the network manager levies tolls on the edges of
a network trying to influence the players’ selfish choices and induce an optimal
configuration. Let Γ(N, E, (Σi)i∈N , (de)e∈E) be the original congestion game. A
set of tolls is a function τ : E �→ R≥0 that assigns a nonnegative per-unit-of-
traffic toll τe to every edge e. The modified congestion game induced by τ is
Γ̄τ (N, E, (Σi)i∈N , (de)e∈E), where de(x) = de(x) + τe for each edge e. In Γ̄τ , the
players have the same strategy space as in the original game. The cost of each
player i in a configuration σ increases by the total amount of tolls on the edges
in σi and becomes

ci(σ) =
∑

e∈σi

de(σe) =
∑

e∈σi

(de(σe) + τe) = ci(σ) +
∑

e∈σi

τe.

The selfish players reach a pure Nash equilibrium of Γ̄τ . Since the tolls are
payments inside the network, a common assumption is that the tolls can be
feasibly refunded to the players and thus do not affect the social cost (see, e.g.,
[Cole et al. 03b, Fleischer et al. 04, Karakostas and Kolliopoulos 04], and the
case of refundable tolls in [Caragiannis et al. 06]). Hence the social cost of a
configuration σ remains C(σ) =

∑
e∈E σede(σe) as in the original congestion

game Γ.
The goal is to compute a set of tolls τ that motivates the selfish players to in-

duce a given flow f (in particular, the optimal flow). A first natural requirement
is that every configuration corresponding to f should be a pure Nash equilib-
rium of Γ̄τ . Namely, if the players take the tolls into account and adopt any
configuration inducing congestion fe on every edge e, they should not have an
incentive to deviate. Formally, a feasible flow f is weakly enforceable by tolls τ if
every configuration inducing congestion fe on every edge e is a Nash equilibrium
of Γ̄τ . By definition, if a feasible flow f is weakly enforceable, there is at least
one pure Nash equilibrium of Γ̄τ with congestion fe on all e ∈ E.

Since Γ̄τ does not need to admit a unique pure Nash equilibrium, some equi-
libria of Γ̄τ may induce flows quite different from f . To exclude this possibility,
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we require that f not be only weakly enforceable by τ , but also the unique pure
Nash equilibrium of Γ̄τ . Formally, a feasible flow f is strongly enforceable by
tolls τ when a configuration σ is a Nash equilibrium of Γ̄τ if and only if σe = fe

for all e ∈ E. A set of tolls τ is optimal if the optimal flow is strongly enforceable
by τ .

2.5. Series-Parallel Networks

A directed s-t network is series-parallel if it either consists of a single edge (s, t)
or can be obtained from two series-parallel graphs with terminals (s1, t1) and
(s2, t2) composed either in series or in parallel. In a series composition, t1 is
identified with s2, s1 becomes s, and t2 becomes t. In a parallel composition, s1

is identified with s2 and becomes s, and t1 is identified with t2 and becomes t.
A maximal set of contiguous series compositions is a series component, and a
maximal set of parallel compositions is a parallel component.

A series-parallel network can be completely specified by its decomposition tree,
which is a rooted tree with a leaf for each edge. Each internal node of the
decomposition tree represents either a series or a parallel component obtained
from series (respectively parallel) compositions of the networks represented by its
subtrees. The root of the tree represents the entire network. The decomposition
tree of a series-parallel network G(V, E) can be computed in O(|V | + |E|) time
(see, e.g., [Valdez et al. 82] for more details).

3. Cost-Balancing Tolls

We consider a natural toll mechanism, which we call cost-balancing tolls. A set
of tolls τ is cost-balancing for a feasible flow f if for every path p ∈ P with
fmin

p > 0 and every path p′ ∈ P ,
∑

e∈p

de(fe) =
∑

e∈p

(de(fe) + τe) ≤
∑

e∈p′
(de(fe) + τe) =

∑

e∈p′
de(fe). (3.1)

The following proposition shows that the cost-balancing property also holds
for segments of s-t paths with common endpoints.

Proposition 3.1. Let f be any acyclic feasible s-t flow, let τ be any set of cost-
balancing tolls for f , and let u, v be two vertices connected by simple paths π and
π′. If fmin

π > 0, then
∑

e∈π

de(fe) =
∑

e∈π

(de(fe) + τe) ≤
∑

e∈π′
(de(fe) + τe) =

∑

e∈π′
de(fe).
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Proof. Since f is an acyclic s-t flow with fmin
π > 0, there are a path π1 with

fmin
π1

> 0 connecting s to u (π1 is empty if u is s) and a path π2 with fmin
π2

> 0
connecting v to t (π2 is empty if v is t). Then p = (π1, π, π2) is an s-t path with
fmin

p > 0 and p′ = (π1, π
′, π2) is an s-t path. Therefore,

∑

e∈p

de(fe) ≤
∑

e∈p′
de(fe) ⇒

∑

e∈π

de(fe) ≤
∑

e∈π′
de(fe) ,

where the first inequality follows from (3.1), because the tolls τ are cost-balancing
tolls for f .

We observe that every feasible flow is weakly enforceable by any set of cost-
balancing tolls for it.

Proposition 3.2. Let f be a feasible flow that admits a set of cost-balancing tolls τ .
Then f is weakly enforceable by τ .

Proof. We prove that any configuration σ with σe = fe on every edge e is a pure
Nash equilibrium of the congestion game Γ̄τ . In particular, let i be any player,
and let σi be i’s strategy in σ. Then, for every path p ∈ P , the individual cost
of i (in Γ̄τ ) does not decrease if i switches from σi to p:

ci(σ) =
∑

e∈σi

de(fe) ≤
∑

e∈p

de(fe) ≤ ci(σ−i, p).

The equality holds because σe = fe for all e ∈ E. The first inequality holds
because τ is a set of cost-balancing tolls for f and fmin

σi
≥ 1. The last inequality

follows from the definition of the players’ individual costs.

3.1. Efficient Computation of Cost-Balancing Tolls

We present a simple linear-time algorithm, called Balance, that computes a set
of cost-balancing tolls for any acyclic s-t flow f . The input of Balance consists
of an s-t network G(V, E) and an acyclic s-t flow f . Balance returns a set of
cost-balancing tolls for f . The algorithm works as follows:

1. Let Ef = {e ∈ E : fe > 0}, and let Gf (V, Ef ) be the spanning subgraph
of G consisting of the edges with positive flow in f . Since f is acyclic, Gf

is a directed acyclic graph (DAG).

2. Balance computes the longest paths from s to the vertices in Gf with
respect to the edge lengths {de(fe)}e∈Ef

. Let �s = 0, and for every vertex
u ∈ V \ {s} reachable from s, let �u be the length of the longest s-u path
in Gf .
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3. The toll of every edge e = (u, v) ∈ Ef is τe = �v − (�u + de(fe)). The toll
of every edge e 	∈ Ef is τe = τmax, where τmax = δ + maxp∈P

∑
e∈p de(n),

with δ > 0 chosen arbitrarily small.5

Since Gf is a DAG, the longest paths from s can be computed in O(|V | +
|Ef |) time by negating the edge lengths and solving the corresponding single-
source shortest path problem (see, e.g., [Cormen et al. 01, Section 24.2]). Hence
Balance can be implemented in time linear in the size of the network. The
following lemma shows that the tolls τ computed by Balance are cost-balancing
for f . In the following, we refer to the tolls computed by Balance as the cost-
balancing tolls for f .

Lemma 3.3. For any acyclic s-t flow f , the tolls τ computed by Balance are
cost-balancing for f .

Proof. We first show that τe ≥ 0 for all e ∈ E. The claim is trivial for the
edges not in Ef . For the edges in Ef , we recall that a longest path in a
DAG becomes a shortest path if we negate the edge lengths. Therefore, for
every vertex v reachable from s, −�v is the length of the shortest s-v path
in Gf (V, Ef , (−de(fe))e∈Ef

). Hence, for every edge e = (u, v) ∈ Ef , we have
−�v ≤ −�u − de(fe), which implies that τe = �v − (�u + de(fe)) ≥ 0. By the
same reasoning, if an edge e ∈ Ef is included in some longest path from s, then
τe = 0.

We have also to show that for every s-t path p with fmin
p > 0, and every s-t

path p′, ∑

e∈p

(de(fe) + τe) ≤
∑

e∈p′
(de(fe) + τe) .

Let p = (s = u0, u1, . . . , uk = t) be an s-t path with positive flow on all edges.
Since τe = �ui+1 − (�ui + de(fe)) for every edge e = (ui, ui+1) ∈ p, it follows that

∑

e∈p

(de(fe) + τe) =
k−1∑

i=0

(�ui+1 − �ui) = �t − �s = �t.

Consequently, the total cost on every s-t path p with fmin
p > 0 is precisely �t.

On the other hand, the cost on every s-t path p′ containing an edge e not used
by f is at least τmax ≥ �t (recall that τmax > maxp∈P

∑
e∈p de(n) and that

�t = maxp:fmin
p >0

∑
e∈p de(fe)).

5In fact, any τmax ≥ �t suffices for the tolls τ to be cost-balancing for f (see also the proof
of Lemma 3.3). We use a toll of τmax > maxp∈P

∑
e∈p de(n) to ensure that any edge with

fe = 0 (and thus with a toll greater than �t) remains unused in any pure Nash equilibrium of
Γ̄τ (see also Theorem 3.4).
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3.2. Weakly Enforcing the Optimal Flow

Proposition 3.2 and Lemma 3.3 imply that the optimal flow is weakly enforceable
by a set of moderate cost-balancing tolls computable in linear time.

Theorem 3.4. For every symmetric network congestion game Γ, the optimal flow o

is weakly enforceable by the cost-balancing tolls τ for o, which have the following
properties:

(a) Given the optimal flow o, τ is computed in time linear in the size of the
network.

(b) The maximum toll on any edge is at most τmax = δ + maxp∈P
∑

e∈p de(n),
for any δ > 0. Every edge with toll τmax remains unused in any pure Nash
equilibrium of Γ̄τ .

(c) The total amount of tolls paid by any player in any pure Nash equilibrium
of Γ̄τ does not exceed �t = maxp:omin

p >0

∑
e∈p de(oe).

Proof. (a). Every symmetric network congestion game with nondecreasing latency
functions admits an optimal configuration that corresponds to a feasible integral
acyclic flow o. The linear-time algorithm Balance computes the cost-balancing
tolls τ for o (Lemma 3.3) and o is weakly enforceable by τ (Proposition 3.2).

(b). Let G(V, E) be the s-t network determining the strategy space of Γ.
Since o is an acyclic s-t flow, �v ≤ �t for all vertices v reachable from s in Go.
Therefore, a toll no greater than �t is assigned to any edge with positive flow in
o, and a toll equal to τmax is assigned to the remaining edges.

We then prove that no edge with toll τmax is used in any pure Nash equilibrium
of Γ̄τ . To reach a contradiction, we assume that there is a pure Nash equilibrium
σ of Γ̄τ in which some player i uses an edge e with oe = 0. Then ci(σ) ≥ τmax.
Let pt be the longest s-t path in Go. In the proof of Lemma 3.3, we show that
for every edge e lying on some longest path in Go, τe = 0. Therefore, if player i

switches to pt, her cost becomes at most maxp:omin
p >0

∑
e∈p de(n) < τmax ≤ ci(σ),

a contradiction.
(c). By (b), every Nash equilibrium σ of Γ̄τ induces congestion σe = 0 on

every edge e with oe = 0. Hence the strategy σi of any player i consists of edges
with positive flow in o. In the proof of Lemma 3.3, we show that for every s-t
path p with omin

p > 0,
∑

e∈p(de(oe) + τe) = �t. Consequently, the total amount
of tolls paid by any player i in any pure Nash equilibrium of Γ̄τ is at most
�t = maxp:omin

p >0

∑
e∈p de(oe).
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Remark 3.5. There are symmetric network games for which the optimal solution
cannot be weakly enforced by tolls substantially smaller than the cost-balancing
tolls. For instance, let us consider a discrete version of Pigou’s example with an
even number n of players and two parallel links with latencies d1(x) = x/n and
d2(x) = 1. In the optimal solution, there are n/2 players on every link. For this
example, the cost-balancing tolls coincide with the marginal cost tolls and are
τ1 = 1/2 and τ2 = 0. The optimal solution is weakly (but not strongly) enforced
by τ . On the other hand, for any set of tolls τ ′, either 1

2 − 1
n ≤ τ ′

1 − τ ′
2 ≤ 1

2 , or
the optimal solution is not weakly enforced by τ ′.

3.3. Optimal Tolls for Series-Parallel Networks

If the latency functions are increasing, it is not difficult to establish the optimal-
ity of cost-balancing tolls for congestion games on extension-parallel networks, an
interesting class of s-t networks including parallel links (see, e.g., [Milchtaich 06]).
Intuitively, this result is based on the fact that (symmetric) congestion games on
extension-parallel networks retain two important properties of congestion games
on parallel links, namely that every feasible acyclic s-t flow corresponds to a
unique configuration of the congestion game (uniqueness is up to players’ permu-
tations), and that every pure Nash equilibrium minimizes Rosenthal’s potential
function (see, e.g., [Holzman and Law-Yone 97, Section 6]).

In the following, we significantly generalize this result to series-parallel net-
works, an important class of s-t networks considerably more complex than exten-
sion-parallel networks. This generalization is particularly interesting because
series-parallel networks do not have the above properties of parallel-link (and
extension-parallel) networks. More precisely, in a series-parallel network, (i)
a feasible acyclic s-t flow may be realized by many different configurations of
the corresponding congestion game, and (ii) different pure Nash equilibria may
have quite different potential values (see, e.g., the game in the proof of Theo-
rem 4.1). Nevertheless, we are able to show that for any series-parallel network
with increasing latencies and any feasible acyclic flow f , the game induced by
the cost-balancing tolls τ for f admits a unique pure Nash equilibrium (which
coincides with f , since f is weakly enforceable by τ).

Lemma 3.6. Let Γ be a symmetric congestion game on a series-parallel network
G(V, E) with increasing latency functions, let f be any feasible acyclic flow,
and let τ be any set of cost-balancing tolls for f . Then every pure Nash equi-
librium σ of the congestion game Γ̄τ induces congestion σe = fe on every
edge e.
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Proof. To reach a contradiction, we assume that there is a pure Nash equilibrium
σ of Γ̄τ that induces congestion σe 	= fe on some edge e. The corresponding
flow σ is acyclic because the network is series-parallel, the latency functions are
nonnegative and increasing, and σ is a Nash equilibrium of Γ̄τ . Hence both f

and σ are integral acyclic s-t flows of volume n.
We refer to an edge e as a forward edge if σe > fe, and as a backward edge if

σe < fe. Since the σe’s and fe’s are integral, σe ≥ fe + 1 for all forward edges e,
and fe′ ≥ σe′ + 1 for all backward edges e′. Since σ and f are different acyclic
flows of the same volume, there is at least one forward edge and at least one
backward edge.

Let H be a component in the series-parallel decomposition of G (H is the
induced subgraph of G determined by the vertices in the corresponding compo-
nent) such that H contains both forward and backward edges and none of H ’s
subcomponents H1, . . . , Hk has this property. In other words, H corresponds
to the entire subtree of an internal node uH in G’s decomposition tree, and
H1, . . . , Hk correspond to the entire subtrees of uH ’s children (an Hi may con-
sist of a single edge and correspond to a leaf of the decomposition tree). The
component H is minimal in the series-parallel decomposition of G with respect
to the property that it contains both forward and backward edges. Such a com-
ponent exists and can be found by traversing G’s decomposition tree bottom-up,
because every edge e with σe 	= fe is either a forward or a backward edge but
not both.

Let H1 be a component of H that contains at least one forward edge and
no backward edges, and let H2 be a component of H that contains at least
one backward edge and no forward edges (their existence is guaranteed by the
definition of H). Since σ is acyclic and H1 does not contain any backward edges,
by flow conservation, the number of players going through H1 in σ is greater
than the number of players going through H1 in f (see also Proposition 5.1).
Similarly, since f is acyclic and H2 does not contain any forward edges, the
number of players going through H2 in σ is less than the number of players
going through H2 in f (see also Proposition 5.2). Hence, by flow conservation,
H1 and H2 are not connected in series. Therefore, H is formed by a parallel
composition of H1, . . . , Hk. Let sH and tH be the common endpoints of H and
its components H1, . . . , Hk.

Let e+ be a forward edge in H1, let i be any player with e+ ∈ σi (such a player
exists because e+ is a forward edge, and thus σe+ ≥ 1), and let p+ denote the
restriction of σi to H1 (i.e., p+ is the path segment of σi between sH and tH).
Since H1 does not contain any backward edges, σe ≥ fe and de(σe) ≥ de(fe) for
all e ∈ p+. Moreover, for the forward edge e+, de+(σe) > de+(fe) because the
latency functions de(x) (and thus the functions de(x)) are increasing. Therefore,
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the individual cost of player i on p+ is
∑

e∈p+

de(σe) >
∑

e∈p+

de(fe). (3.2)

On the other hand, since f is acyclic and H2 does not contain any forward
edges, H2 contains an sH -tH path p− consisting entirely of backward edges (see
also Proposition 5.2). Therefore σe + 1 ≤ fe for all e ∈ p−, which implies that

∑

e∈p−
de(σe + 1) ≤

∑

e∈p−
de(fe) ≤

∑

e∈p+

de(fe). (3.3)

For the last inequality, we recall that tolls τ are cost-balancing for f , and apply
Proposition 3.1 to p− and p+, since fmin

p− ≥ 1 and p− and p+ are path segments
with common endpoints sH and tH .

Combining (3.2) and (3.3), we conclude that
∑

e∈p+ de(σe) >
∑

e∈p− de(σe+1).
Therefore player i can decrease her cost by changing her path between sH and tH
from p+ to p−. This contradicts the hypothesis that σ is a pure Nash equilibrium
of Γ̄τ .

Theorem 3.4 and Lemma 3.6 immediately imply that for symmetric congestion
games on series-parallel networks with increasing latencies, the optimal flow is
strongly enforceable by the cost-balancing tolls computed by Balance.

Theorem 3.7. Every symmetric congestion game on a series-parallel network with
increasing latency functions admits a set of optimal tolls with the properties (a),
(b), and (c) in Theorem 3.4.

Remark 3.8. If the network is not series parallel, the optimal flow may not be
strongly enforceable by the cost-balancing tolls even for (increasing) linear la-
tencies de(x) = aex, ae > 0. For example, let us consider the four-player game
in Figure 1.a. The set of s-t paths consists of pu = (e1, e3, e7, e11) (upper path),
pm
1 = (e1, e4, e8, e11) (upper middle path), pm

2 = (e2, e5, e9, e12) (lower middle
path), pl = (e2, e6, e10, e12) (lower path), pc

1 = (e1, e4, e9, e12) (first cross path),
and pc

2 = (e2, e5, e8, e11) (second cross path).
In the optimal flow, there are two players on e1, e2, e11, and e12, and one player

on each of the remaining edges. An optimal configuration is o = (pu, pm
1 , pm

2 , pl),
with social cost 92. The longest s-t path in o is pc

2, and it has length 24. The
cost-balancing tolls assign a toll of 1 to each of e4, e7, and e12, and no tolls to
the remaining edges. The configuration σ = (pc

1, p
c
1, p

c
2, p

c
2) has social cost 104

and is a pure Nash equilibrium of the modified game with cost-balancing tolls.
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e2,1
2
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(q1/2)x (q2/2)x (qk/2)x

q1x qk xq2 x

(b)

Figure 1. (a) A symmetric network congestion game with (increasing) linear
latency functions for which the cost-balancing tolls do not strongly enforce the
optimal flow. Each edge is labeled with its latency function and its identifier.
The edges with positive cost-balancing tolls are bold and the tolls appear in
parentheses next to the original latency functions. (b) The series-parallel network
used in the proof of Theorem 4.1.

4. Hardness of Deciding the Necessity of Tolls

Given an efficiently computable optimal toll mechanism for congestion games on
series-parallel networks, it is natural to ask for a set of optimal tolls that mini-
mizes some objective function (e.g., sum of tolls, maximum toll) on the amount
of tolls assigned to the edges of the network. To demonstrate the difficulty of
computing a better set of optimal tolls, we prove that even for very simple games
on series-parallel networks, it is NP-hard to decide whether the use of tolls is
really necessary to strongly enforce the optimal flow. In particular, we present
a simple two-player game Γ on a series-parallel network with (increasing) linear
latency functions de(x) = aex, ae > 0 (see Figure 1.b). The optimal configura-
tion o is a pure Nash equilibrium of Γ (and thus o is weakly enforceable by the
trivial tolls τe = 0 for all e). We prove that it is NP-hard to decide whether o is
the unique pure Nash equilibrium of Γ, in which case tolls serve only to increase
the players’ disutility, or Γ admits another pure Nash equilibrium of social cost
at least 6

5C(o), in which case a set of tolls is necessary to strongly enforce the
optimal flow.
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Theorem 4.1. Given a two-player linear congestion game Γ on a series-parallel
network for which the optimal configuration o is a Nash equilibrium, it is NP-hard
to distinguish between the case in which o is the unique pure Nash equilibrium
of Γ and that in which Γ admits another pure Nash equilibrium of social cost at
least 6

5C(o).

Proof. We use a reduction from partition, which is weakly NP-complete [Garey
and Johnson 79, Problem SP12]. Let q1, . . . , qk be positive integers such that∑k

i=1 qi = B, with B even. Then partition asks whether there is a set A∗ ⊆ [k]
such that

∑
i∈A∗ qi =

∑
i�∈A∗ qi = B/2.

Given q1, . . . , qk, we construct a two-player game Γ on the series-parallel net-
work in Figure 1.b. The latency functions are dei,1(x) = qix, dei,2 (x) = (qi/2)x,
i ∈ [k], and d(s,t)(x) = (3B/4)x. In the optimal configuration o, one player uses
path p2 = (ei,2)i∈[k] and has individual cost B/2, and the other player uses the
direct edge from s to t and has individual cost 3B/4. The optimal configuration
has social cost C(o) = 5B/4 and is a Nash equilibrium of Γ (thus o is weakly
enforceable by the trivial tolls τe = 0 for all e ∈ E).

We prove that Γ admits a pure Nash equilibrium of social cost 3B/2 iff there
exists a set A∗ ⊆ [k] such that

∑
i∈A∗ qi = B/2. For every set A ⊆ [k],

we define a configuration σA = (pA, pĀ) consisting of a pair of complemen-
tary paths pA = (ei,ji)i∈[k], and pĀ = (ei,3−ji)i∈[k], where ji = 1 if i ∈ A,
and ji = 2 if i 	∈ A. Let SA =

∑
i∈A qi. The cost of the player on pA is

(B +SA)/2, and the cost of the player on pĀ is B−SA/2. The total cost of σA is
C(σA) = 3B/2.

The configuration σA is a Nash equilibrium iff SA = B/2. More specifically,
if SA = B/2, the individual cost of both players is 3B/4, and none of them has
an incentive to deviate to the direct edge (s, t). Hence the configuration σA is
a Nash equilibrium. If SA > B/2 (respectively SA < B/2), the player on pA

(respectively pĀ) has an individual cost greater than 3B/4 and can decrease her
cost by switching to the direct edge (s, t).

To conclude the proof, we show that Γ does not admit any pure Nash equi-
librium other than the optimal configuration and the configurations σA corre-
sponding to sets A ⊆ [k] with SA = B/2. First we observe that in any pure Nash
equilibrium of Γ, at most one player uses the direct edge (s, t). If one player uses
(s, t), the other player uses p2, and we have the optimal configuration. If no
player uses (s, t), there is one player on every edge ei,j , i ∈ [k], j ∈ {1, 2}. If
there are two players on some edge ei,2, the total cost is greater than 3B/2.
Hence, some player has cost greater than 3B/4 and can decrease her cost by
switching to (s, t). If both players use an edge ei,1, one of them can decrease
her cost by switching to ei,2. Every configuration with one player on every edge
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ei,j , i ∈ [k], j ∈ {1, 2}, corresponds to a configuration σA for an appropriate
set A ⊆ [k].

5. Appendix: A Simple Fact about Acyclic Flows

Let G(V, E) be a directed network with source s and destination t. For a pair
of s-t flows f and g, the network Gf−g(V, Ef−g) of f − g has the same vertex
set V as G and contains at most one capacitated edge for each edge (u, w). In
particular, if fuw = guw, there is no edge in Ef−g corresponding to (u, w) ∈ E; if
f(u,w) > g(u,w), Ef−g contains a forward edge (u, w) with flow f(u,w)−g(u,w); and
if f(u,w) < g(u,w), Ef−g contains a backward edge (w, u) with flow g(u,w)−f(u,w).
If f and g are identical, Ef−g is empty. If f and g have the same volume, a
flow decomposition of f − g yields only cycles and no s-t paths. If f and g are
nonidentical acyclic flows of the same volume, Gf−g contains at least one cycle
with at least one forward edge and at least one backward edge.

Proposition 5.1. Let G(V, E) be a network with terminals s and t, let f and g be s-t
flows, and let Gf−g(V, Ef−g) be the network of f − g. If f is acyclic and Ef−g

is nonempty and contains only forward edges, then |f | > |g| and every forward
edge belongs to an s-t path in Gf−g.

Proof. Since f is acyclic and Gf−g does not contain any backward edges, Gf−g is
acyclic too. Let e be any forward edge in Gf−g, and let π be a maximal path
in Gf−g that contains e. Let u and w be the vertices connected by π. The path
π is maximal in the sense that u does not have any incoming edges and w does
not have any outgoing edges in Gf−g (recall that Gf−g contains only forward
edges). Since Gf−g is acyclic, u is different from w.

Since u has some outgoing but no incoming edges in Gf−g, and since Gf−g

does not contain any backward edges,

∑

v:(u,v)∈Ef−g

f(u,v) >
∑

v:(u,v)∈Ef−g

g(u,v)

(i.e., the volume of f -flow leaving u is greater than the volume of g-flow leaving
u). By flow conservation,

∑
v:(v,u)∈Ef−g

f(v,u) >
∑

v:(v,u)∈Ef−g
g(v,u) (i.e., the

volume of f -flow entering u is greater than the volume of g-flow entering u). If
we assume that u is different from s, we obtain that u has some incoming forward
edge in Gf−g, which contradicts the assumption that π is maximal. Hence, u is
s and |f | > |g|.
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By a symmetric argument, since w has some incoming but no outgoing edges
in Gf−g, and since Gf−g does not contain any backward edges,

∑

v:(v,w)∈Ef−g

f(v,w) >
∑

v:(v,w)∈Ef−g

g(v,w)

(i.e., the volume of f -flow entering w is greater than the volume of g-flow entering
w). By flow conservation,

∑
v:(w,v)∈Ef−g

f(w,v) >
∑

v:(w,v)∈Ef−g
g(w,v) (i.e., the

volume of f -flow leaving u is greater than the volume of g-flow leaving u). If we
assume that w is different from t, we obtain that w has some outgoing forward
edge in Gf−g, which contradicts the assumption that π is maximal.

Proposition 5.2. Let G(V, E) be a network with terminals s and t, let f and g be s-t
flows, and let Gf−g(V, Ef−g) be the network of the flow f −g. If g is acyclic and
Ef−g is nonempty and contains only backward edges, then |g| > |f | and every
backward edge belongs to an s-t path in Gf−g.

Proof. We apply Proposition 5.1 to Gg−f (V, Eg−f ) and observe that forward edges
in Gg−f correspond to backward edges in Gf−g.
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