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An Efficient Vertex Addition
Method for Broadcast Networks
Hovhannes A. Harutyunyan

Abstract. Broadcasting is a basic problem of communication in usual networks. Many
papers have investigated the construction of minimum broadcast networks, the cheapest
possible broadcast network architecture (having the fewest communication lines), in
which broadcasting can be accomplished as fast as theoretically possible from any
vertex. Since this problem is very difficult, numerous papers have investigated ways to
construct sparse networks in which broadcasting can be completed in minimum time
from any originator. In this paper we introduce an efficient vertex addition method
that allows us to construct sparse networks and improve the best known upper bounds
on the broadcast function B(n) for many odd values of n. We also give the exact value
of B(127).

1. Introduction

Computer networks have become essential in several aspects of modern society.
The performance of information dissemination in networks often determines their
overall efficiency. One of the fundamental information dissemination problems
is broadcasting. Broadcasting is a process in which a single message is sent from
one member of a network to all other members. Inefficient broadcasting could
seriously degrade the performance of a network. Therefore, it is of major inter-
est to improve the performance of a network by using an efficient broadcasting
algorithm.

Broadcasting is an information-dissemination problem in a connected network,
in which one node, called the originator, must distribute a message to all other
nodes by placing a series of calls along the communication lines of the network.
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Once informed, the informed nodes aid the originator in distributing the message.
This is assumed to take place in discrete time units. The broadcasting is to be
completed as quickly as possible, subject to the following constraints:

• Each call involves only one informed node and one of its uninformed neigh-
bors.

• Each call requires one unit of time.

• A node can participate in only one call per unit of time.

• In one unit of time, many calls can be performed in parallel.

Formally, any network can be modeled as a connected graph G = (V, E), where
V is the set of vertices (or nodes) and E is the set of edges (or communication
lines).

Given a vertex u as the originator, we define the broadcast time b(u) of vertex
u as the minimum number of time units required to complete broadcasting from
vertex u. Note that for any vertex u in a connected graph G on n vertices,
b(u) ≥ �log n�, since during each time unit the number of informed vertices
can at most double. The broadcast time b(G) of the graph G is defined as
max{b(u) | u ∈ V }. The graph G is called a broadcast graph or broadcast
network if b(G) = �log n�.

The broadcast function B(n) is the minimum number of edges in any broadcast
graph (network) on n vertices. A minimum broadcast graph (mbg), or minimum
broadcast network (mbn), is a broadcast graph on n vertices with only B(n)
edges. Therefore, an mbg is the cheapest possible broadcast graph architecture
(having the fewest edges) in which broadcasting can be accomplished as fast as
theoretically possible from any vertex.

The problem of determining b(u) for a vertex u in an arbitrary graph is NP-
complete [Johnson and Garey 79]. The literature on this subject can be divided
primarily into two major areas: one on designing approximation algorithms to
determine b(u) for a vertex u in an arbitrary graph, the other on designing
minimum broadcast graphs.

For the first problem, several approximation algorithms with a polylogarithmic
ratio have been suggested [Bar-noy et al. 98, Ravi 94, Elkin and Kortsarz 02].
The best approximation algorithm is presented in [Elkin and Kortsarz 03].

The second problem is also very difficult. The values of B(n) and constructions
of mbgs are known only for some small values of n (n ≤ 63), n = 2p, and
n = 2p − 2. The broadcast function B(n) was studied in [Farley et al. 79]. The
authors showed that hypercubes are mbgs and that B(2p) = p2p−1 for any p ≥ 1.
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It was proved independently in [Khachatrian and Haroutunian 90] and [Dinneen
et al. 91] that B(2p − 2) = (p − 1)(2p−1 − 1) for any p ≥ 2.

Since mbgs seem to be extremely difficult to find, a long sequence of papers
presented techniques to construct broadcast graphs and to obtain upper bounds
on B(n) (see [Bermond et al. 95, Bermond et al. 92, Dinneen et al. 99, Farley 79,
Gargano and Vaccaro 89, Grigni and Peleg 91, Harutyunyan and Liestman 99,
Hedetniemi et al. 88, Khachatrian and Haroutunian 90, Knödel 75, Labahn 94]).

However, proving a lower bound that matches the obtained upper bound is
extremely difficult. The lower-bound proofs are based on the lower bound on
vertex degree. Minimum broadcast graphs on n = 2p and n = 2p − 2 vertices
are p-regular and (p − 1)-regular graphs, respectively, since in these cases there
are matched lower bounds on vertex degree. However, for other values of n the
best broadcast graphs are not regular, and so the upper bounds cannot match
the lower bounds based on vertex degree.

Several papers have presented methods for constructing broadcast graphs by
forming the compound of two known broadcast graphs (see [Bermond et al. 95,
Dinneen et al. 99, Harutyunyan and Liestman 99, Khachatrian and Haroutu-
nian 90]). These methods have proven effective for graphs on n = n1n2 vertices,
from two known broadcast graphs on n1 and n2 vertices. Broadcast graphs on
other sizes can sometimes be formed by adding or deleting vertices from known
broadcast graphs (see [Bermond et al. 92]). Unfortunately, there is no effective
method for vertex addition or vertex deletion. To obtain a broadcast graph on
n + 1 vertices from a broadcast graph on n vertices, one connects all n vertices
to the added vertex. A method based on compounding and merging several
vertices into one that allows the construction of the best broadcast graphs for
almost all values of n, including many primes, is presented in [Harutyunyan and
Liestman 99].

In this paper, we describe a more efficient method for vertex addition. To
construct a broadcast graph on an odd number of vertices from Knödel graphs
(which are the broadcast graphs on an even number of vertices) we add approx-
imately n/4 edges. This result improves the best known upper bound on B(n)
for many odd values of n, in particular for n = 2p − 1. Our vertex addition
method is based on a graph domination set.

Consider the problem of constructing an mbg on n = 2p − 1 vertices. The
exact value of B(2p − 1) is known for 2 ≤ p ≤ 6. Recently, we showed that
B(127) = 389 [Harutyunyan and Xu 04]. Some upper and lower bounds on
B(2p − 1) are also known in the literature [Farley 79, Harutyunyan and Liest-
man 99, Labahn 94]. The best lower and upper bounds on B(2p − 1) are as
follows: (p2(2p − 1))/(2(p + 1)) ≤ B(2p − 1) ≤ 2p−1(p − 1

2 ). The lower bound
is given in [Labahn 94], while the upper bound construction is presented in
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[Harutyunyan and Liestman 99]. See [Hedetniemi et al. 88] and [Fraigniaud and
Lazard 94] for a survey on this and related problems.

This paper is structured as follows. In Section 2, we introduce an effective
method of vertex addition, and using this method for Knödel graphs we construct
a broadcast graph on an odd number of vertices. This construction improves the
best known upper bound on B(n) for many values of n, including n = 2p − 1.
In Section 3 we show that B(127) = 389 by presenting a minimum broadcast
network on 127 vertices.

2. New Construction Method of Broadcast Networks

In this section, we introduce an efficient method for vertex addition based on a
dominating set. Using this method we will construct new broadcast graphs.

Definition 2.1. Modified Knödel graphs KGn = (V, E) are defined for even values of
n. The set of vertices is V = {0, 1, 2, . . . , n − 1}, and the set of edges is

E = {(x, y) | x ∈ V, y ∈ V, x + y = 2r − 1 mod n for 1 ≤ r ≤ �log n�}.

If x + y = 2s − 1 mod n for some s, 1 ≤ s ≤ �log n�, then x and y are called
s-dimensional neighbors.

The modified Knödel graph on n = 2p − 2 vertices is a minimum broadcast
graph (minimum broadcast network) [Khachatrian and Haroutunian 90, Haru-
tyunyan and Liestman 99]. First we will find a dominating set of modified Knödel
graphs on n = 2p − 2 vertices.

Definition 2.2. In a graph G = (V, E), a set S ⊆ V is called a dominating set if for
every u ∈ V \ S there exists a vertex v ∈ S such that (u, v) ∈ E.

First we will prove the existence of a dominating set of size 2p−2 in KG2p−2.

Lemma 2.3. Let S ⊆ V (KG2p−2) and

S = {2m | 0 ≤ m ≤ 2p−3 − 1} ∪ {2m + 1 | 2p−2 ≤ m ≤ 2p−2 + 2p−3 − 1}.

Then S is a dominating set of KG2p−2.
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Proof. Let

S = S1 ∪ S2,

S1 = {2m | 0 ≤ m ≤ 2p−3 − 1} = {0, 2, 4, 6, . . . , 2p−2 − 2},
S2 = {2m + 1 | 2p−2 ≤ m ≤ 2p−2 + 2p−3 − 1}

= {2p−1 + 1, 2p−1 + 3, . . . , 2p−1 + 2p−2 − 1}.
We must prove that for every vertex x ∈ V (KG2p−2) either x ∈ S or there exists
y ∈ S such that (x, y) ∈ E(KG2p−2).

Suppose x is odd. If 1 ≤ x ≤ 2p−1, then x can be expressed as x = 2�log x�− r,
where r is odd, 1 ≤ r ≤ 2�log x�−1 − 1, and 0 ≤ �log x� ≤ p − 1. Consider
the vertex y = r − 1. Since x + y = (2�log x� − r) + (r − 1) = 2�log x� − 1
and 0 ≤ �log x� ≤ p − 1, it follows that vertices x and y are connected. From
1 ≤ r ≤ 2�log x�−1 − 1 it follows that 0 ≤ r− 1 ≤ 2�log x�−1 − 2 ≤ 2p−2 − 2. Thus,
y = r − 1 ∈ S1, and any odd vertex x, where 1 ≤ x ≤ 2p−1 − 1, and vertex
y = 2�log x� − x − 1, y ∈ S, are �log x�-dimensional neighbors.

All the odd vertices 2p−1 +1, 2p−1 +3, . . . , 2p−1 +2p−2 − 1 belong to S2, and
consequently to S.

It remains to consider odd vertices 2p−1 + 2p−2 + 1, 2p−1 + 2p−2 + 3, . . . ,
(2p−1 + 2p−2) + (2p−2 − 3) = 2p − 3. It is easy to see that x = (2p−1 + 2p−2) + 1
is a neighbor of vertex y = 2p−2 − 2 ∈ S1, since x+ y = 2p − 1 = 1 mod (2p − 2).
Similarly, x = 2p−1 + 2p−2 + 3 is a neighbor of y = 2p−2 − 4 ∈ S1, because
x + y = 1 mod (2p − 2). In general, any vertex x = (2p−1 + 2p−2) + (2s − 1),
where 1 ≤ 2s − 1 ≤ 2p−2 − 3, is a neighbor (first-dimensional neighbor) of
y = 2p−2 − 2s ∈ S1, since x + y = 2p − 1 = 1 mod (2p − 2).

Therefore, every odd vertex x is a vertex in S or is a neighbor of a vertex in S.
Suppose x is even. All even vertices 0, 2, 4, . . . , 2p−2 − 2 belong to S1 and

consequently to S.
Consider even vertices 2p−2, 2p−2 +2, . . . , 2p−2 +(2p−2−2) = 2p−1−2. Then

y = 2p−1 + 2p−2 − 1 ∈ S2 is the first-dimensional neighbor of x = 2p−2, since
x+ y = 2p − 1 = 1 mod (2p − 2). Similarly, y = 2p−1 +2p−2 − 3 ∈ S2 is the first-
dimensional neighbor of x = 2p−2 + 2, since x + y = 2p − 1 = 1 mod (2p − 2). In
general, the first-dimensional neighbor of x = 2p−2+2s, where 0 ≤ 2s ≤ 2p−2−2,
is the vertex y = 2p−1+2p−2−2s−1, since x+y = 2p−1 = 1 mod (2p−2). Since
0 ≤ 2s ≤ 2p−2−2, it follows that 2p−1+2p−2−2p−2+2−1 ≤ y ≤ 2p−1+2p−2−1,
and so y = 2p−1 + 2p−2 − 2s − 1 ∈ S2. For example, x = 2p−1 − 2 is a neighbor
of y = 2p−1 + 1 ∈ S2, since x + y = 1 mod (2p − 2).

It remains only to consider the case that x is even and 2p−1 ≤ x ≤ 2p − 4.
We see that x = 2p−1 is a (p− 2)-dimensional neighbor of y = 2p−1 +2p−2 − 3

∈ S2, since x+y = 2p +2p−2−3 = 2p−2−1 mod (2p−2). Similarly, x = 2p−1+2
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Figure 1. Broadcast graph on 2p − 1 vertices.

is a (p − 2)-dimensional neighbor of y = 2p−1 + 2p−2 − 5 ∈ S2, since x + y =
2p+2p−2−3 = 2p−2−1 mod (2p−2). In general, any vertex x = 2p−1+2s, where
0 ≤ 2s ≤ 2p−2−4, is a (p−2)-dimensional neighbor of y = 2p−1 +2p−2−3−2s ∈
S2, since x + y = 2p−2 − 1 mod (2p − 2).

All even vertices 2p−1 +2p−2−2, 2p−1 +2p−2, . . . , (2p−1 +2p−2)+(2p−2−4) =
2p − 4 have a (p − 1)-dimensional neighbor in the set S.

The vertex x = 2p−1 + 2p−2 − 2 is a neighbor of y = 2p−1 + 2p−2 − 1 ∈ S2,
since x+ y = 2p−1−1 mod (2p −2). In general, any vertex x = 2p−1 +2s, where
2p−2 − 2 ≤ 2s ≤ 2p−1 − 4, is a neighbor of y = 2p − 3 − 2s in dimension p − 1,
since x + y = 2p−1 − 1 mod (2p − 2). Since 2p−2 − 2 ≤ 2s ≤ 2p−1 − 4, we have
2p−1 + 1 ≤ y ≤ 2p−1 + 2p − 2 − 1 and thus y ∈ S2.

Therefore, any x ∈ V (KG2p−2) either belongs to the set S or is a neighbor of
a vertex in S. Thus S is a dominating set.

Now we will present a new method of constructing broadcast graphs on 2p −1
vertices. The basic idea of this method is to construct a graph on 2p − 1 vertices
from the graph KG2p−2 by adding an extra vertex connected with all the vertices
of the dominating set S (Lemma 2.3). Consider the graph G = (V, E), with
V = {w, 0, 1, . . . , 2p − 3} and E = E(KG2p−2) ∪ E′, where E′ =

{
(w, u) | u ∈

S := {0, 2, 4, 6, . . . , 2p−2 − 2, 2p−1 + 1, 2p−1 + 3, . . . , 2p−1 + 2p−2 − 1}}. The
structure of the graph G is shown in Figure 1.

To broadcast from an arbitrary vertex of KG2p−2, all informed vertices call
neighbors in dimension j at time j for 1 ≤ j ≤ p− 1 and neighbors in dimension
1 at time p. This is called a dimensional broadcast scheme (1, 2, . . . , p−1, 1). We
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will use [Bermond et al. 97, Lemma 3] to describe a minimum-time broadcast
scheme in our new broadcast graph.

Lemma 2.4. [Bermond et al. 97] Any cyclic shift of a valid dimensional broadcast scheme
is also a valid dimensional broadcast scheme.

In other words, (i, i + 1, . . . , p− 1, 1, 2, . . . , i− 1, i) is a dimensional broadcast
scheme in Hp for any i, 1 ≤ i ≤ p − 1.

Theorem 2.5. B(2p − 1) ≤ 2p−1(p − 1
2 ) − (p − 1).

Proof. We will prove that graph G = (V, E) described above is a broadcast graph.
To prove this, we must describe a minimum-time broadcast scheme for every
originator u ∈ V .

If u is in the dominating set S of KG2p−2 (u ∈ S), then u informs all other
vertices of KG2p−2 according to the dimensional broadcast scheme (1, 2, . . . ,

p − 1, 1). Since u is idle at time unit p (u informed its 1-dimensional neighbor
at time 1), it sends the message to vertex w at time p.

If u is not in the dominating set S of KG2p−2 (u ∈ V (KG2p−2) \ S), there
must exist a vertex v ∈ S that is a neighbor of u. Then u+v = 2i−1 for some i,
where 0 ≤ i ≤ p− 1. According to lemma 2.3, (i, i+1, . . . , p− 1, 1, 2, . . . , i− 1, i)
is a dimensional broadcast scheme for the originator u in KG2p−2. Under this
broadcast scheme, in p time units all the vertices of KG2p−2 will be informed,
and vertices u and v will be idle at time p (since u already informed v at time 1).
Thus, vertex v will inform vertex w at time p, since v ∈ S and it is connected
with w.

The broadcast scheme from originator w in graph G is more complicated.
It is essentially the broadcast scheme of vertex 1 in graph KG2p−2 with minor
changes. First consider the dimensional broadcast scheme (1, 2, . . . , p−1, 1) from
originator 1 in KG2p−2. Recall that under this dimensional broadcast scheme,
vertex 1 sends the message to vertex 2i−2 at any time i, where i = 1, 2, . . . , p−1,
and then all vertices 2i − 2, 1 ≤ i ≤ p − 1, continue to broadcast according to
the dimensional broadcast scheme (1, 2, . . . , p − 1, 1).

At time p, vertices 0 and 1 are idle. Denote this broadcast scheme by S(1). To
broadcast in graph G from originator w, vertex w sends the message to vertex
2i − 2 at time i, where 1 ≤ i ≤ p − 2, and to vertex 2p−1 + 1 at time p − 1. All
vertices 2i − 2, for i = 1, 2, . . . , p − 2, continue the minimum-time dimensional
broadcasting (1, 2, . . . , p − 1, 1) in graph KG2p−2 as in broadcast scheme S(1).

Under the broadcast scheme S(1), vertex 2p−1 − 2 receives the message from
vertex 1 at time p − 1, and at time p it informs vertex 2p−1 + 1. Now, in the
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11

Figure 2. The scheme originating from vertex w.

broadcast scheme from originator w in G, vertex 2p−1 + 1 receives the message
from w at time p − 1 and can inform vertex 2p−1 − 2 at time p.

At time p, all the vertices except vertex 1 will have been informed. Since
vertex 0 is idle at time p (vertex 0 already called its neighbor 2r − 1 at time r,
for r = 2, . . . , p − 1), it can inform vertex 1 at time p. Figure 2 illustrates the
broadcast scheme from vertex w in G. Solid arrows represent the calls in graph
KG2p−2 from vertex 1 using the dimensional broadcast scheme (1, 2, . . . , p−1, 1).
Instead of these calls, the calls designated by the dotted arrows are made in graph
G from originator w.

Therefore, all vertices of graph G will be informed after time p from any
originator. Thus, graph G is a broadcast graph on 2p − 1 vertices. It is obvious
that the number of edges in G is equal to

(p − 1) (2p − 2)
2

+ |S| = (p − 1)
(
2p−1 − 1

)
+ 2p−2 = 2p−1

(
p − 1

2

)
− (p − 1).

So B(2p − 1) ≤ 2p−1(p − 1
2 ) − (p − 1).

Previously, the best known upper bound on B(2p − 1) was

B(2p − 1) ≤ 2p−1

(
p − 1

2

)
.
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Although our new upper bound gives only a small improvement, the method
of construction is new. The upper bound on B(2p − 1) will be further improved
if a dominating set of smaller size can be found in KG2p−2.

Similarly, we can use this method to construct broadcast graphs on any odd
number of vertices. To accomplish this, we will add a vertex to a modified Knödel
graph.

Consider the graph G′ = (V ′, E′), with V ′ = V (KGn−1) = {w, 0, 1, . . . , n− 2}
and E′ = E(KGn−1)∪E0, where E0 =

{
(w, u) | u ∈ S := {0, 2, 4, 6, . . . , 2p−2−2,

2p−1 + 1, 2p−1 + 3, . . . , 2p−1 + 2p−2 − 1}}.

Theorem 2.6. B(n) ≤ n−1
2 �log n� + 2�log n�−2.

We omit the proof of this theorem. Our vertex addition method can be applied
to graphs that have some properties similar to those of Knödel graphs.

3. B(127) = 389

In this section we will show that B(127) = 389 by constructing a minimum
broadcast graph on 127 vertices with 389 edges.

After careful studies of all known mbgs on 2p − 1 vertices, we found that they
share a common structure. All the mbgs on 2p − 1 vertices for p = 3, 4, 6 have
vertices of two types: vertices of degree p and those of degree p−1. The number
of vertices of degree p is �(2p − 1)/(p + 1)�, and the number of vertices of degree
p − 1 is n − �(2p − 1)/(p + 1)�.

All the vertices of degree p − 1 form a cycle of length n − �(2p − 1)/(p + 1)�
with some additional chords. Each vertex of degree p is a center of a star, which
is connected with p vertices of degree p− 1. In Figures 3 through 6 the mbgs on
7, 15, 31, and 63 vertices are presented.

The mbgs on 7, 15, and 63 vertices have the above-mentioned properties. In
[Dinneen et al. 99], another mbg on 15 vertices was proposed (Figure 4(a)).
In Figure 4 it is shown that this graph is isomorphic to the one from [Farley et
al. 79] (Figure 4(b)). The labeling of the vertices that shows their isomorphism
is presented in the figure.

The mbg on 31 vertices proposed in [Bermond et al. 92] uses six pentagons with
some additional edges between them (Figure 5(a)). We showed that this graph
is isomorphic to the one in Figure 5 (b), which has the properties mentioned
above. It has

⌈
25−1

6

⌉
= 6 vertices of degree 5, and 25 vertices of degree 4.

The vertices of degree 4 form a subgraph that contains a Hamiltonian cycle.
These vertices are labeled 0, 1, . . . , 24. This subgraph on 25 vertices contains
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Figure 3. An mbg on seven vertices.
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Figure 4. Isomorphic mbgs on 15 vertices.
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Figure 5. Isomorphic mbgs on 31 vertices.
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Figure 6. An mbg on 63 vertices.
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some additional chords that connect vertex i to i + 4 or i + 12. Also, every
vertex of this subgraph is connected to at least one vertex of degree 5 (vertices
25, 26, 27, 28, 29, 30).

All the mbgs on 7, 15, 31, and 63 vertices (the mbg on 63 vertices is presented
in Figure 6) have the described structural properties, and also,

B(2p − 1) =
p2(2p − 1)
2(p + 1)

for all 3 ≤ p ≤ 6. This led us to the problem of constructing an mbg on 127
vertices having a similar structure.

In [Labahn 94], the lower bound

B(2p − 1) ≥ p2(2p − 1)
2(p + 1)

is presented. This means that any broadcast graph on 127 vertices with 389
edges is a minimum broadcast graph on 127 vertices. This result was obtained
after massive simulations. Although the desired structural properties of an mbg
on 127 vertices are known in general, the chords that connect vertices on the
Hamiltonian cycle in the subgraph with vertices of degree 6 are very difficult to
find. In all previous cases (p = 3, 4, 6), these chords had length either a power
of two or the sum of two terms each a power of two.

Even this restriction left us with an extremely large number of cases to con-
sider. Our minimum broadcast graph G = (V, E) is formally described as fol-
lows: V = U ∪ U ′ = {0, 1, . . . , 126}, where U = {0, 1, 2, . . . , 110}, u ∈ U ,
deg(u) = 6, and U ′ = {111, 112, . . . , 126}, u′ ∈ U ′, deg(u′) = 7. In addition,
E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5 and |E| = 389. The subsets E1, . . . , E5 are defined
as follows:

• E1 =
{{0, 1}, {1, 2}, . . . , {u, u + 1}, . . . , {109, 110}, {110, 0}}. These edges

form a Hamiltonian cycle of 111 vertices of the set U .

• E2 =
{{0, 18}, {1, 19}, . . . , {u, u+18}, . . . , {92, 110}, {93, 0}, . . . , {110, 17}}.

These edges make chords across every 18 vertices on the Hamiltonian cycle.

• E3 =
{{0, 55}, {1, 56}, . . . , {u, u + 55}, . . . , {53, 108}, {54, 109}}. These

edges make chords across half of the cycle.

• E4 =
{{0, 111}, {1, 112}, . . . , {u, (u mod 16)+111}, . . . , {110, 125}}. These

edges connect vertices between U and U ′.

• E5 =
{{110, 126}}. This edge is a complement edge, which connects vertex

110 with vertex 126.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

p(i) - 0 113 2 59 98 99 25 9 64 9 29 105 124 13 16 111 110 0

t(i) 0 6 6 7 7 5 7 7 6 4 7 7 7 6 7 6 5 7 3

i 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

p(i) 18 75 22 77 118 25 80 27 9 46 124 48 86 111 32 52 36 18 55

t(i) 6 7 7 6 7 6 3 7 5 7 5 7 7 6 7 7 7 4 7

i 57 58 59 60 61 62 38 39 40 41 42 43 44 45 46 47 48 49 50

p(i) 56 59 77 5 43 80 93 38 58 120 43 25 62 27 64 65 111 48 113

t(i) 7 6 5 7 7 5 4 7 7 7 6 5 6 6 5 7 4 5 7

i 51 52 53 54 55 56 63 64 65 66 67 68 69 70 71 72 73 74 75

p(i) 106 115 116 55 0 38 8 111 64 67 49 115 87 117 16 54 18 92 93

t(i) 7 6 7 6 4 6 7 3 6 7 6 7 7 7 7 7 7 7 5

i 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

p(i) 77 124 79 80 111 80 64 101 29 103 117 118 89 120 91 36 93 0 93

t(i) 7 4 7 6 2 7 7 7 6 7 6 6 7 6 7 6 6 2 7

i 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

p(i) 126 111 98 80 98 45 46 84 48 49 120 105 122 15 124 0 0 1 18

t(i) 7 7 7 4 6 7 6 7 6 7 5 6 7 7 7 5 1 7 5

i 114 115 116 117 118 119 120 121 122 123 124 125 126

p(i) 19 36 5 38 55 24 25 42 75 44 93 62 110

t(i) 7 5 6 5 5 7 4 7 6 7 3 7 6

Table 1. Broadcast protocol of vertex 0.

Our mbg on 127 vertices is presented in Figure 7. Since the graph G is not
vertex-transitive, the broadcast schemes of different originators are different. Our
computer program generated a broadcast scheme that completes broadcasting
in seven time units from any originator of G. For natural reasons we do not
present all the broadcast schemes, all of which are presented in [Harutyunyan
and Xu 04].

In Table 1 we present only the broadcast scheme of vertex 0. The three rows
of the table show that vertex i is informed at time t(i), and it is informed by its
parent p(i).

Acknowledgments. The author would like to thank Xiangyang Xu for his help in drawing
figures and computer simulations.
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