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Manipulation-Resistant Reputations
Using Hitting Time
John Hopcroft and Daniel Sheldon

Abstract. Popular reputation systems for linked networks can be manipulated by
spammers who strategically place links. In PageRank [Brin and Page 98], pages endorse
others by placing links, and the global link structure is analyzed to determine the
reputation of each page. Though this is meant to be a global measure, page v can
boost its own PageRank considerably using a simple self-endorsement strategy: placing
outlinks to form short directed cycles. In contrast, we show that expected hitting
time—the time to reach v in a random walk—measures essentially the same quantity
as PageRank, but does not depend on v’s outlinks. We develop a reputation system
based on hitting time and show that it resists tampering by individuals or groups
who strategically place outlinks. We also present an algorithm to efficiently compute
hitting time for all nodes in a massive graph; conventional algorithms do not scale
adequately.

1. Introduction

Reputation and ranking systems are an essential part of web search and e-
commerce. The general idea is that the reputation of one participant is deter-
mined by the endorsements of others; for example, one web page endorses another
by linking to it. However, not all participants are honorable—e.g., spammers will
do their best to manipulate a search engine’s rankings. A natural requirement
for a reputation system is that individuals should not be able to improve their
own reputation using simple self-endorsement strategies, such as participating in
short cycles to boost PageRank. Since PageRank enjoys many nice properties,
it is instructive to see where things go wrong.
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70 Internet Mathematics

Let G = (V, E) be a directed graph (e.g, the web). PageRank assigns a score
π(v) to each node v, where π is defined to be the stationary distribution of a
random walk on G, giving the pleasing interpretation that the score of page v

is the fraction of time a web surfer spends there if she randomly follows links
forever. For technical reasons, the random walk is modified to restart in each
step with probability α, jumping to a page chosen at random. This ensures
that π exists and is efficient to compute. Then a well-known fact about Markov
chains [Aldous and Fill 09] says that 1/π(v) is equal to the expected return time
of v, the number of steps it takes a random walk starting at v to return to v.
A heuristic argument for this equivalence is that a walk returning to v every r

steps on average should spend 1/r of all time steps there.
Despite its popularity as a ranking system, one can easily manipulate return

time by changing only outlinks. Intuitively, a node v should link only to nodes
from which a random walk will return to v quickly (in expectation). By partner-
ing with just one other node to form a 2-cycle with no other outlinks, v ensures a
return in two steps—the minimum possible without self-loops—unless the walk
jumps first. In this fashion, v can often boost its PageRank by a factor of 3
to 4 for typical settings of α [Cheng and Friedman 06]. However, this strategy
relies on manipulating the portion of the walk before the first jump: the jump
destination is independent of v’s outlinks, and return time is determined once
the walk reaches v again, so v’s outlinks have no further effect. This suggests
eliminating the initial portion of the walk and measuring reputation by the time
to hit v following a restart, called the hitting time of node v (from a random
node). This paper develops a reputation system based on hitting time that is
provably resistant to manipulation. Our main contributions are these:

• In Theorem 3.1, we develop a precise relationship between expected return
time and expected hitting time in a random walk with restart, and show
that the expected hitting time of v is equal to (1 − p)/αp, where p is the
probability that v is reached before the first restart. We will adopt p as
our measure of the reputation of v.

• We prove that the resulting reputation system resists manipulation, using a
natural definition of influence. For example, node v has a limited amount
of influence that depends on her reputation, and she may spread that
influence using outlinks to increase others’ reputations. However, node v

cannot alter her own reputation with outlinks, nor can she damage w’s
reputation by more than her original influence on w. Furthermore, the
advantage that v gains by purchasing new nodes, often called sybils of v,
is limited by the restart probability of the sybils.



�

�

“imvol5” — 2009/7/13 — 17:29 — page 71 — #3
�

�

�

�

�

�

Hopcroft and Sheldon: Manipulation-Resistant Reputations Using Hitting Time 71

• We present an efficient algorithm to simultaneously compute hitting time
for all nodes in a large graph. In addition to one PageRank calculation,
our algorithm uses Monte Carlo sampling with running time that is linear
in |V | for given accuracy and confidence parameters. This is a signifi-
cant improvement over traditional algorithms, which require a large-scale
computation for each node.1

The rest of the paper is structured as follows. In Section 2 we discuss re-
lated work. In Section 3 we present Theorem 3.1, giving the characterization of
hitting time that is the foundation for the following sections. In Section 4 we
develop a reputation system using hitting time and show that it is resistant to
manipulation. In Section 5 we present algorithms for computing hitting time.

2. Related Work

Since PageRank [Brin and Page 98] was introduced, it has been adapted to a
variety of applications, including personalized web search [Page et al. 98], web
spam detection [Gyöngyi et al. 04], and trust systems in peer-to-peer networks
[Kamvar et al. 03]. Each of these uses the same general formulation and our
work applies to all of them.

Much work has focused on the PageRank system itself, studying computation
methods, convergence properties, stability and sensitivity, and, of course, imple-
mentation techniques. See [Langville and Meyer 04] for a survey of this wide
body of work. Computationally, the Monte Carlo methods in [Fogaras and Rácz
04] and [Avrachenkov et al. 05] are similar to our algorithms for hitting time.
They use a probabilistic formulation of PageRank in terms of a short random
walk that permits efficient sampling. In particular, we will use the same idea as
[Fogaras and Rácz 04] to efficiently implement many random walks simultane-
ously in a massive graph, without requiring random access.

Recent works have addressed the manipulability of PageRank: how can a
group of selfish nodes place outlinks to optimize their PageRank, and how can we
detect such nodes [Gyöngyi and Garcia-Molina 05b, Gyöngyi and Garcia-Molina
05a, Gyöngyi et al. 06, Zhang et al. 04, Mason 05, Bianchini et al. 05, Cheng and
Friedman 06]? In particular, [Gyöngyi and Garcia-Molina 05a, Bianchini et al.
05, Cheng and Friedman 06] all describe the manipulation strategy mentioned
in the introduction.

1Standard techniques can simultaneously compute hitting time from all possible sources to
a single target node using a system of linear equations. However, what is desired for reputation
systems is the hitting time from one source, or in this case a distribution, to all possible targets.
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For a more general treatment of reputation systems in the presence of strategic
agents, see [Friedman et al. 09] for a nice overview with some specific results
from the literature. Cheng and Friedman prove an impossibility result [Cheng
and Friedman 05] that relates to our work—a wide class of reputation systems
(including ours) cannot be resistant to a particular attack called the sybil attack
[Douceur 02]. However, their definition of resistance is very strong, requiring
that no node can improve its ranking using a sybil attack; our results can be
viewed as positive results under a relaxation of this requirement by limiting the
damage caused by a sybil attack. We will discuss sybils in Section 4.3.

Hitting time is a classical quantity of interest in Markov chains. See [Aldous
and Fill 09, Chapter 2] for an overview. The exact terminology and definitions
vary slightly: we define hitting time as a random variable, but sometimes it is
defined as the expectation of the same random variable. Also, the term first
passage time is sometimes used synonymously. In a context similar to ours,
hitting time was used as a measure of proximity between nodes to predict link
formation in a social network [Liben-Nowell and Kleinberg 03]; also, the node
similarity measure in [Jeh and Widom 02] can be formulated in terms of hitting
time.

Finally, the relationship between hitting time and return time in a random
walk with restart is related to regenerative stochastic processes. In fact, Theorem
3.1 can be derived as a special case of a general result about such processes. See
[Heidelberger 95, equation (15)] and the references therein for details.

After the conference version of this paper [Hopcroft and Sheldon 07] was pub-
lished, we discovered the paper [Avrachenkov and Litvak 06], which studies the
effect of new links on PageRank. In particular, the authors note (in Proposition
2.1) one of the conclusions of Theorem 3.1: that the PageRank of page v can
be written as a product of two terms, where only the first term depends on the
outlinks of v. The second term in their formulation—which is independent of v’s
outlinks—is exactly our measure of the reputation of v.

3. Characterizing Hitting Time

This section paves the way toward a reputation system based on hitting time
by stating and proving Theorem 3.1. Part (i) of the theorem relates expected
hitting time to expected return time—the two are essentially the same except
for nodes where the random walk is likely to return before jumping, the sign of a
known manipulation strategy. Part (ii) proves that the expected hitting time of
v is completely determined by the probability that v is reached before the first
jump; this will lead to precise notions of manipulation-resistance in Section 4.
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3.1. Preliminaries

Let G = (V, E) be a directed graph. Consider the standard random walk on
G, where the first node is chosen from starting distribution q, then at each
step the walk follows an outgoing link from the current node chosen uniformly
at random. Let {Xt}t≥0 be the sequence of nodes visited by the walk. Then
Pr [X0 = v] = q(v), and Pr [Xt = v | Xt−1 = u] = 1/ outdegree(u) if (u, v) ∈ E,
and zero otherwise. Here, we require outdegree(u) > 0.2 Now, suppose the walk
is modified to restart with probability α at each step, meaning that the next
node is chosen from the starting distribution (henceforth, restart distribution)
instead of following a link. The new transition probabilities are

Pr [Xt = v | Xt−1 = u] =

{
αq(v) + 1−α

outdegree(u) if (u, v) ∈ E,

αq(v) otherwise.

We call this the α-random walk on G, and we parameterize quantities of interest
by the restart probability α. A typical setting is α = 0.15, so a jump occurs
every 1/0.15 ≈ 7 steps in expectation. The hitting time of v is

Hα(v) = min{t : Xt = v}.

The return time of v is Rα(v) = min{t ≥ 1 : Xt = v | X0 = v}. When v is
understood, we simply write Hα and Rα. We write H and R for the hitting time
and return time in a standard random walk.

3.2. Theorem 3.1

Before stating Theorem 3.1, we make the useful observation that we can split
the α-random walk into two independent parts: (1) the portion preceding the
first jump is the beginning of a standard random walk, and (2) the portion
following the first jump is an α-random walk independent of the first portion.
The probability that the first jump occurs at time t is (1−α)t−1α, i.e., the first
jump time J is a geometric random variable with parameter α, independent of
the nodes visited by the walk. Then we can model the α-random walk as follows:
(1) start a standard random walk, (2) independently choose the first jump time
J from a geometric distribution, and (3) at time J begin a new α-random walk.
Hence we can express the return time and hitting time of v recursively:

Rα =

{
R if R < J,

J + H ′
α otherwise,

Hα =

{
H if H < J,

J + H ′
α otherwise.

(3.1)

2This is a technical condition that can be resolved in a variety of ways, for example, by
adding self-loops to nodes with no outlinks.
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Here H ′
α is an independent copy of Hα. It is convenient to abstract from our

specific setting and state Theorem 3.1 about general random variables of this
form.

Theorem 3.1. Let R and H be independent, nonnegative, integer-valued random
variables, and let J be a geometric random variable with parameter α. Define
Rα and Hα as in (3.1). Then,

(i) E [Rα] = Pr [R ≥ J ]
(

1
α + E [Hα]

)
,

(ii) E [Hα] = 1
α · Pr[H≥J]

Pr[H<J] ,

(iii) E [Rα] = 1
α · Pr[R≥J]

Pr[H<J] .

Part (i) relates expected return time to expected hitting time: Pr [R ≥ J ] is
the probability that the walk does not return before jumping. On the web, for
example, we expect Pr [R ≥ J ] to be close to 1 for most pages, so the two mea-
sures are roughly equivalent. However, pages attempting to optimize PageRank
can drive Pr [R ≥ J ] much lower, achieving an expected return time that is much
lower than expected hitting time.

For parts (ii) and (iii), we adopt the convention that Pr [H < J ] = 0 implies
E [Hα] = E [Rα] = ∞, corresponding to the case in which v is not reachable
from any node with positive restart probability. To gain some intuition for
part (ii) (part (iii) is similar), we can think of the random walk as a sequence
of independent explorations from the restart distribution “looking” for node
v. Each exploration succeeds in finding v with probability Pr [H < J ], so the
expected number of explorations until success is 1/Pr [H < J ]. The expected
number of steps until an exploration is terminated by a jump is 1/α, so a rough
estimate of hitting time is 1

α · 1
Pr[H<J] . Of course, this is an overestimate because

the final exploration is cut short when v is reached, and the expected length of
an exploration conditioned on not reaching v is slightly shorter than 1/α. It
turns out that Pr [H ≥ J ] is exactly the factor needed to correct the estimate,
due to the useful fact about geometric random variables3 stated in Lemma 3.2.
We stress that the expected hitting time of v in the α-random walk is completely
determined by Pr [H < J ], the probability that a given exploration succeeds; this
will serve as our numeric measure of reputation.

3We mentioned that Theorem 3.1 can be derived from a result about regenerative stochastic
processes [Heidelberger 95]. In fact, Theorem 3.1 captures most of the generality; to write
recurrences as in (3.1), the process need not be Markovian; it is necessary only that the
process following a restart be a replica of the original. The only nongeneral assumption made
is that J is a geometric random variable; this simplifies the conclusions.
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Lemma 3.2. Let X and J be independent random variables such that X is nonneg-
ative and integer-valued, and J is a geometric random variable with parameter
α. Then E [min(X, J)] = 1

αPr [X ≥ J ].

Lemma 3.2 is proved in the appendix (Section 7).

Proof of Theorem 3.1. We rewrite Rα = min(R, J) + I{R ≥ J}H ′
α, where I{R ≥ J}

is the indicator variable for the event R ≥ J . Note that I{R ≥ J} and H ′
α are

independent. Then, using linearity of expectation and Lemma 3.2,

E [Rα] = E [min(R, J)] + Pr [R ≥ J ] E [H ′
α]

=
1
α

Pr [R ≥ J ] + Pr [R ≥ J ]E [Hα]

= Pr [R ≥ J ]
(

1
α

+ E [Hα]
)

.

This proves part (i). The proof of (ii) uses part (i), taking advantage of the more
general statement of the theorem. Note that Hα and Rα are defined similarly in
(3.1), so substituting H for R in part (i), we get

E [Hα] = Pr [H ≥ J ]
(

1
α

+ E [Hα]
)

.

Solving this expression for E [Hα] gives (ii). Part (iii) is obtained by substituting
(ii) into (i).

4. Manipulation-Resistance

In this section we develop a reputation system based on hitting time, and quan-
tify the extent to which an individual can tamper with reputations. It is intu-
itively clear that node u cannot improve its own hitting time by placing outlinks,
but we would also like to limit the damage that u can cause to v’s reputation.
Specifically, u should be able to damage v’s reputation only if u was responsible
for v’s reputation in the first place. Furthermore, u should not have a great
influence on the reputation of too many others. To make these ideas precise, we
define reputation using Pr [H < J ] instead of E [Hα]. By Theorem 3.1, either
quantity determines the other—they are roughly inversely proportional—and
Pr [H < J ] is convenient for reasoning about manipulation.

Definition 4.1. Let rep(v) = Pr [H(v) < J ] be the reputation of v.
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In words, rep(v) is the probability that a random walk hits v before jumping. Of
all walks that reach v before jumping, an attacker u can manipulate only those
that hit u first. This leads to our notion of influence.

Definition 4.2. Let infl(u, v) = Pr [H(u) < H(v) < J ] be the influence of u on v.

Definition 4.3. Let infl(u) =
∑

v infl(u, v) be the total influence of u.

When the graph G is not clear from context, we write these quantities as PrG [·],
repG(·), and inflG(·, ·) to be clear. To quantify what can change when u ma-
nipulates outlinks, let Nu(G) be the set of all graphs obtained from G by the
addition or deletion of edges originating at u. It is convenient to formalize the
intuition that u has no control over the random walk until it hits u for the first
time.

Definition 4.4. Fix a graph G and node u. We say that an event A is u-invariant if
PrG [A] = PrG′ [A] for all G′ ∈ Nu(G). If A is u-invariant, we also say that the
quantity Pr [A] is u-invariant.

Lemma 4.5. An event A is u-invariant if the occurrence or nonoccurrence of A is
determined by time H(u).

Lemma 4.5 is proved in the appendix. With the definitions in place, we can
quantify how much u can manipulate reputations.

Theorem 4.6. For any graph G = (V, E) and u, v ∈ V ,

(i) infl(u, u) = 0,

(ii) infl(u, v) ≥ 0,

(iii) infl(u, v) ≤ rep(u),

(iv) infl(u) ≤ 1
α rep(u).

Let G′ ∈ Nu(G). Then

(v) repG′(v) = repG(v) + inflG′(u, v) − inflG(u, v).

Parts (i)–(iv) bound the influence of u in terms of its reputation. Part (v)
states that when u modifies outlinks, the change in v’s reputation is equal to
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the change in u’s influence on v. Substituting parts (i)–(iii) into part (v) yields
some simple but useful corollaries.

Corollary 4.7. Let G′ ∈ Nu(G). Then

(i) repG′(u) = repG(u),

(ii) repG′(v) ≥ repG(v) − inflG(u, v),

(iii) repG′(v) ≤ repG(v) − inflG(u, v) + repG(u).

No matter what actions u takes, it cannot alter its own reputation (part (i)).
Nor can u damage the portion of v’s reputation not due to u’s influence (part
(ii)). On the other hand, u may boost its influence on v, but its final influence
cannot exceed its reputation (part (iii)).

Proof of Theorem 4.6. For the most part, the assertions of the theorem are simple
consequences of the definitions. Parts (i) and (ii) are trivial:

infl(u, u) = Pr [H(u) < H(u) < J ] = 0,

infl(u, v) = Pr [H(u) < H(v) < J ] ≥ 0.

For part (iii), a walk that hits u then v before jumping contributes equally to
u’s reputation and u’s influence on v:

infl(u, v) = Pr [H(u) < H(v) < J ] ≤ Pr [H(u) < J ] = rep(u).

Part (iv) uses the observation that not too many nodes can be hit after u but
before the first jump. Let L = |{v : H(u) < H(v) < J}| be the number of all
such nodes. Then

E [L] = E
[∑

v

I{H(u) < H(v) < J}
]

=
∑

v

Pr [H(u) < H(v) < J ] = infl(u).

But L cannot exceed J − min(H(u), J), so

infl(u) = E [L] ≤ E [J ] − E [min(H(u), J)]

= E [J ] (1 − Pr [H(u) ≥ J ]) (by Lemma 3.2)

= E [J ] Pr [H(u) < J ]

=
1
α

rep(u).
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For part (v), we split walks that hit v before jumping into those that hit u first
and those that don’t:

repG(v) = PrG [H(v) < J ]

= PrG [H(u) < H(v), H(v) < J ] + PrG [H(u) ≥ H(v), H(v) < J ]

= inflG(u, v) + PrG [H(u) ≥ H(v), H(v) < J ] .

The event [H(u) ≥ H(v), H(v) < J ] is determined by time H(u), and hence it
is u-invariant. By the above, Pr [H(u) ≥ H(v), H(v) < J ] is equal to repG(v)−
inflG(u, v), and repeating the calculation for G′ gives repG′(v) = inflG′(u, v) +
repG(v) − inflG(u, v).

4.1. Manipulating the Rankings

The previous results quantify how much node u can manipulate reputation val-
ues, but often we are more concerned with how much u can manipulate the
ranking, specifically, how far u can advance by manipulating outlinks only.
The following two corollaries follow easily. Suppose repG(u) < repG(v) and
u manipulates outlinks to produce G′ ∈ Nu(G). We say that u meets v if
repG′(u) = repG′(v), and u surpasses v if repG′(u) > repG′(v).

Corollary 4.8. Node u cannot surpass a node that is at least twice as reputable.

Corollary 4.9. Node u can meet or surpass at most 1
αγ nodes that are more reputable

than u by a factor of at least (1 + γ).

Proof of Corollary 4.8. Suppose repG(v) ≥ 2 · repG(u). Then

repG′(v) ≥ repG(v) − inflG(u, v) ≥ repG(v) − repG(u)

≥ 2 · repG(u) − repG(u)

= repG(u) = repG′(u).

This completes the proof.

Proof of Corollary 4.9. Let A = {v : repG(v) ≥ (1 + γ) repG(u), repG′(v) ≤ repG′(u)}
be the set of all nodes with reputation at least (1 + γ) times the reputation of u

that are met or surpassed by u. Then∑
v∈A

repG(v) ≥ |A|(1 + γ) repG(u),

∑
v∈A

repG′(v) ≤ |A| repG′(u) = |A| repG(u),
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so ∑
v∈A

(repG(v) − repG′(v)) ≥ γ|A| repG(u).

But by Corollary 4.7, repG(v) − repG′(v) ≤ inflG(u, v), so

γ|A| repG(u) ≤
∑
v∈A

(repG(v)−repG′(v)) ≤
∑
v∈A

inflG(u, v) ≤ inflG(u) ≤ 1
α

repG(u),

and hence |A| ≤ 1
αγ .

4.2. Reputation and Influence of Sets

We have discussed reputation and influence in terms of individual nodes for
ease of exposition, but all of the definitions and results generalize when we con-
sider the reputation and influence of sets of nodes. Let U, W ⊆ V , and recall
that H(W ) = minw∈W H(w) is the hitting time of the set W . Then we define
rep(W ) = Pr [H(W ) < J ] to be the reputation of W , we define infl(U, W ) =
Pr [H(U) < H(W ) < J ] to be the influence of U on W , and we define infl(U) =∑

v∈V infl(U, {v}) to be the total influence of U . With these definitions, exact
analogues of Theorem 4.6 and its corollaries hold for any U, W ⊆ V , with essen-
tially the same proofs. Note that U and W need not be disjoint, in which case
it is possible that H(U) = H(W ). We omit further details.

4.3. Sybils

In online environments, it is often easy for a user to create new identities, called
sybils, and use them to increase her own reputation, even without obtaining
any new inlinks from non-sybils. On the web, a spammer might control a large
number of sites, arranging them to boost the PageRank of a given target page;
such a configuration is called a spam farm [Gyöngyi and Garcia-Molina 05b]. In
general, a wide class of reputation systems is vulnerable to sybil attacks [Cheng
and Friedman 05], and in the extreme, hitting time can be heavily swayed as
well. For example, if u places enough sybils so the random walk almost surely
starts at a sybil, then adding links from each sybil to u ensures that the walk hits
u by the second step unless it jumps. In this fashion, u can achieve reputation
almost 1 − α and drive the reputation of all non-sybils to zero.

We shall see that this is actually the only way that sybils can aid u, by
gathering restart probability and funneling it toward u. So an application can
limit the effect of sybils by limiting the restart probability granted to new nodes.
In fact, applications of hitting time analogous to Personalized PageRank [Page
et al. 98] and TrustRank [Gyöngyi et al. 04] are already immune, since they place
all of the restart probability on a fixed set of known or trusted nodes.
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Applications such as web search that give equal restart probability to each
node are more vulnerable, but in cases like the web the sheer number of nodes
requires an attacker to place many sybils to have a substantial effect. This stands
in stark contrast to PageRank, where one sybil is enough to employ the 2-cycle
self-endorsement strategy and increase PageRank by several times [Cheng and
Friedman 06].

To model the sybil attack, suppose G′ = (V ∪ S, E′) is obtained from G by
a sybil attack launched by u. That is, the sybil nodes S are added, and links
originating at u or inside S can be set arbitrarily. All other links must not change,
with the exception that those originally pointing to u can be directed anywhere
within S ∪ {u}. Let q′ be the new restart distribution, assuming that q′ diverts
probability to S but does not redistribute probability within V . Specifically,
if ρ =

∑
s∈S q′(s) is the restart probability allotted to sybils, we require that

q′(v) = (1 − ρ)q(v) for all v ∈ V .

Theorem 4.10. Let U = {u} ∪ S be the nodes controlled by the attacker u, and let v

be any other node in V . Then

(i) repG′(u) ≤ repG′(U) = (1 − ρ) repG(u) + ρ,

(ii) repG′(v) ≥ (1 − ρ)(repG(v) − inflG(u, v)),

(iii) repG′(v) ≤ (1 − ρ)(repG(v) − inflG(u, v) + repG(u)) + ρ.

Compared with Corollary 4.7, the only additional effect of sybils is to diminish
all reputations by a factor of (1−ρ) and increase the reputation of certain target
nodes by up to ρ.

Proof of Theorem 4.10. We split the attack into two steps, first observing how reputa-
tions change when the sybils are added but no links are changed, then applying
Theorem 4.6 for the step at which only links change. Let G+ be the interme-
diate graph where we add the sybils but do not change links. Assume that the
sybils have self-loops so the transition probabilities are well defined. We can
compute repG+(U) by conditioning on whether X0 ∈ V or X0 ∈ S, recalling
that Pr [X0 ∈ S] = ρ:

repG+(U) = (1 − ρ) · PrG+ [H(U) < J | X0 ∈ V ] + ρ · PrG+ [H(U) < J | X0 ∈ S]

= (1 − ρ) · PrG [H(u) < J ] + ρ

= (1 − ρ) repG(u) + ρ.
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In the second step, PrG+ [H(U) < J | X0 ∈ V ] = PrG [H(u) < J ] because hit-
ting U in G+ is equivalent to hitting u in G; all edges outside U are un-
changed, and all edges to U originally went to u. Also the conditional dis-
tribution of X0 given [X0 ∈ V ] is equal to q, by our assumption on q′. The term
PrG+ [H(U) < J | X0 ∈ S] is equal to one, since X0 ∈ S implies H(U) = 0 < J .
A similar calculation gives

repG+(v) = (1 − ρ) repG(v) + ρ · PrG+ [H(v) < J | X0 ∈ S] = (1 − ρ) repG(v).

The term PrG+ [H(v) < J | X0 ∈ S] vanishes because S is disconnected, so a walk
that starts in S cannot leave. Another similar calculation gives inflG+(U, v) =
(1 − ρ) inflG(u, v). Finally, we complete the sybil attack, obtaining G′ from G+

by making arbitrary changes to edges originating in U , and apply Corollary 4.7
(the version generalized to deal with sets) to G+. Parts (i)–(iii) of this theorem
are obtained by direct substitution into their counterparts from Corollary 4.7.

Theorem 4.10 can also be generalized to deal with sets.

5. Computing Hitting Time

To realize a reputation system based on hitting time, we require an algorithm
to efficiently compute the reputation of all nodes. Theorem 3.1 suggests several
possibilities. Recall that π(v) is the PageRank of v. Then E [Rα(v)] = 1/π(v) can
be computed efficiently for all nodes using a standard PageRank algorithm, and
the quantity Pr [R(v) ≥ J ] can be estimated efficiently by Monte Carlo sampling.
Combining these two quantities using Theorem 3.1 yields E [Hα(v)].

It is tempting to estimate the reputation Pr [H(v) < J ] directly using Monte
Carlo sampling. However, there is an important distinction between the quan-
tities Pr [R(v) ≥ J ] and Pr [H(v) < J ]. We can get one sample of either by
running a random walk until it first jumps, which takes about 1/α steps. How-
ever, Pr [H(v) < J ] may be infinitesimal, requiring a huge number of independent
samples to obtain a good estimate. On the other hand, Pr [R(v) ≥ J ] is at least
α, since the walk has probability α of jumping in the very first step. If self-loops
are disallowed, we obtain a better lower bound of 1−(1−α)2, the probability that
the walk jumps in the first two steps. For this reason we focus on Pr [R(v) ≥ J ].

5.1. A Monte Carlo Algorithm

In this section we describe an efficient Monte Carlo algorithm to simultaneously
compute hitting time for all nodes. To obtain accuracy ε with probability at
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least 1 − δ, the time required will be O
( log(1/δ)

ε2α2 |V |) in addition to the time of
one PageRank calculation. The algorithm is as follows:

1. Compute π using a standard PageRank algorithm.4 Then E [Rα(v)] =
1/π(v).

2. For each node v, run k random walks starting from v until the walk either
returns to v or jumps. Let

yv =
1
k
· (# of walks that jump before returning to v).

3. Use yv as an estimate for Pr [R(v) ≥ J ] in part (i) or (iii) of Theorem 3.1
to compute E [Hα(v)] or Pr [H(v) < J ].

How many samples are needed to achieve high accuracy? Let µ = Pr [R(v) ≥ J ]
be the quantity estimated by yv. We call yv an (ε, δ)-approximation for µ

if Pr [|yv − µ| ≥ εµ] ≤ δ. A standard application of the Chernoff bound (see
[Mitzenmacher and Upfal 05, p. 254]) shows that yv is an (ε, δ)-approximation
if k ≥ (3 ln(2/δ))/ε2µ. Using the fact that µ ≥ α, it is sufficient that k ≥
(3 ln(2/δ))/ε2α. Since each walk terminates in 1

α steps in expectation, the total
expected number of steps is no more than 3 ln(2/δ)

ε2α2 |V |.
For massive graphs like the web that do not easily fit into main memory, it is

not feasible to collect the samples in step 2 of the algorithm sequentially, because
each walk requires random access to the edges, which is prohibitively expensive
for data structures stored on disk. We describe a method from [Fogaras and
Rácz 04] to collect all samples simultaneously making efficient use of disk I/O.

Conceptually, the idea is to run all walks simultaneously and incrementally
by placing tokens on the nodes recording the location of each random walk.
Then we can advance all tokens by a single step in one pass through the entire
graph. Assuming that the adjacency list is stored on disk sorted by node, we
store the tokens in a separate list sorted in the same order. Each token records
the node where it originated to determine whether it returns before jumping.
Then in one pass through both lists, we load the neighbors of each node into
memory and process each of its tokens, terminating the walk and updating yv

if appropriate, and otherwise choosing a random outgoing edge to follow and
updating the token. Updated tokens are written to the end of a new unsorted
token list, and after all tokens are processed, the new list is sorted on disk to be
used in the next pass.

4PageRank algorithms are typically iterative and incur some error. Our analysis bounds
the additional error incurred by our algorithm.



�

�

“imvol5” — 2009/7/13 — 17:29 — page 83 — #15
�

�

�

�

�

�

Hopcroft and Sheldon: Manipulation-Resistant Reputations Using Hitting Time 83

The number of passes is bounded by the walk that takes the longest to jump,
which is not completely satisfactory, so in practice we can stop after a fixed
number of steps t, knowing that the contribution of walks longer than t is nominal
for large enough t, since Pr [R ≥ J, J > t] ≤ Pr [J > t] = (1−α)t, which decays
exponentially.

5.2. Finding Highly Reputable Nodes Quickly

We noted that estimating rep(v) = Pr [H(v) < J ] directly by Monte Carlo sam-
pling is troublesome in the case that this probability is very small. However, a
benefit of this approach is that a single random walk gives a sample of rep(v) for
all nodes, and in some situations we may not care about nodes of low reputation.
For example, suppose we want to find all nodes with reputation exceeding some
fixed threshold c. A simple approach is to run many random walks and return
all nodes for which the empirical estimate of rep(v) exceeds c. We will show that
the requisite number of walks depends very modestly on the size of the graph,
and in some cases is independent of the size of the graph.

Specifically, we shall treat this as a classification problem, to label v as high
reputation if rep(v) ≥ c, and low reputation otherwise. It will be very difficult to
classify nodes with reputation almost exactly c, so we relax the problem slightly
and allow either classification for some small interval [a, b] containing c. Let
ε = b−a

b . Then we have the following result.

Theorem 5.1. Using O(log(1/δ)/aε2) Monte Carlo samples, we can label all nodes
as high or low reputation in such a way that the expected number of mislabeled
nodes is at most δ|V |. With O(log(|V |/δ)/aε2) samples, we can classify all nodes
correctly with probability at least 1 − δ.

The first result does not depend on the size of the graph, only on the threshold
parameters a and ε. For graphs with highly skewed reputation distributions, a

can be set to a high value to find the most reputable nodes very quickly. It
is likely that real-world graphs will have skewed reputation distributions: for
example, PageRank on the web graph has been observed to follow a power-law
distribution [Cheng and Friedman 06]. Also, the thresholds need not be set in
advance, so Theorem 5.1 can be used to give on-the-fly confidence intervals for
the discovery of reputable nodes.

Proof of Theorem 5.1. Let µ = rep(v), and suppose we perform k walks, letting

zv =
1
k
· (# of walks that hit v before jumping)
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be the empirical estimate for µ. The symmetric Chernoff bounds (see, e.g.,
[Mitzenmacher and Upfal 05, p. 64]) give

Pr [zv ≥ (1 + ε)µ] ≤ exp(−kµε2/3),

Pr [zv ≤ (1 − ε)µ] ≤ exp(−kµε2/3).

Recall that ε = b−a
b , so a = (1 − ε)b and b > (1 + ε)a. The probability that a

low-reputation node is misclassified is

Pr [zv ≥ b | µ ≤ a] ≤ Pr [zv ≥ b | µ = a]

≤ Pr [zv ≥ (1 + ε)µ | µ = a]

≤ exp(−kaε2/3).

The probability that a high-reputation node is misclassified is

Pr [zv ≤ a | µ ≥ b] = Pr [zv ≤ (1 − ε)b | µ ≥ b]

≤ Pr [zv ≤ (1 − ε)µ | µ ≥ b]

≤ exp(−kµε2/3)

≤ exp(−kaε2/3).

Choosing k ≥ 3 ln(1/δ)
aε2 ensures that each node is misclassified with probability

at most δ, so the expected number of misclassified nodes is at most δ|V |. Fur-
thermore, by the union bound, the probability that any node is misclassified is
at most |V | exp(−kaε2/3), so choosing k ≥ 3 ln(|V |/δ)

aε2 ensures that all nodes are
classified correctly with probability at least 1 − δ.

6. Conclusion

As online environments become ubiquitous, it is vital to understand the inter-
play between participants, who are potentially selfish, and the tools we use to
understand and navigate the environment. This paper addresses this issue from
the perspective of a search engine: how can one measure link-based reputations
in a way that can’t easily be manipulated?

We have explored the use of hitting time to measure reputations, overcoming
a vulnerability in PageRank that allows selfish pages to boost their reputation
by using short cycles to trap the random walk. Theorem 3.1 shows that expected
hitting time and PageRank are really quite similar—for a given page, expected
hitting time can be obtained from PageRank via a multiplicative penalty term
that captures the extent to which the page participates in short cycles.
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Furthermore, hitting time is provably robust to manipulation. We show that
v cannot boost its reputation by manipulating outlinks, nor can it do too much
damage to the reputation of other pages; hence, v cannot advance too far in the
ranking. Finally, using hitting time, we can limit the effect of sybils simply by
limiting the restart probability granted to them; this in contrast to PageRank,
where significant gains can be made by using a single sybil to form a short cycle.

Hitting time is more costly to compute than PageRank. However, we present
a Monte Carlo algorithm that is suitable for the computation of hitting time
for all nodes in a very large graph. We also describe a sampling technique to
find the most important nodes very quickly—in some cases, with running time
independent of the size of the graph.

7. Appendix: Additional Proofs

Proof of Lemma 3.2. Recall that J is the time of the first success in a sequence of
independent trials that succeed with probability α, so Pr [J > t] = (1 − α)t and
Pr [J ≤ t] = 1 − (1 − α)t. We have

E [min(X, J)] =
∞∑

t=0

Pr [min(X, J) > t]

=
∞∑

t=0

∞∑
x=0

Pr [X = x] Pr [min(X, J) > t | X = x]

=
∞∑

x=0

Pr [X = x]
∞∑

t=0

Pr [min(x, J) > t] (using independence)

=
∞∑

x=0

Pr [X = x]
x−1∑
t=0

Pr [J > t]

=
∞∑

x=0

Pr [X = x]
x−1∑
t=0

(1 − α)t

=
∞∑

x=0

Pr [X = x]
1 − (1 − α)x

1 − (1 − α)

=
∞∑

x=0

Pr [X = x]
Pr [J ≤ x]

α

=
1
α

Pr [X ≥ J ] ,

which completes the proof.
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Proof of Lemma 4.5. Let G′ ∈ Nu(G). It is enough to show that

PrG [A ∩ [H(u) = t]] = PrG′ [A ∩ [H(u) = t]]

for all t ≥ 0. Let Wu,t be the set of all walks that first hit u at step t. Specifically,
Wu,t = {w0 . . . wt : wt = u, wi 	= u for i < t}. For w = w0 . . . wt, let Pr [w] be
shorthand for the probability of the walk w:

Pr [w] = Pr [X0 = w0] Pr [X1 = w1 | X0 = w0] . . .Pr [Xt = wt | Xt−1 = wt−1] .

Then for w ∈ Wu,t, the transition probabilities in the expression above are
independent of u’s outlinks, so PrG [w] = PrG′ [w]. Finally, since A is determined
by time H(u), there is a function IA : Wu,t → {0, 1} that indicates the occurrence
or nonoccurrence of A for each w ∈ Wu,t. Putting it all together gives

PrG [A ∩ [H(u) = t]] = PrG [H(u) = t] PrG [A | H(u) = t]

=
∑

w∈Wu,t

PrG [w] IA(w)

=
∑

w∈Wu,t

PrG′ [w] IA(w)

= PrG′ [A ∩ [H(u) = t]] ,

and the result.
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[Gyöngyi and Garcia-Molina 05b] Zoltán Gyöngyi and Hector Garcia-Molina. “Web
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