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Preferential Attachment Random
Graphs with General Weight
Function
K. B. Athreya

Abstract. Start with graph G0 ≡ {V1, V2} with one edge connecting the two vertices V1,
V2. Now create a new vertex V3 and attach it (i.e., add an edge) to V1 or V2 with equal
probability. Set G1 ≡ {V1, V2, V3}. Let Gn ≡ {V1, V2, . . . , Vn+2} be the graph after n
steps, n ≥ 0. For each i, 1 ≤ i ≤ n+2, let dn(i) be the number of vertices in Gn to which
Vi is connected. Now create a new vertex Vn+3 and attach it to Vi in Gn with probability
proportional to w(dn(i)), 1 ≤ i ≤ n+2, where w(·) is a function from N ≡ {1, 2, 3, . . .}
to (0,∞). In this paper, some results on behavior of the degree sequence {dn(i)}n≥1,i≥1

and the empirical distribution {πn(j) ≡ 1
n

∑n
i=1 I(dn(i) = j)}n≥1 are derived. Our

results indicate that the much discussed power-law growth of dn(i) and power law
decay of π(j) ≡ limn→∞ πn(j) hold essentially only when the weight function w(·) is
asymptotically linear. For example, if w(x) = cx2 then for i ≥ 1, limn dn(i) exists and
is finite with probability (w.p.) 1 and π(j) ≡ δj1, and if w(x) = cxp, 1/2 < p < 1 then
for i ≥ 1, dn(i) grows like (log n)q where q = (1 − p)−1. The main tool used in this
paper is an embedding in continuous time of pure birth Markov chains.

1. Introduction

The following random graph sequence has been suggested as a model for many
real-world networks such as the Internet.

Start with graph G0 ≡ {V1, V2} with two vertices V1 and V2 and one edge
connecting them. Now create a new vertex V3 and connect it to one of V1 or V2

with equal probability. Set G1 ≡ {V1, V2, V3}. Let d1 = {d1(i), 1 ≤ i ≤ 3} be the
vector of degrees in G1, i.e., d1(i) is the number of edges in G1 that connect to Vi,
i = 1, 2, 3. Now add a new vertex V4 and connect it to Vi in G1 with probability
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proportional to w(d1(i)), i = 1, 2, 3, where w(·) is a function from N ≡ {1, 2, . . .}
to (0,∞). Set G2 ≡ {Vi, 1 ≤ i ≤ 4} and let d2 ≡ {d2(i), 1 ≤ i ≤ 4} be the vector
of degrees in G2.

Continuing this let Gn ≡ {Vi : 1 ≤ i ≤ n + 2} be the graph at step n with
degree vector

dn ≡ {dn(i) : 1 ≤ i ≤ n + 2}, (1.1)

where dn(i) is the number of vertices in Gn to which Vi is connected. Now add
vertex Vn+3 and connect it to vertex Vi of Gn with probability

w(dn(i))∑n+2
j=1 w(dn(j))

, 1 ≤ i ≤ n + 2.

Set Gn+1 ≡ {Vi : 1 ≤ i ≤ n + 3}, and so on. The object of the study in this
paper is the limiting behavior as n → ∞ of the degree vector sequence dn defined
in (1.1) and the empirical distribution of the degrees πn ≡ {πn(j)}j≥1, where

πn(j) ≡ 1
(n + 2)

n+2∑
i=1

I(dn(i) = j), j ≥ 1. (1.2)

Typically, the weight function w(·) is nondecreasing and hence this model
is referred to as a preferential attachment model in the literature. Albert and
Barabasi considered the special case w(x) ≡ x and claimed that this simple
model explains the empirically observed features in large networks such as the
power law decay of the degree distributions, small diameter, etc. (see [Albert
and Barabasi 02, Barabasi and Albert 99]). These were established rigorously
for this special case w(x) ≡ x in the works of Bollobás, Riordan, Spencer, and
Tardos and others (see [Bollobás et al. 01, Bollobás and Riordan 03, Cooper and
Frieze 03]).

There is now an extensive literature on the preferential attachment model. The
recent paper of Oliveira and Spencer [Oliveira and Spencer 05] and the books
of Durrett [Durrett 06] and Chung and Lu [Chung and Lu 06] have extensive
bibliographies on this subject.

More recently Athreya et al. considered the general linear case w(x) ≡ αx+β,
α > 0, β > 0, allowing at step n a random number Xn of connections of the new
vertex Vn+3 to the chosen vertex Vi in Gn ≡ {Vi : 1 ≤ i ≤ n+2}, where {Xn}n≥0

are independent and identically-distributed random variables, and established a
number of results similar to those of Theorem 2.3 of the present paper [Athreya
et al. 08].

The general model we propose above, i.e. with a general weight function w(·),
has also been studied by Krapivsky and Redner [Krapivsky and Redner 01],
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Oliveira and Spencer [Oliveira and Spencer 05], Drinea, Enachescu, and Mitzen-
macher [Drinea et al 01], and others. Rather than summarizing the results from
all these papers, we focus on the latest one by Oliveria and Spencer [Oliveira and
Spencer 05]. For the case w(x) = (x+1)p, p > 1, with 1+ 1

k < p < 1+1/(k− 1)
for some integer k > 1, they show that the eventual graph has the property that
there is one distinguished vertex v that has an infinite number of descendants
while all but a finite number of nodes have less than k descendants. They also
establish a refinement of this.

The case w(x) ∼ cxp with p < 1 has been treated by Rudas, who shows that
the degree distribution decays like exp

( − c
∑k−1

j=0 (w(j))−1
)

for some 0 < c <

∞ [Rudas 04]. A result related to this is Theorem 2.2 of this paper, which asserts
that dn(i) grows like (log n)q, where q = (1 − p)−1.

The present paper treats the general case of the weight function w(·) in a uni-
fied manner. We have results for the three cases: w(·) asymptotically superlinear,
linear, and sublinear. We wish to emphasize that we assume only that w(·) has
the appropriate growth rate and do not assume an exact form for w(·) except in
the linear case. Our method involves an embedding of the discrete sequence of
graphs {Gn}n≥0 in a continuous time setting involving a sequence of pure birth
continuous time Markov chains and then using some recently established limit
theorems for such processes (see [Athreya 08]).

Historically speaking, the technique of embedding a discrete sequence of ran-
dom variables in continuous time processes has been known for at least forty
years. The present author used this technique in his PhD thesis to prove
limit theorems for the well-known Polya urn scheme and its generalized versions
(see [Athreya 67, Athreya and Karlin 68, Athreya and Ney 04]). For applications
of this embedding technique to clinical trials, see [Rosenberger 02].

Embedding methods similar to the one in the author’s thesis [Athreya 67] have
been used to study random graph sequence growth properties by a number of
authors (see [Durrett 06, Chung and Lu 06]).

Our results indicate a natural trichotomy in the limiting behavior depending
on whether w(·) is asymptotically superlinear, sublinear, or linear (see Theorems
2.1, 2.2, and 2.3).

Our results suggest that the much discussed power-law growth of the degree
sequence dn(·) and the power-law decay of the limiting distribution of the degree
sequence occur essentially only when w(·) is asymptotically linear.

In the superlinear case, i.e.
∑∞

n=1 1/w(n) < ∞, we show (see Theorem 2.1)
that there are only two possibilities:

1. either each vertex stops getting any new connections after some random
time, i.e., for all i, dn(i) has a finite limit as n → ∞,
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2. or for each vertex Vi, there is positive probability that eventually all new
vertices choose only Vi and hence for all j �= i, dn(j) has a finite limit as
n → ∞, and further, for large j, Vj has no descendants.

And in either case the empirical degree distribution converges to the delta
distribution at 1.

In the linear case (see Theorem 2.3) the results from [Athreya et al. 08] carry
over.

In the sublinear case (see Theorem 2.2), when w(x) ∼ cxp with 1/2 < p < 1,
for each i, dn(i) grows like (log n)q where q = (1 − p)−1.

2. Main Results

Let {Gn,dn, πn, w(·)}n≥0 be as in the previous section.

Theorem 2.1. (Superlinear Case.) Let
∞∑

n=1

1
w(n)

< ∞. (2.1)

(a) If, in addition to (2.1),
∞∑

n=1

n

n + w(n)
= ∞, (2.2)

then, ∀ i ≥ 1,
lim

n→∞ dn(i) ≡ ξi < ∞ exists w.p. 1. (2.3)

(b) If, in addition to (2.1),
∞∑

n=1

n

n + w(n)
< ∞, (2.4)

then, ∀ i ≥ 1, pi ≡ P (Ai) > 0 where

Ai ≡ {∃ a random ni < ∞ such that ∀ n ≥ ni, the vertex in Gn

that gets connected to the new vertex Vn+3 is Vi}. (2.5)

(c) Under (2.1),

∀ j ≥ 1, πn(j) ≡ 1
n

n+2∑
i=1

I(dn(i) = j) → δ1j (2.6)

w.p. 1 where δ11 = 1 and δ1j = 0 for j �= 1.
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Corollary 2.2. Let w(n) ∼ cnp for some c > 0 and p > 1.

(a) If 1 < p ≤ 2, then ∀ i ≥ 1

lim
n→∞ dn(i) ≡ ξi < ∞ exists w.p. 1.

(b) If p > 2, then ∀ i ≥ 1, there is positive probability pi that for some random
ni < ∞, and for all n ≥ ni,

dn(i) = dni(ni) + (n − ni).

Remark 2.3. Condition (2.1) suggests that w(n) grows faster than at a linear rate
and hence we say that w(·) is superlinear. If (2.1) and (2.2) hold, then (2.3)
suggests that for large n, dn(i) does not grow at all, while if (2.1) and (2.4) hold,
then (2.5) suggests that except possibly at one vertex, the degree dn(i) does not
grow at all and for all but a finite number, the degree stays at one. Finally, (2.6)
says that {πj ≡ limn πn(j)} is degenerate at 1.

Theorem 2.4. (Sublinear Case.) Let w(·) satisfy

lim
n→∞

w(n)
cnp

= 1 for some c > 0,
1
2

< p < 1.

Then, there exist a nonrandom sequence {c(n)}n≥1 and a constant 0 < α < ∞
such that

(a)

∀ i ≥ 1,
dn(i)

(c(n))q
→ α w.p. 1, where q = (1 − p)−1.

(b)

0 < c1 ≡ lim
c(n)
log n

≤ lim
c(n)
log n

= c2 < ∞.

Remark 2.5. This result suggests that if w(·) grows at a sublinear rate then dn(i)
grows like (log n)q and hence there is no power-law growth in this case also.

Theorem 2.6. Let w(n) = cn + β, c > 0, c > −β. Let dn(i) and πj(n) be as in (1.1)
and (1.2), respectively. Then,
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(a) ∃ independent absolutely continuous positive random variables {ξi}i≥1 and
V such that ∀ i ≥ 1,

dn(i)
nθ

→ ξiV w.p. 1 as n → ∞,

where θ = c/(2c + β);

(b) if
Mn ≡ max{dn(i) : 1 ≤ i ≤ (n + 2}

and In is an index such that dn(In) = Mn, then

lim
n→∞

Mn

nθ
≡
(

max
1≤i<∞

ξi

)
V < ∞ w.p. 1

and
lim

n→∞ In ≡ I < ∞ exists w.p. 1;

(c) let
pj(y) ≡ P (Z(y) = j), j ≥ 1,

where {Z(y) : y ≥ 0} is a pure birth Markov process with Z(0) = 1 and
birth rates λi ≡ ci + β. Then, ∀ j ≥ 1, as n → ∞,

πn(j) −→ πj ≡ α

∫ ∞

0

pj(y)e−αydy in probability,

where α = (2c + β)−1, and further

lim
j→∞

j−(3+β/c)πj ≡ γ

exists and 0 < γ < ∞.

Remark 2.7. Theorem 2.6 confirms for the linear weight function the power-law
growth of the degrees dn(i) as well as that of the maximal degree and the power-
law decay of {πj}, phenomena observed empirically in some networks such as
social networks and the Internet (see [Albert and Barabasi 02]). Further, part
(b) says that the vertex that has the maximal degree freezes in time for large n.

Theorem 2.8. Let w(n) ≡ c > 0. Then,

(a)

∀ i ≥ 1,
dn(i)
(log n)

→ 1 w.p. 1.
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(b)

∀ j ≥ 1, πn(j) ≡ 1
n

n+2∑
i=1

I(dn(i) = j) → 1
2j

≡ πj in probability.

Remark 2.9. Note that in this case πj decays geometrically fast. This case was
treated by Erdős and Rényi in the 1950s (see [Durrett 06]).

These results are established by an embedding of the discrete time random
graph sequence {Gn, dn}n≥0 in a sequence of continuous time pure birth Markov
chains. This embedding is treated in the next section. The proofs of the main
results (Theorems 2.1, 2.4, 2.6, and 2.8) are given in the last section.

3. The Embedding Theorem

Definition 3.1. A pure birth process with rate function w(·) is a continuous time
Markov chain {Z(t) : t ≥ 0} with state space N+ ≡ {0, 1, 2, . . .} and infinitesimal
generator A ≡ ((aij

)
) with aii = −w(i), aij = w(i) if j = i + 1, and aij = 0 if

j �= i or i + 1. Assume that w(i) > 0 for all i ≥ 0. It is constructed as follows.
Let Z(0) = i0. Let {Lj}j≥0 be independent exponential random variables with
ELj =

(
w(i0 + j)

)−1, j ≥ 0. Let T0 = 0, Tj =
∑j−1

i=0 Li, j ≥ 1. Now set

Z(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

i0, T0 = 0 ≤ t < T1,
i0 + 1, T1 ≤ t < T2,
i0 + j, Tj ≤ t < Tj+1,
...

(3.1)

The sequences {Tj}j≥0 are called the jump or birth times of {Z(t) : t ≥ 0}. Let
T∞ ≡ limn→∞ Tn. Then for any λ ≥ 0

E
(
e−λT∞

)
=

∞∏
j=0

w(i0 + j)
λ + w(i0 + j)

. (3.2)

Thus, if
∑∞

i=1 1/w(i) = ∞ then E
(
e−λT∞

)
= 0 ∀ λ > 0 and hence P (T∞ =

∞) = 1. On the other hand, if
∑∞

i=1 1/w(i) < ∞ then E
(
e−λT∞

)
> 0 for

∀ λ > 0 and limλ↓0 E
(
e−λT∞

)
= 1 and hence P (T∞ < ∞) = 1. Summarizing

this we get the following well-known nonexplosion criterion.

Proposition 3.2. Let {Z(t) : t ≥ 0} be as in (3.1). Then, P (T∞ = ∞) = 0 or 1
accordingly as

∑∞
1 1/w(i) = ∞ or < ∞.
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Now let {Zi(t) : t ≥ 0}i≥1 be independent and identically-distributed copies
of {Z(t) : t ≥ 0} as in (3.1) with Z(0) = 1. Let, ∀ i ≥ 1, {Tij}j≥0 be the jump
times of {Zi(t) : t ≥ 0}. Now define a new sequence of random times {τn}n≥0

as follows. Let

τ0 ≡ 0,

τ1 ≡ min{T11, T21},

the first time a birth takes place in either of the two processes {Zi(t) : t ≥ 0},
i = 1, 2. Now “start” the process {Z3(t) : t ≥ 0} at time τ1.

Let τ2 be the first time after τ1 that a birth takes place in any of the three
processes {Z1(t) : t ≥ 0}, {Z2(t) : t ≥ 0}, and {Z3(t− τ1) : t ≥ τ1}. Now “start”
the process {Z4(t) : t ≥ 0} at time τ2. Let τ3 be the first time after τ2 that a
birth takes place in any of the four processes {Z1(t) : t ≥ 0}, {Z2(t) : t ≥ 0},
{Z3(t − τ1) : t ≥ τ1}, and {Z4(t − τ2) : t ≥ τ2}, and so on. It can be checked
that {τi}i≥1 satisfy the following recurrence relation: let τ−1 = 0 = τ0 and

T̃ij = τi−2 + Tij , j ≥ 0, i ≥ 1,

τ1 = min{T̃ij, T̃2j : T̃ij > τ0, j ≥ 1},
τ2 = min{T̃ij : T̃ij > τ1, i = 1, 2, 3, j ≥ 1},

and for n ≥ 1

τn = min{T̃ij : j ≥ 1, 1 ≤ i ≤ n + 1, T̃ij > τn−1}. (3.3)

Theorem 3.3. (The Embedding Theorem.) Let {Zi(t) : t ≥ 0}i≥0 and {τn}n≥0 be as defined
above and in (3.3). Let

d̃n(i) ≡ Zi(τn − τi−2), 1 ≤ i ≤ n + 2,

and
d̃n ≡ (d̃n(i), 1 ≤ i ≤ n + 2), n ≥ 0.

Let dn, n ≥ 0 be the degree vector sequence as defined in (1.1) for the random
graph sequence {Gn}n≥0 in Section 1. Then, the two sequences of random vectors
{dn : n ≥ 0} and {d̃n : n ≥ 0} have the same distribution.

Proof. By construction, {dn : n ≥ 0} has the Markov property. Next, by the
strong Markov property of the {Z(t) : t ≥ 0}, the sequence (d̃n)n≥0 also has
the Markov property. Since d0 = (1, 1) = d̃0 w.p. 1, it suffices to show that the
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transition probability mechanism at stage n is the same for both sequences for
all n ≥ 0. Let N ≡ {1, 2, 3, . . .}. Then, for each n, dn and d̃n ∈ Nn+2. Consider
the distribution of dn+1 given dn = xn ≡ (x1, x2, . . . , xn+2). From the model
description in Section 1, it follows that

P
(
dn+1 = (x1, x2, . . . , xi−1, xi + 1, xi+1, . . . , xn+2, 1) | dn = xn

)
=

w(xi)∑n
j=1 w(xj)

(3.4)
for i = 1, 2, . . . , n + 2. Similarly, given all the information unto time τn, the
“birth” at time τn+1 occurs in the process {Zi(t) : t ≥ 0} with probability

w(Zi(τn − τi−2))∑n+2
j=1 w(Zj(τn − τj−2))

for i = 1, 2, . . . , n + 2.

This is due to the fact that if Y1, Y2, . . . , Yk are independent exponential random
variables with means {λ−1

i }n
i=1,then Y = min(Y1, Y2, . . . , Yk) is also exponen-

tially distributed with mean

(
k∑
1

λi

)−1

and P (Y = Yi) =
λi

(
∑k

1 λi)
, i = 1, 2, . . . , k.

Thus, for any xn ≡ (x1, x2, . . . , xn+2),

P
(
d̃n = (x1, x2, . . . , xi−1, xi + 1, xi+1, . . . , xn+2) | d̃n = xn

)
=

w(xi)∑n+2
j=1 w(xj)

.

(3.5)
Now (3.4) and (3.5) show that the conditional distribution of dn+1 given dn =

xn is the same as the conditional distribution of d̃n+1 given d̃n = xn for any
xn ∈ Nn+2. This completes the proof.

Next we establish a few key results on the random sequences {Ti∞ ≡ limn Tin}i≥1

and τ∞ ≡ limn→∞ τn.

Theorem 3.4. Let ∞∑
n=1

1
w(n)

< ∞.

Then,

(a) ∀ i, Ti∞ < ∞ w.p. 1,

(b) ∀ i < j, P (τi−2 + Ti∞ = τj−2 + Tj∞) = 0.
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Proof. Part (a) follows from Proposition 3.2. Alternately,

ETi∞ = lim
n→∞ETin = lim

n→∞

n∑
j=1

1
w(j)

=
∞∑

j=1

1
w(j)

< ∞,

and hence P (Ti∞ < ∞) = 1.
From the embedding and the definition of {τn} in (3.3), it follows that ∀ i, n,

τn ≤ τi−2 + T∞,

and hence τ∞ ≤ τi−2 + Ti∞.
For any i < j

P (τi−2 + Ti∞ = τj−2 + Tj∞) = E
(
P (Tj∞ + τj−2 = τi−2 + Ti∞ | Fj)

)
,

where Fj is the σ-algebra generated by

{Zr(t − τr−2), t ≥ τr−2, 1 ≤ r ≤ j − 1, τj−2}.

Since Tj∞ is independent of Fj and has a continuous distribution and since
τi−2 − τj−2 + Ti∞ is Fj measurable,

P (Tj∞ = τi−2 − τj−2 + Ti∞ | Fj) = 0 w.p. 1.

Thus part (b) follows.

Theorem 3.5. Let ∞∑
n=1

1
w(n)

< ∞. (3.6)

(a) Then the event
Ai ≡ {τ∞ = τi−2 + Ti∞}

coincides with the event

Ãi ≡
{
∃ ni < ∞ random such that τn ∈ {τi−2+Tij , j ≥ 1} for all n ≥ ni

}
.

(b) If, in addition to (3.6),

∞∑
n=1

n

n + w(n)
= ∞, (3.7)

then ∀ i, τ∞ < τi−2 + Ti∞ w.p. 1.
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(c) If, in addition to (3.6),

∞∑
n=1

n

n + w(n)
< ∞, (3.8)

then ∀ i, pi ≡ P (Ai) > 0.

Proof.

(a) If there are two subsequences, one each from

{τi−2 + Tij , j ≥ 1} and {τ�−2 + T�j, j ≥ 1}
for some (i, �), i �= � such that τn belongs to each of them infinitely often,
then letting n → ∞ would yield τ∞ = τi−2 + Ti∞ = τ�−2 + T�∞. But,
by Theorem 3.4(b), this event has probability zero. Thus, on the event
Ai, {τ∞ < τ�−2 + T�∞} for every � �= i w.p. 1 and hence w.p. 1 on Ai,
τn ∈ {τi−2 + Tij , j ≥ 1} for all large n. Conversely, on Ãi, τ∞ ≡ lim τn =
τi−2 + Ti∞. Thus ∀ i, Ãi = Ai w.p. 1 proving (a).

(b) Let Aik be the event τn ∈ {τi−2 +Tij , j ≥ 1} for all n ≥ k. Then Aik → Ai

as k → ∞ and

P (Aik) = E

⎛
⎝ ∞∏

n=k

w(d̃k(i) + n)(∑k
j=1
j �=i

w(d̃k(j)) + w(d̃k(i) + n) + (n − k)w(1)
)
⎞
⎠ .

Suppose (3.7) holds, then

∞∑
n=k

(n − k)w(1) +
∑k

j=1
j �=i

w(d̃k(j))(
(n − k)w(i) +

∑k
j=1
j �=i

w(d̃k(j)) + w(d̃k(i0) + n)
) = ∞.

Thus, P (Aik) = 0. This being true ∀ k, P (Ai) = limk P (Aik) = 0. This
proves (b).

(c) Suppose (3.8) holds. Then, ∀ i, k, P (Aik) > 0. Since Aik → Ai as k → ∞,
P (Ai) > 0.

There is an open question: under (3.8) is
∑∞

1 P (Ai) = 1?

Theorem 3.6. Let
inf w(j) = δ > 0. (3.9)
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(a) Then, there is a nonrandom sequence {c(n)}n≥0 such that {τn − c(n)}n≥0

is a L2 bounded martingale and hence converges w.p. 1 and in mean square
to a random variable Y with an absolutely continuous distribution.

(b) Suppose, in addition to (3.9), w(·) is sublinear, i.e., for some

c > 0, |β| < ∞, w(n) ≤ cn + β, n ≥ 1. (3.10)

Then,

(i)
τn → ∞ w.p. 1.

(ii)
1

(2c + β)
≤ lim

n

c(n)
log n

≤ lim
n

c(n)
log n

≤ 1
δ
.

(iii) If w(n) = cn + β for all n ≥ 1,

lim
n

c(n)
log n

=
1

(2c + β)
.

Proof.

(a) By construction ∀ j ≥ 1, conditioned on Fj (defined in the proof of Theo-
rem 3.4), τj+1 − τj has an exponential distribution with mean

⎛
⎝(j+2)∑

k=1

w(dj(k))

⎞
⎠

−1

≡ bj , say.

Then, {δj ≡ (τj+1 − τj) − bj,Fj}j≥0 is a martingale difference sequence
such that E(δ2

j ) = b2
j . From (3.9), b2

j ≤ (j + 2)2δ2, implying that

∞∑
j=1

b2
j ≤ 1

δ2

∞∑
j=1

1
j2

< ∞.

Thus {
n−1∑

0

δj ≡ τn − c(n), n ≥ 0, Fn

}
n≥0

is a L2 bounded martingale where c(n) =
∑n−1

j=0 bj , n ≥ 1. This implies
that {τn−c(n)}n≥0 converges w.p. 1 and in mean square (see [Athreya and
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Lahiri 06, Theorem 3.3.9]). If Y ≡ limn(τn−c(n)) and Y1 = Y −(τ1−c(1)),
then τ1 − c(1) and Y1 are independent with τ1 − c(1) having an absolutely
continuous distribution and hence Y has an absolutely continuous distri-
bution.

(b) Since (3.10) holds,

n−1∑
j=0

bj ≥ 1
(2c + β)

n−1∑
j=1

1
j

=⇒ c(n) ≥ 1
(2c + β)

n−1∑
j=1

1
j

=⇒ lim
n

c(n)
log n

≥ 1
(2c + β)

.

Also, since (3.9) holds,

c(n) =
n−1∑
j=0

bj ≤ 1
δ

n∑
j=1

1
j

and hence

lim
n

c(n)
log n

≤ 1
δ

proving (b).

If w(n) = cn + β, n ≥ 1, then b−1
j = (2c + β)(j + 2), ∀ j ≥ 0

=⇒ c(n) =
1

(2c + β)

n−1∑
j=0

1
(j + 2)

=⇒ lim
n

c(n)
log n

=
1

(2c + β)
.

4. Proofs of Main Results

The following results proved in [Athreya 08] will be needed in the proofs of
Theorems 2.1, 2.4, 2.6, and 2.8.

Theorem 4.1. Let {Z(t) : t ≥ 0} be a pure birth process as defined in Definition 3.1
with Z(0) = 1.

(a) Let
∑∞

i=1
1

w(i) = ∞,
∑∞

i=1
1

w2(i) < ∞. Then, for some 0 < c < ∞,

lim
t→∞Z(t)e−ct ≡ ξ exists w.p. 1
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with P (0 < ξ < ∞) = 1 iff

lim
n→∞

n∑
i=1

( 1
w(i)

− 1
ci

)
exists and is finite.

Further, ξ has an absolutely continuous distribution on (0,∞).

(b) Let
∑∞

i=1
1

w(i) = ∞ and

lim
n→∞

( n∑
i=1

1
w2(i)

)/( n∑
i=1

1
w(i)

)2

= 0.

Then, for some 0 < c < ∞, 0 < q < ∞

lim
t→∞

Z(t)
tq

= c in probability

iff lim
n→∞

( n∑
i=1

1
w(i)

)
n−p = c−1/p, p =

1
q
.

Proof of Theorem 2.1. By the embedding theorem (Theorem 3.3), to show (2.3)
it suffices to show that ∀ i ≥ 1, limn→∞ d̃n(i) ≡ ξ̃i < ∞ exists w.p. 1 where
d̃n(i) ≡ Zi(τn − τi−2) as defined in (3.2). Now from Theorem 3.4, ∀ i ≥ 1,
Ti,∞ < ∞ w.p. 1. Further, from Theorem 3.5(b), ∀ i, τ∞ − τi−2 < Ti,∞ w.p. 1.
Thus, d̃n(i) ↑ Zi(τ∞− τi−2) ≡ ξ̃i < Zi(Ti,∞− τi−2) < ∞ w.p. 1. This proves (a).

From Theorem 3.5(c) and (a), ∀ i ≥ 1, P (τ∞−τi−2 = Ti,∞) > 0 and the event
{τ∞ − τi−2 = Ti,∞} coincides with the event Ai.

Thus, ∀ i ≥ 1, P (Ai) > 0, proving (b).
By Theorem 3.4,

d̃n(i) ↑ ξ̃i ≡ Zi(τ∞ − τi−2) w.p. 1.

Also by Theorem 3.4, at most one event Ai happens. So w.p. 1 except possibly
for one random index J , τ∞ − τi−2 < Ti,∞ for all i �= J . Hence, ∀ j ≥ 1, i ≥ 1,

∣∣I(d̃n(i) = j) − I(ξ̃i = j)
∣∣ I(i �= J)

≤ I
(
|Zi(τn − τi−2) − Zi(τ∞ − τi−2)| ≥ 1

)
I(J �= i)

≤
(
I
(

sup
0<u<v<δ

|Zi(u) − Zi(v)| ≥ 1
)

+ I(τn − τi−2 ≥ δ)
)

I(J �= i).
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Thus

∣∣∣ 1
n

n∑
i=1

(
I(d̃n(i) = j) − I(ξ̃i = j)

)∣∣∣
≤ 1

n
+

1
n

n∑
i=1

(
I
(

sup
0<u<v<δ

|Zi(u) − Zi(v)| ≥ 1
)

+ I(τn − τi−2 ≥ δ)
)
.

Now
1
n

n∑
i=1

I(τn − τi−2 ≥ δ) ≤ ε +
1
n

∑
i>nε

I(τn − τi−2 ≥ δ).

Since τn ↑ τ∞ < ∞, it follows that ∀ δ > 0, ε > 0

sup
i>nε

I(τn − τi−2 ≥ δ) ≤ I(τn − τnε−2 ≥ δ) → 0, w.p. 1 as n → ∞.

Also, by the strong law of large numbers (SLLN), w.p. 1,

lim
n→∞

1
n

n∑
i=1

I
(

sup
0<u<v<δ

|Zi(u) − Zi(v)| ≥ 1
)

= P
(

sup
0<u<v<δ

|Zi(u) − Zi(v)| ≥ 1
)
≡ p1(δ), say.

Thus, w.p. 1, for any δ > 0, ε > 0,

lim
n→∞

∣∣∣ 1
n

n∑
i=1

(
I(d̃n(i) = j) − I(ξ̃i = j)

)∣∣∣ ≤ p1(δ) + ε.

Now as δ ↓ 0, p1(δ) ↓ 0. So, w.p. 1

lim
n→∞

∣∣∣ 1
n

n∑
i=1

I(d̃n(i) = j) − 1
n

n∑
i=1

I(ξ̃i = j)
∣∣∣ = 0. (4.1)

Next I(ξ̃i = j) = I(Zi(τ∞ − τi−2) = j), and as before, for δ > 0.

∣∣∣ 1
n

n∑
i=1

(
I(ξ̃i = j) − I(Zi(0) = j)

)∣∣∣
≤ 1

n
+

1
n

n∑
i=1

I(Zi(δ) − Zi(0) ≥ 1) +
1
n

n∑
i=1

I(τ∞ − τi−2 ≥ δ).

Again, by SLLN, w.p. 1,

lim
n→∞

1
n

n∑
i=1

I(Zi(δ) − Zi(0) ≥ 1) → P (|Zi(δ) − Zi(0)| ≥ 1) ≡ p2(δ), say.
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Also, since τi ↑ τ∞ < ∞ w.p. 1

1
n

n∑
i=1

I(τ∞ − τi−2 ≥ δ) → 0 w.p. 1, ∀ δ > 0.

Now as δ ↓ 0, p2(δ) ↓ 0. So w.p. 1

lim
n→∞

∣∣∣ 1
n

n∑
i=1

I(d̃n(i) = j) − 1
n

n∑
i=1

I(ξ̃i = j)
∣∣∣ = 0. (4.2)

Now by hypothesis Zi(0) = 1 ∀ i ≥ 1. So

1
n

n∑
i=1

I(Zi(0) = j) → δ1j ≡
{

1 if j = 1,
0 if j �= 1.

(4.3)

From (4.1)–(4.3) it follows that, w.p. 1,

π̃n(j) ≡ 1
n

n∑
i=1

I(d̃n(i) = j) → δ1j .

Now by the embedding theorem (i.e., Theorem 3.3),

πn(j) ≡ 1
n

n∑
i=1

I(dn(i) = j) → δ1j w.p. 1,

proving Theorem 2.1(c).
Thus Theorem 2.1 is fully proved.

Proof of Theorem 2.4. By Theorem 4.1(b) there exist α, 0 < α < ∞, such that ∀ i ≥ 1,

lim
t↑∞

Zi(t)
tq

= α exists w.p. 1, 0 < α < ∞.

The sequence w(n) ∼ c1n
p, c > 0, 1

2 < p < 1 implies that w(·) is sublinear.
Indeed, for some |β| < ∞, 0 < c < ∞, w(n) ≤ cn + β for all n ≥ 1.

Also, by Theorem 3.6, there exists a sequence {c(n)}n≥1 such that ∀ i ≥ 1

{τn − τi−2 − c(n)}

converges w.p. 1 and in L2 (and hence (τn − τi−2)/c(n) → 1) w.p. 1 and

1
(2c + β)

< lim
c(n)
log n

≤ lim
c(n)
log n

≤ 1
δ
.
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Thus, ∀ i ≥ 1,
d̃n(i)

(c(n))q
≡ Zi(τn − τi−2)

(τn − τi−2)q

( (τn − τi−2)
c(n)

)q

.

As n → ∞, the right side converges w.p. 1 to α. So, by the embedding theorem
(Theorem 3.3), Theorem 2.4 follows.

Proof of Theorem 2.6. This has been proved under the assumption β > 0 [Athreya
et al. 08]. Now, using Theorem 4.1(a), the proofs in that reference can be
extended to the present case where β need not be positive.

Proof of Theorem 2.8. If w(n) ≡ c > 0 then τn − 1
c log n converges w.p. 1 and in mean

square. By Theorem 4.1 (b), ∀ i ≥ 1

d̃n(i)
(τn − τi−2)

=
Zi(τn − τi−2)

τn − τi−2
→ c w.p. 1,

yielding d̃n(i)/ logn → 1 w.p. 1 proving Theorem 2.8(a).
The second part follows from the proof of Theorem 1.2 in [Athreya et al. 08]

and noting that in the special case of a Poisson process with rate c, the expression
for πj reduces to 1

2j , j ≥ 1.
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