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Exchangeable Random Networks
F. Bassetti, M. Cosentino Lagomarsino, and S. Mandrà

Abstract. We introduce and study a class of exchangeable random graph ensembles.
They can be used as statistical null models for empirical networks, and as a tool for
theoretical investigations. We provide general theorems that characterize the degree
distribution of the ensemble graphs, together with some features that are important
for applications, such as subgraph distributions and kernel of the adjacency matrix.
A particular case of directed networks with power-law out–degree is studied in more
detail, as an example of the flexibility of the model in applications.

1. Introduction

Random graphs have attracted much interest as null and positive models for
many real-world systems involving many interacting agents, such as the Inter-
net, epidemics, and social and biological interactions (see, for instance, [Stro-
gatz 01, Newman 03a, Newman et al. 06, Montoya et al. 06]). In many of these
instances, one is naturally confronted with properties that differ from the classical
Erdős-Rényi model. We recall that, in the Erdős-Rényi model, edges in the graph
exist independently from each other, with a fixed probability (dependent on the
dimension of the graph). While for the Erdős-Rényi model analytical expressions
for many of the relevant observable properties of the graph (such as the diameter,
clustering coefficient, component size distributions, subgraph distribution, giant
component, etc.) are available, less is known for other kinds of models. In recent
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years, in connection with the availability of large-scale data on real-life networks,
many studies addressing random graph models going beyond the Erdős–Rényi
model have appeared. Two studies that are worth mentioning are the so-called
“small-world” model [Watts and Strogatz 98] and the preferential-attachment
model [Barabasi and Albert 99], addressing the empirically observable phenom-
ena of short shortest-paths and power-law degree distributions, respectively. This
new wave of models has affected also the mathematical literature (see, for in-
stance, [Aiello et al. 01, Aiello et al. 02, Bollobás and Riordan 03b, Bollobás
and Riordan 03a, Bollobás et al. 03, Bollobás and Riordan 04a, Bollobás and
Riordan 04b, Chung and Lu 03, Chung and Lu 04, Chung and Lu 06b, New-
man 03a, Newman 03b]). Among the many recent mathematical books on the
subject, we would like to mention, for classical random graph theory, the works
by Kolchin [Kolchin 99] and by Bollobás [Bollobás 01] and, for more recent mod-
els of random graphs, the books by Chung and Lu [Chung and Lu 06a] and by
Durrett [Durrett 07]. From a statistical point of view, which we adopt here, it is
natural to seek a parameterizable stochastic model of complex graphs that would
be at the same time flexible for practical use and mathematically tractable for
theoretical exploration. Moreover, it is desirable that the qualitative properties
of the model should emerge from some simple unifying mathematical structure
rather than from ad-hoc considerations (see [Aiello et al. 02, Bollobás 01, Bol-
lobás and Riordan 03a, Bollobás et al. 03, Bollobás and Riordan 04a, Chung and
Lu 04, Newman et al. 06]).

The aim of this paper is to present a general class of random graphs that
addresses these needs. It was introduced by Bassetti et al. in a particular
case [Bassetti et al. 07], connected to the study of null models for transcrip-
tional regulation networks [Babu et al. 04]. The defining property of the graph
ensemble is the exchangeable structure of its degree correlations. This symme-
try property makes it particularly apt to be used as a statistical null model.
The most important advantages of such an approach are the following: (i)
Much as in the Erdős-Rényi model, some observables can be easily computed
analytically for finite sizes and asymptotically, rather than estimated numeri-
cally. (ii) It is fast and versatile in computational implementations and sta-
tistical applications. As we will show in the different sections of this paper,
many observables that are commonly useful in the analysis of large-scale net-
works are particularly simple to access with our ensemble. In order to show
the range of applicability, we discuss multiple applications to observables in
the model graphs rather than presenting a very detailed analysis on a single
graph feature. In the use as a null model, differently from other approaches
used in the study of transcriptional and other networks [Itzkovitz et al. 03, Rao
et al. 96, Chen et al. 05], our generating method for random graphs is not de-
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signed to conserve the degree sequence of the observed real graph, but rather as
a method to generate graphs with degree distributions having certain prescribed
properties.

The paper is structured as follows. Section 2 introduces a rather general
class of random directed network ensembles that can be produced with the same
defining principle of exchangeability, and discusses some simple variants. The
following part is intended to show how the structure of the proposed model is
useful in the the study of many relevant topological features of the ensemble. To
this aim, in Section 3 we prove some theorems that characterize the degree distri-
butions and the distribution of the size of the “hub” (or the maximally connected
node). In particular, we show that the model can generate an ensemble charac-
terized by a Poisson limit distribution for the in-degree, and a mixture of Poisson
limit distributions for the out-degree. This important property enables to ob-
tain a limit out-degree distribution with power-law tails. In the same section,
we show that the probability that the graph is disconnected goes to 1 as the size
of the graph diverges. Section 4 gives some results concerning the mean number
of subgraphs (a quantity of some importance in many applications), roots, and
leaves. Section 5 considers a particular Boolean optimization problem defined on
the graph, which emerges in statistical physics and theoretical computer science.
More precisely, we will give some results concerning the nontrivial problem of
the dimension of the kernel of the adjacency matrix. In Section 6 we briefly
comment the two variants of the main model. Finally, Section 7 contains the
detailed analysis of a simple two-parameter ensemble derived from the general
model presented in Section 2. Some of the proofs are deferred to Section 8.

2. The Model

Although the ideas we describe are applicable to both directed and undirected
graphs, we will mainly consider here the case of directed graphs. Any directed
random graph Gn with n nodes is completely specified by its adjacency matrix
Xn = X(Gn) = [X(n)

i,j ]i,j=1,...,n, where X(n)
i,j = 1 if there is a directed edge i→ j,

and 0 otherwise. In many applications, such as transcription networks instead
of square matrices, one may also consider rectangular matrices. The reason for
this is that in some situations it is reasonable to assume that, while all nodes can
receive edges, only a fraction of nodes can send them out (see [Bassetti et al. 07]
for an introduction to this problem). Hence, in what follows we will deal with
rectangular matrices mn × n. As we will see in Section 7, this is a necessary
choice for networks with power-law degree distributions having exponent equal
to or less than 2 (thus with diverging average) to obtain nontrivial asymptotics.
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One of the interests of our procedure is the fact that it can produce graphs
with different in- and out-degree distributions. Naturally, if the graph is gener-
ated by throwing independently each directed edge with a fixed probability—as
in the case of (undirected) Erdős-Rényi graphs—this is not possible. In order to
build a random graph with different in- and out-degree distributions, one must
give up total independence and allow some kind of dependence among edges. In
particular, maintaining the maximal symmetry leads to the choice of exchange-
ability.

2.1. Partially Exchangeable Random Graphs

The first general class we will consider includes directed graphs whose in- or
out-degrees, i.e., the columns or the rows of Xn, respectively, are exchangeable,
while the out- or in-degrees are stochastically independent. Differently put, our
model ensemble can be defined using the following generative algorithm. For
each row of Xn, independently, (i) throw a bias θ from a prescribed probability
distribution πn on [0, 1], and (ii) set the row elements of Xn to be 0 or 1 according
to the toss of a coin with bias θ. Since each row is thrown independently, the
resulting probability law is

P{X(n)
i,j = ei,j, i = 1, . . . ,mn, j = 1, . . . , n}

=
mn∏
i=1

∫
[0,1]

θ
∑n

j=1 ei,j

i (1 − θi)n−∑n
j=1 ei,jπn(dθi),

(2.1)

where ei,j ∈ {0, 1}, i, j = 1, . . . n. In other words, each row of X(Gn) is inde-
pendent from the others with exchangeable law directed by πn. One can apply
an identical procedure to the transposed matrix of Xn and switch the role of in-
and out-degrees.

It is worth recalling that a random vector, say (Y1, . . . , Yn), is said to be
exchangeable if its law is invariant under any permutation, that is, if for any
permutation σ of {1, . . . , n}, (Y1, . . . , Yn) and (Yσ(1), . . . , Yσ(n)) have the same
law. (For an introduction to exchangeable sequences and arrays see, e.g., [Al-
dous 85].) This hypothesis is important for the use of the ensemble to produce
statistical null models, as it implies symmetry of the probability distributions
with respect to the permutation of variables, i.e., all the nodes or the agents they
represent (genes, computer routers, etc.) are given an equivalent status.

To complete the model, one has to specify the choice for πn, which determines
the behavior of the graph ensemble. For example, in previous work [Bassetti
et al. 07], we chose the two-parameter distribution

πn(dθ) = Z−1
n θ−β

I( α
n ,1](θ)dθ, (2.2)
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where n > α > 0 and β > 1 are free parameters, I( α
n ,1] is the indicator function

of the interval (α
n , 1], taking the value 1 inside the interval and 0 everywhere

else, and Zn := ((n/α)β−1 − 1)/(β − 1) is the normalization constant. As we
will see in Section 7, this choice produces a graph ensemble with heavy-tailed
degree sequences. As a second example, taking πn(dθ) = δλ/n(dθ), one obtains
a directed version of the Erdős-Rényi graph.

A naturally interesting problem is to characterize the general forms of the
probability measure πn that lead to graph ensembles with qualitatively different
characteristics. In Section 3 we shall give some results in this direction. Note
that a general way of producing the distribution πn for each n, starting form a
given “seed” F (F being a fixed distribution function on R+), is easily described
by the following assumption:

Fn(x) :=
F (xn)
F (n)

=
∫

[0,x]

πn(dθ). (2.3)

With the above assumption, Fn is a well-defined distribution function on [0, 1]
whenever F (n) > 0, which certainly holds for large enough values of n.

2.2. Completely Exchangeable Graphs

The method described in Section 2.1 of generating exchangeable graphs is quite
general, so one can imagine many simple variants. For example, one can con-
sider the following algorithm: (i) throw a bias θ from a prescribed probability
distribution πn, and (ii) set all the elements of Xn to be 0 or 1 according to the
toss of a coin with bias θ. The resulting probability law, say Q, is

Q{X(n)
i,j = ei,j ; i, j = 1, . . . , n} =

∫
[0,1]

θ
∑

i,j ei,j (1 − θ)n2−∑ i,j ei,jπn(dθ).

For any ei,j in {0, 1}, i, j = 1, . . . n, that is under Q, {X(n)
i,j ; i, j = 1, . . . , n} are

exchangeable, with de Finetti measure πn.

2.3. Hierarchical Models

Another possible variant considers a hierarchy of probability distributions to
generate the bias of the coins. In this case one can take

Q∗{X(n)
i,j = ei,j , i = 1, . . . ,mn, j = 1, . . . , n} =

∫
R+

∏mn

i=1

∫
[0,1]

θ
∑n

j=1 ei,j

i (1 − θi)n−∑n
j=1 ei,jπn(dθi|α)λn(dα),
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where λn is a probability on R+ and πn(dθ|α) is a kernel on [0, 1] × R+; that
is, for every α in R

+, πn(·|α) is a measure on the Borel σ-field of [0, 1] and, for
every measurable subset B of [0, 1], α �→ πn(B|α) is measurable.

3. Connectivities

We will continue the main discussion considering the case of partially exchange-
able graphs of Section 2.2. Some brief comments on the other variants are
reported in Section 6. In the rest of the paper, with the exception of Section 6,
we suppose that all the random elements are defined on the same probability
space (Ω,F , P ) and we denote by E(Y ) the mathematical expectation of a given
random variable Y with respect to P . With a slight abuse of notation, we shall
use indifferently the random graph Gn and its adjacency matrix Xn = [X(n)

i,j ]i,j .

3.1. In and Out Connectivity

The first quantities that we want to characterize are the graph degree distri-
butions. The random variable Zmn,j :=

∑mn

i=1X
(n)
i,j represents the in-degree of

the jth node in the random graph, while Sn,i :=
∑n

j=1X
(n)
i,j can be seen as the

out-degree of the ith node (1 ≤ i ≤ mn). Note that (Zmn,1, . . . , Zmn,n) are iden-
tically distributed as well as (Sn,1, . . . , Sn,mn). Moreover, (Sn,1, . . . , Sn,mn) are
independent, and each Sn,i is a sum of exchangeable Boolean random variables,
while (Zmn,1, . . . , Zmn,n) are dependent. Clearly, the mean degrees are equal
to mnμn and nμn, respectively, where μn := P{X(n)

i,j = 1} =
∫
[0,1]

θπn(dθ) is
the probability of the link i → j. Note that, while in the Erdős–Rényi model
nμn = λ for every n, in this case nμn generally depends on n. On the other hand,
when (2.3) is in force, using the well-known fact that E(Y ) =

∫ +∞
0

(1 −G(y))dy
for any positive random variable Y with distribution function G, one gets

nμn =
∫

[0,1]

nθπn(dθ) =
∫ n

0

(
1 − F (x)
F (n)

)
dx,

and hence, if μ :=
∫ +∞
0

xdF (x) < +∞, it follows that nμn = μ + o(1). The
(marginal) degree distributions are given by

P{Sn,i = k} =
(
n

k

)∫
[0,1]

θk(1 − θ)n−kπn(dθ) (3.1)

and

P{Zmn,j = k} =
(
mn

k

)
μk

n(1 − μn)mn−k. (3.2)
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With the above expressions, the problem of determining the asymptotic distri-
bution of (Zmn,1)n≥1 and (Sn,1)n≥1 is simply cast as a central limit problem
for triangular arrays. In fact, while for (Zmn,1)n≥1 a classical central limit the-
orem (CLT) for triangular arrays of independent random variables works, for
(Sn,i)n≥1 one needs a CLT for exchangeable random variables. General CLTs
for exchangeable random variables are well known (see, for instance, [Fortini
et al. 96, Regazzini and Sazonov 97]). Here the situation is particularly simple,
since we are dealing with zero–one random variables. Consequently, we need
only a simple ad-hoc CLT, for exchangeable Boolean random variables.

Let θ̃n be a random variable taking values in [0, 1] with distribution πn and
set Tn := nθ̃n. The next proposition shows that, under a set of reasonable as-
sumptions on Tn, the limit law of (Sn,1)n≥1 is a mixture of Poisson distributions,
while the limit law of (Zn,1)n≥1 is a simple Poisson distribution.

Proposition 3.1. (CLT.) If (Tn)n≥1 converges in distribution to a random variable T

with distribution function F , then, for every integer j ≥ 1,

lim
n→+∞P{Sn,j = k} = E

[
1
k!
T ke−T

]
=
∫ +∞

0

tk

k!
e−tdF (t) (k = 0, 1, . . . ).

(3.3)
Moreover, if for some λ > 0 and for a sequence (an)n≥1

lim
n→+∞ anE(Tn) = lim

n→+∞nan

∫
[0,1]

θπn(dθ) = λ

holds true, then, for every integers k ≥ 0 and j,

lim
n→+∞P{Zmn,j = k} =

λke−λ

k!
,

with mn = [nan] ([x] being the integer part of x).

Remark 3.2. (a) If (2.3) holds true, then the distribution of T is F . Indeed, in this
case,

lim
n→+∞P{Tn ≤ x} = lim

n→+∞P{θ̃n ≤ x/n} = lim
n→+∞

F (x)
F (n)

= F (x) (x ≥ 0).

(b) It is worth noticing that as a corollary of Theorem 5 in [Fortini et al. 96] one
has that the convergence of Tn is a necessary and sufficient condition in order
to obtain a Poisson mixture as a limit law for (Sn,j)n≥1. Hence, the first part of
the previous proposition can be proved invoking such a theorem. Nevertheless,
for the sake of completeness, we shall give here a simple direct proof.
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Proof of Proposition 3.1. Since Tn := nθ̃n, by (3.1) one has

P{Sn,j = k} = E

[(
n

k

)
1
nk
T k

n

(
1 − Tn

n

)n(1−k/n)
]

= E[φn(Tn)],

where

φn(x) =
(
n

k

)
1
nk
xk
(
1 − x

n

)n(1−k/n)

.

Now,
E[φn(Tn)] = E[φ(Tn)] +Rn,

where φ(x) = 1
k!x

ke−x and Rn = E[φn(Tn)]−E[φ(Tn)]. It is plain to check that
φn converges uniformly on every compact set to φ. Moreover, since (Tn)n≥1 con-
verges in distribution, by Prohorov’s theorem (see, e.g., [Kallenberg 02, Theorem
16.3]) it should be tight, that is, for every ε > 0 there exists K > 0 such that
supn≥1 P{|Tn| ≥ K} ≤ ε. Hence, one gets that

lim
n→+∞ |Rn| ≤ lim

n→+∞[ sup
|x|≤K

|φn(x) − φ(x)| + 2P{|Tn| ≥ K}] ≤ 2ε.

At this stage, the first part of the thesis follows immediately; indeed, (Tn)n≥1

converges in distribution if and only if E[f(Tn)] → E[f(T )] for every bounded
continuous function f , and φ is bounded and continuous.

The second part of the thesis follows by the classical Poisson approximation
to binomial distribution using (3.2). Indeed,

μn =
λ

nan
(1 + o(1))

and [nan] = mn with nan → +∞. To see this last fact, observe that, since Tn

converges in distribution to T , θ̃n goes to zero in probability. Using this last
fact, it is easy to see that Eθ̃n =

∫
[0,1] θπn(dθ) goes to zero, hence nan must

diverge.

Since (3.3) is a mixture of Poisson distributions with weight given by F , the
above result can be used to “discharge” the choice of πn on the perhaps more
intuitive choice of the mixing distribution F . Clearly, the emergence of heavy-
tailed distributions is not a simple consequence of (2.1) but depends on the choice
of πn. The following example describes a mixing probability that gives rise to a
compact out-degree distribution.

Example 3.3. Take
πn(dθ) =

nγ

1 − e−γn
e−γnθdθ (γ > 0),
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or, in other words, assume (2.3) with F (x) =
∫ x

0 γe
−γtdt = 1 − e−γx. With this

choice, according to Proposition 3.1, the limit distribution of Sn,1 is an expo-
nential mixture of Poisson distribution. Precisely, we find it to be a geometric
distribution; indeed,

lim
n→+∞P{Sn,j = k} = γ

∫ +∞

0

tk

k!
e−te−γtdt

=
γ

k!(1 + γ)k+1

∫ +∞

0

y(k+1)−1e−ydy =
γ

k!(1 + γ)k+1
Γ(k + 1)

=
γ

1 + γ
(1 + γ)−k (k = 0, 1, . . . ).

Moreover, an = 1 and λ = 1/γ satisfy the conditions of Proposition 3.1, yielding

lim
n→+∞P{Zn,1 = k} =

γ−ke−1/γ

k!
.

As a generalization of the previous example, take, instead of an exponential
distribution, a gamma distribution, i.e.,

F (x) =
∫ x

0

γrtr−1e−γt

Γ(r)
dt (r > 0).

It is easy to check that the limiting distribution is a negative binomial distribu-
tion with parameter r. That is,

lim
n→+∞P{Sn,j = k} =

(
r + k − 1

k

)(
γ

1 + γ

)r

(1 + γ)−k (k = 0, 1, . . . ).

Moreover,

lim
n→+∞P{Zn,1 = k} =

( r
γ )ke−r/γ

k!
.

In the above example, mixturing the Poisson distribution with exponential
weights proves insufficient to produce a power-law distribution. In other in-
stances, a suitable choice of F in (3.3) can give rise to an out-degree probability
distribution with heavy tails. Consider the following example.

Example 3.4. Assume a slight generalization of (2.2), i.e.,

πn(dθ) = Z−1
n θ−βg(nθ)I( α

n ,1](θ)dθ, (3.4)

with 0 < c1 ≤ g(τ) ≤ c2 < +∞ for every τ in [0,+∞) and

Zn :=
∫ 1

a/n

θ−βg(nθ)dθ.
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Note that (3.4) satisfies (2.3) with

F (x) =

∫ x

α t
−βg(t)dt∫ +∞

α t−βg(t)dt
.

Hence, it is straightforward to verify that Proposition 3.1 yields

lim
n→+∞P{Sn,j = k} =

1
k!

∫ +∞
α tk−βe−tg(t)dt∫ +∞

α t−βg(t)dt
=: qα,β,g(k).

We now show that such a distribution is a power-law-tailed distribution. In order
to prove this, let us consider first the special case in which g = 1, i.e., the older
(2.2). With this choice, we get

lim
n→+∞P{Sn,j = k} =

αβ−1(β − 1)
k!

∫ +∞

α

tk−βe−tdt

= qα,β,1(k) =: pα,β(k) (k ≥ 0).

Hence, if k > β, write

pα,β(k) = αβ−1(β − 1)
(

Γ(k + 1 − β)
Γ(k + 1)

− 1
Γ(k + 1)

∫ α

0

tk−βe−tdt

)
,

and note that, by the well-known asymptotic expansion for the gamma function,

Γ(k + 1 − β)
Γ(k + 1)

=
1
kβ

(1 + o(1)) as k → +∞.

Moreover,
kβ

Γ(k + 1)

∫ α

0

tk−βe−tdt = o(1) as k → +∞.

Consequently, we get

pα,β(k) = αβ−1(β − 1)
1
kβ

(1 + o(1)).

Now note that, since

c1
c2
pα,β(k) ≤ qα,β,g(k) ≤ c2

c1
pα,β(k),

k �→ qα,β,g(k) has power-law tails also for g �= 1.

Finally, the following example shows a more complex, already mixtured dis-
tribution, leading to a heavy tail.
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Example 3.5. Given α > 1 and s > 1, set, for every positive x,

fα,s(x) :=
1

Γ(s)Φ(1, s, α)

∫ +∞

0

e−x(eτ−1)τs−1e−τ(α−1)dτ,

where Φ(z, s, α) is the well-known Lerch transcendent, defined as Φ(z, s, α) :=∑
k≥0 z

k(α + k)−s, for every complex z with |z| ≤ 1. (See, for instance, [Grad-
shteyn and Ryzhik 00, 9.550].) Note that fα,s(x) ≥ 0. Moreover, by means of the
following integral representation Γ(s)Φ(z, s, α) =

∫ +∞
0 τs−1e−τ(α−1)(eτ −z)−1dτ

(see [Gradshteyn and Ryzhik 00, 9.556]), one can check that
∫ +∞
0

fα,s(x)dx = 1.
In other words, fα,s defines a density distribution. Note that fα,s is itself a
mixture of exponential densities. Indeed, it can be rewritten as

fα,s(x) =
∫ +∞

0

(eτ − 1)e−x(eτ−1) τs−1e−τ(α−1)

Γ(s)Φ(1, s, α)(eτ − 1)
dτ

=
∫ +∞

0

ue−xu logs−1(u+ 1)
Γ(s)Φ(1, s, α)(u+ 1)α+1

du,

with∫ +∞

0

τs−1e−τ(α−1)

Γ(s)Φ(1, s, α)(eτ − 1)
dτ =

∫ +∞

0

logs−1(u + 1)
Γ(s)Φ(1, s, α)(u + 1)α+1

du = 1.

It can be verified, with the help of Fubini’s theorem and the already mentioned
integral representation of the Lerch transcendent, that for every real q with
|q| < 1,

∑
k≥0

(iq)k

∫ +∞

0

tk

k!
e−tfα,s(t)dt =

∫ +∞

0

eiqte−tfα,s(t)dt

=
Φ(iq, s, α)
Φ(1, s, α)

=
∑
k≥0

(iq)k

Φ(1, s, α)(α+ k)s

(where i :=
√−1), from which it follows that

∫ +∞

0

tk

k!
e−tfα,s(t)dt =

1
Φ(1, s, a)(α+ k)s

.

Hence, if one takes an exchangeable random graph Gn, with mixing distribution
satisfying (2.3) with

F (x) :=
∫ x

0

fα,s(t)dt,



368 Internet Mathematics

then the limit law of Sn,1 is given by

lim
n→+∞P{Sn,1 = k} =

∫ +∞

0

tk

k!
e−tfα,s(t)dt = Φ(1, s, a)−1(α+ k)−s

for every k ≥ 0.

As Examples 3.3–3.5 show, the model can produce graphs with disparate fea-
tures, depending on the choice of the probability distribution of the coin biases.
In particular, it is interesting to investigate under which conditions do heavy-
tailed distributions emerge as limit distributions of the out-degree. If one sup-
poses that Tn converges in law to a random variable with probability distribution
function F , we have shown how the question can be reduced to the problem of
determining under which conditions on F the probability defined by (3.3) has
heavy tails. It is worth noticing that mixtures of Poisson distributions have been
extensively studied (see, e.g., [Grandell 97]). Let us briefly recall some useful
properties of such distributions. First of all, if

pk :=
∫ +∞

0

1
k!
tke−tdFi(t) (k ≥ 0, i = 1, 2)

for two distribution functions F1 and F2 with Fi(x) = 0 for every x ≤ 0, then
F1 = F2. (This simple fact was first noticed in [Feller 48]; see also [Grandell 97,
Theorem 2.1(i)].) Hence, one hopes to recover many properties of

pk :=
∫ +∞

0

1
k!
tke−tdF (t)

from the properties of F . In particular, Theorem 2.1 in [Willmot 90] states that
if F has a density f with respect to the Lebesgue measure or to the counting
measure, such that

f(x) = L(x)xα exp{−βx}(1 + o(1)) as x→ +∞,

where L is locally bounded and varies slowly at infinity, β ≥ 0, −∞ < α < +∞
(with α < −1 if β = 0), then

pk = L(k)β−(α+1)

(
1

1 + β

)k

kα(1 + o(1)) as k → +∞.

Recall that a slowly varying function L is a measurable function such that

lim
x→+∞L(xt)/L(x) = 1
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for every positive t. Under no assumptions on F we have the following very
simple lemma.

Lemma 3.6. Let F be a distribution function with F (x) = 0 for every x ≤ 0, and
set pk :=

∫ +∞
0

1
k! t

ke−tdF (t). Then, for every positive γ,

∑
k≥0

kγpk < +∞

if and only if ∫ +∞

0

tγdF (t) < +∞.

The proof is deferred to Section 8.
It is also worth mentioning that a random variable T is a mixture of Poisson

distribution if and only if its generating function GT (s) = E(sT ) is absolutely
monotone in (−∞, 1), that is, if G(n)

T (s) ≥ 0 for every integer n and s in (−∞, 1).
(See [Puri and Goldie 79] and [Grandell 97, Proposition 2.2].) Finally, we recall
that the sequence (pk)k≥1 inherits many properties from F . For example, (pk)k≥1

has a monotone density if F has a monotone distribution, (pk)k≥1 has log-convex
density if F has log-convex distribution, and (pk)k≥1 is infinitely divisible if F is
so. (For more details see, for instance, [Grandell 97, Steutel and van Harn 04].)

The next subsections will deal with the computation of interesting observables
that go beyond the degree distributions.

3.2. The Hub Size

As a first example of observable, we discuss the size of the so-called hub, i.e.,
the node having maximal out-degree among the nodes (thus, in many concrete
networks, being the most important for routing and the most vulnerable to
attack; see, e.g., [Bollobás and Riordan 03b]). The hub size is defined by the
expression

Hn := max
i=1,...,mn

(Sn,i).

In particular, the most interesting case for the behavior of the hub is when
the tail of the out-degree is power-law, as this means that there can be no
characteristic size for the hub. As we will explain, it is interesting to give an
analytical expression of the limit law of this quantity under a suitable rescaling.
The idea is very simple: by stochastic independence, it is clear that P{Hn ≤
xbn} = (1 − P{Sn,1 > xbn})mn , where x > 0 is any positive number. Now,
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after setting L := sup{y ≥ 0 : lim supn[ybn]/n < 1}, if we can prove that
P{Sn,1 ≤ xbn} = 1 − g(x)/mn + o(1/mn) for any x ≤ L, then

lim
n
P{Hn ≤ xbn} = e−g(x)

I[0,L)(x) + I[L,+∞)(x).

We will show that, in some situations, it is possible to determine explicitly g,
bn, and L. The following proposition concerns the hub behavior in case of heavy
tails for the out-degree.

Proposition 3.7. Suppose there exist two positive constants η, cη, a sequence of posi-
tive numbers (cη,n)n≥1, and a sequence of functions (rn)n≥1, such that for every
t in (0, 1) ∫

(t,1]

πn(dθ) = cη,n
1

(nt)η
+ rn(t),

cη,n → cη, and ∫ 1

0 rn(t)t[bnx](1 − t)n−[bnx]−1dt

B([bnx] + 1, n− [bnx])
= o

(
1
mn

)
, (3.5)

with bn := m
1/η
n and B(α, β) :=

∫ 1

0 u
α−1(1 − u)β−1du. Then,

lim
n→+∞P{Hn ≤ [xbn]} = e−cηx−η

I[0,L)(x) + I[L,+∞)(x),

where
L := sup{y ≥ 0 : lim sup

n→+∞
[y m1/η

n ]/n < 1}.

Proof. First of all let us start by recalling the well-known relation

n∑
k=[xbn]+1

(
n

k

)
θk(1 − θ)n−k =

∫ θ

0 t
[bnx](1 − t)n−[bnx]−1dt

B([bnx] + 1, n− [bnx])
, (3.6)

where B(α, β) =
∫ 1

0 t
α−1(1 − t)β−1dt = Γ(α)Γ(b)/Γ(a + b). (See, e.g., [Magnus

et al. 66, Section 9.2.5].) Hence, by (3.1), (3.6), and Fubini’s theorem, one gets

P{Sn,1 > [xbn]} =
∫

[0,1]

n∑
k=[xbn]+1

(
n

k

)
θk(1 − θ)n−kπn(dθ)

=
∫

[0,1]

∫ θ

0

t[bnx](1 − t)n−[bnx]−1dt

B([bnx] + 1, n− [bnx])
πn(dθ)

=
1

B([bnx] + 1, n− [bnx])

∫ 1

0

t[bnx](1 − t)n−[bnx]−1F ∗
n(t)dt,
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with
F ∗

n (t) :=
∫

(t,1]

πn(dθ) = P{θ̃n > t}.

Now, by hypothesis,

F ∗
n(t) = cη,n

1
(nt)η

+ rn(t).

Then,

P{Sn,1 > [xbn]} =

1
B([bnx] + 1, n− [bnx])

cn,η

nη

∫ 1

0

t[bnx]−η(1 − t)n−[bnx]−1dt+Rn(x)

with

Rn(x) :=
1

B([bnx] + 1, n− [bnx])

∫
[0,1]

rn(t)t[bnx](1 − t)n−[bnx]−1 = o

(
1
mn

)
.

Finally, using once more the asymptotic expression Γ(n+a)/Γ(n+b) = na−b(1+
o(1)) as n→ +∞, one obtains

P{Sn,1 > [xbn]} =
1
mn

(
cn,ηmn

nη

Γ(n+ 1)Γ([bnx] + 1 − η)
Γ(n+ 1 − η)Γ([bnx] + 1)

+ o(1)
)

=
1
mn

((
bn

[xbn]

)η

cη + o(1)
)
,

which is
P{Sn,1 > [xbn]} =

1
mn

[ cη
xη

+ o(1)
]
.

We give now two simple conditions that imply the validity of (3.5), and can be
useful in concrete applications. The first conditions will be used in the example
that we spell out in detail in the second part of this paper (Proposition 7.2).

Lemma 3.8. If for some α > 0, C < +∞, and η > 0,

|rn(t)| ≤ C
(
I{nt < α}(1 + (nt)−η) + n−η

)
,

then (3.5) holds true provided that mn is such that mn/n
η = o(1).

Proof. Set βn := [xbn] and

In(d) = mn
1

B(βn + 1 + d, n− βn)

∫ α/n

0

tβn+d(1 − t)n−βn−1dt.



372 Internet Mathematics

Hence,

mn|Rn(x)| ≤ Cmn

{
1

B(βn + 1, n− βn)

×
∫ α/n

0

(
1 +

1
(nt)η

)
tβn(1 − t)n−βn−1dt+

1
nη

}

= C

{
In(0) + In(−η)B(βn + 1 − η, n− βn)

nηB(βn + 1, n− βn)
+ o(1)

}
≤ C

{
In(0) + In(−η)β−η

n + o(1)
}
.

It remains to show that In(0) + In(−η)β−η
n = o(1). With the help of the Sirling

formula, one has

In(d) =
mnΓ(n+ 1 + d)

Γ(βn + 1 + d)Γ(n− βn)

∫ α/n

0

tβn+d(1 − t)n−βn−1dt

≤ mn
mnΓ(n+ 1 + d)

Γ(βn + 1 + d)Γ(n− βn)

(α
n

)βn+d−1

≤ C1mn
exp{log(α)(1 + d+ βn)}(n+ 1 + d)n+d+1/2

nβn+d+1(βn + 1 + d)βn+d+1/2(n− βn)n−βn−1/2

× exp{−(n+ 1 + d) + βn + 1 + d+ n− βn}

= C1mn

exp{log(α)(1 + d+ βn)}(1 + 1+d
n )n(1+ d+1/2

n )

β
βn+d+1/2
n (1 + 1+d

βn
)βn(1+ d+1/2

bn
)(1 − bn

n )n(1− βn+1/2
n )

≤ C2mn

exp{log(α)(1 + d+ βn) − log(βn)(1
2 + d+ βn)}

[(1 − βn

n )n/βn ]βn−β2
n/n

≤ C3mn exp
{

log(α)(1 + d+ βn) − log(βn)
(

1
2

+ d+ βn

)
+
(
βn − β2

n

n

)}
≤ C4 exp{log(mn) − C5βn log(βn)}.

Since βn = x1/ηm
1/η
n (1 + o(1)) and m1/η

n /n = o(1) the thesis follows easily.

We conclude this subsection observing that when (2.3) is in force,∫
(t,1]

πn(dθ) = 1 − Fn(t) =
F (n) − 1 + 1 − F (nt)

F (n)
,

hence it is natural to assume some hypotheses on 1−F (x). In particular, recall
that a distribution function F is in the domain of attraction of the extreme value
Fréchet distribution if and only if

sup{x : F (x) < 1} = +∞ and 1 − F (x) =
1
xη
L(x), (3.7)
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where L is a slowly varying function (see [Galambos 87]). This means that (3.7)
holds if and only if given a sequence of independent and identically distributed
random variables (ξ)n≥1 with common law F ,

lim
n→+∞P{a−1

n max{ξ1, . . . , ξn} ≤ x} = e−cηx−η

(x > 0)

for a suitable normalizing sequence (an)n. In point of fact, (3.7) is not sufficient,
in our case, to ensure that rn is a reminder of the right order. Hence, we need a
heavier requirement.

Lemma 3.9. Assume that (2.3) is in force with

1 − F (x) =
cη
xη

[1 + h(x)]

for some η > 0 and 0 < cη < +∞, with

|h(x)| ≤ A

(
1
xδ1

+
1
xδ2

)
(x > 0, A < +∞, δ1, δ2 > 0).

Then, (3.5) holds true with mn/n
η = o(1).

Proof. Assume that δ1 = δ and δ2 = δ. In the same notation as in the proof of
Proposition 3.7,

rn(t) =
cη

F (n)nη
(1 + h(n)) +

cηh(nt)
F (n)(nt)η

.

Now,

Rn := Rn(x) =
1

B([bnx] + 1, n− [bnx])

∫
[0,1]

rn(t)t[bnx](1 − t)n−[bnx]−1dt

= R(1)
n +R(2)

n ,

with

R(1)
n =

cη(1 + h(n))
F (n)nη

1
B([bnx] + 1, n− [bnx])

∫
[0,1]

t[bnx](1 − t)n−[bnx]−1dt

=
cη(1 + h(n))
F (n)nη

= o(m−1
n )

and

R(2)
n =

1
B([bnx] + 1, n− [bnx])

∫
[0,1]

t[bnx](1 − t)n−[bnx]−1 cηh(nt)
F (n)(nt)η

dt.
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Finally,

|R(2)
n | ≤ cη2A

nδ+ηB([bnx] + 1, n− [bnx])

∫
[0,1]

t[bnx]−(η+δ)(1 − t)n−[bnx]−1dt

= cη2A
B([bnx] + 1 − η − δ, n− [bnx])
nδ+ηB([bnx] + 1, n− [bnx])

= cη2A
Γ([bnx] + 1 − η − δ)Γ(n+ 1)

nδ+ηΓ(n+ 1 − η − δ)Γ([bnx] + 1)

≤ cη2A′ (n+ 1)δ+η

nδ+η([bnx] + 1)δ+η
≤ cη2A′2δ+η

(
bn

[bnx]

)δ+η 1

bδ+η
n

.

for a suitable constant A′; hence, since bηn = mn, |R(2)
n | = o(m−1

n ). The general
case follows in the same way.

Example 3.10. As an example it is easy to see that

1 − F (x) =
αη

(α+ x)η
(x ≥ 0, α > 0, η > 0)

satisfies the assumption of Lemma 3.9. In point of fact,

1 − F (x) =
αη

xη
+
αη

xη

[
xη − (α+ x)η

(x+ α)η

]
,

hence

|h(x)| ≤ (α+ x)η − xη

xη
.

If x ≤ 1, then |h(x)| ≤ (1 + α)η/xη, while if x > 1,

|h(x)| ≤ (1 +
α

x
)η − 1.

Since t→ tη is a Lipschitz function of constant η(1+α)η−1 on [1, 1+α], if x > 1,
it follows that (1 + α/x)η − 1 ≤ η(1 + α)η−1|1 + α/x− 1| = η(1 + α)η−1a/x. In
summary,

|h(x)| ≤ A

[
1
x

+
1
xη

]
.

4. Some Nonlocal Features of the Graphs

In this section, we deal with the subgraphs content and the mean number of
roots and leaves of the model of Section 2.1.
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4.1. Subgraphs

The simple exchangeable structure of the generated random graphs makes it
possible to compute easily the mean value of the number of subgraphs “of a
given shape” contained in the graph, which can be used for the discovery of
“network motifs” [Shen-Orr et al. 02, Milo et al. 02, Milo et al. 04, Matias 06].

Consider a subgraph, with k nodes and m edges, given by

H = {i1 → i(1,1), . . . , i1 → i(1,m1), i2 → i(2,1), . . . , ik → i(k,1), . . . , ik → i(k,mk)},

with
∑k

i=1mi = m. Of course,

P{H ∈ Gn} =
∫

[0,1]

θm1
1 πn(dθ1)

∫
[0,1]

θm2
2 πn(dθ2) . . .

∫
[0,1]

θmk

k πn(dθk).

Denote by T the set of all subgraphs isomorphic to H contained in the complete
n graph and by N(H), the cardinality of such set. Since the number NH(Gn) of
graphs isomorphic to H contained in Gn can be clearly written as

NH(Gn) =
∑
g∈T

I{g ∈ Gn},

it follows that
E[NH(Gn)] = N(H)P{H ∈ Gn};

indeed, by exchangeability, P{g ∈ Gn} = P{H ∈ Gn} for every g in T.
For example, let us consider the k-cycles. A subgraph H is called a k-cycle

if it has the form i1 → i2 → · · · → ik → i1. If NCk
(Gn) denotes the number of

k-cycles contained in Gn, then

E[NCk
(Gn)] = 2

(
n

k

)
μk

n. (4.1)

Things are slightly more complicated for rectangular matrices because in the
evaluation of N(H) one needs to take into consideration also the constraints
given by the fact that only mn nodes can send outgoing edges. In what follows
we will discuss mainly the case of square matrices.

As we shall see, in the study of transcriptional networks, the 3-cycle i1 →
i2, i2 → i3, i3 → i1 is called the feedback loop (fbl), while the feedforward loop
(ffl) is a triangle of the form i1 → i2 → i3, i1 → i3. Following the procedure
described above, one gets

E[Nfbl(Gn)] = 2
(
n

3

)
μ3

n.
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As for the evaluation of feedforward loops, we have

E[Nffl(Gn)] = 6
(
n

3

)∫
[0,1]

θ2πn(dθ)
∫

[0,1]

θπn(dθ). (4.2)

It is worth mentioning that, in principle, it is possible to compute analyti-
cally the variance, as well as any other moment, of the number of subgraphs
isomorphic to a given subgraph. However, computations become lengthy and
cumbersome rather soon. As an example, we considered the variance of the
number of feedback loops and feedforward loops.

The key point is evaluating ENffl(Gn)2 and ENfbl(Gn)2. Again, for the
sake of symplicity, we will deal only with square matrices. It is clear that
ENfbl(Gn)2 =

∑
t∈T

∑
s∈T P{s, t ∈ Gn}, where T is the set of all feedback

loops contained in the complete n graph. Analogously one obtains ENfll(Gn)2

taking as T the set of all feedforward loops. Simple calculations give

E[Nfbl(Gn)2] = 4
(
n

3

)(
n− 3

3

)
μ6

n + 12
(
n

3

)(
n− 3

2

)
μ4

nδ2,n

+ 6(n− 3)
(
n

3

)
(μ3

nδ2,n + μ2
nδ

2
2,n) + 2

(
n

3

)
(μ3

n + δ32),

where δi,n :=
∫ 1

0
θiπn(dθ). As for Nffl, the computations are longer, but es-

sentially the same. The problem is that P{s, t ∈ Gn} can take many different
expressions depending on s and t. With straightforward but tedious calculations,
one gets

E[Nffl(Gn)2] =
(
n

3

)
An + (n− 3)

(
n

3

)
Bn +

(
n

3

)(
n− 3

2

)
Cn +

(
n

3

)(
n− 3

3

)
Dn,

with

An = 6δ1,nδ2,n + 3δ21,nδ2,n + 6δ1,nδ
2
2,n + 3δ22,n + δ32,n,

Bn = 30δ1,nδ
2
2,n + 18δ21,nδ

2
2,n + 6δ32,n + 18δ21,nδ3,n

+ 12δ1,nδ2,nδ3,n + 6δ2,nδ3,n + 3δ23,n,

Cn = 60δ21,nδ
2
2,n + 12δ32,n + 24δ1,nδ2,nδ3,n + 12δ21,nδ4,n,

Dn = 36δ21,nδ
2
2,n.

Hence,

V ar(Nfbl(Gn)) = 12
(
n

3

)(
n− 3

2

)
μ4

nδ2,n + 6(n− 3)
(
n

3

)
(μ3

nδ2,n + μ2
nδ

2
2,n)

+ 2
(
n

3

)
(μ3

n + δ32,n) − 4
(
n

3

)
Rnμ

6
n
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and

V ar(Nffl(Gn)) =
(
n

3

)
An + (n− 3)

(
n

3

)
Bn

+
(
n

3

)(
n− 3

2

)
Cn −RnDn,

with Rn = [
(
n
3

)− (n−3
3

)
].

4.2. Roots and Leaves

We say that i is a root if there is no edge of the kind j → i but there is at least
one edge of the kind i → j with j �= i. Loops do not count. Conversely, we say
that i is a leaf if there is no edge of the kind i → j but there is at least one
edge of the kind j → i with j �= i. Again we exclude loops and isolated points.
Let L(Gn) be the number of leaves in Gn and R(G) the number of roots in Gn.
Of course, L(Gn) =

∑n
i=1 Li(Gn) and R(Gn) =

∑mn

i=1 Ri(Gn), where Li(Gn) is
equal to 1 if i is a leaf of Gn and 0 otherwise and, similarly, Ri(G) = 1 if i is a
root of Gn and 0 otherwise. It follows that

Ri(Gn) = I

⎧⎨
⎩

mn∑
j=1

Xj,i = 0

⎫⎬
⎭
⎛
⎝1 − I

⎧⎨
⎩

n∑
j=1, i	=j

Xi,j = 0

⎫⎬
⎭
⎞
⎠ ,

and analogously,

Li(Gn) = I

⎧⎨
⎩

n∑
j=1

Xi,j = 0

⎫⎬
⎭
⎛
⎝1 − I

⎧⎨
⎩

mn∑
j=1,j 	=i

Xj,i = 0

⎫⎬
⎭
⎞
⎠ .

Hence,
E[Li(Gn)] = (1 − μn)mn(1 − P{Sn−1,i = 0}) (4.3)

and
E[Ri(Gn)] = (1 − (1 − μn)mn−1)P{Sn,i = 0, } (4.4)

and then

E[L(Gn)] = n(1 − μn)mn(1 − P{Sn−1,i = 0}),
E[Ri(Gn)] = mn(1 − (1 − μn)mn−1)P{Sn,i = 0}.

4.3. Connected Components

One of the classic and most studied problems in the mathematics of random
graphs is the existence and the size of the so-called giant component (see, for
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instance, [Bollobás and Riordan 04b, Chung and Lu 06b, Chung and Lu 03,
Chung and Lu 06a, Durrett 07] and references therein). This is, in principle, an
important property if one wants to use the ensemble as a null or positive model
for a real-world system. In many empirical instances, such as the Internet, the
World Wide Web, and many biological networks, the existence of a very large
component can be observed directly. For this reason, if this property is absent, a
model could have limited applications. Of course, in our model the existence of
a giant component depends on the choice of the measure πn. A detailed study of
this problem is beyond the scope of this work, and it will be dealt with in future
papers. While, for the moment, we did not prove any general theorem, in some
interesting case, such as the power-law model defined by (2.2), one can study
the problem numerically. In this case, our simulations indicate the emergence
of a giant component for all values of the parameters, which makes the model
attractive for applications (see also [Bassetti et al. 07]). On general grounds, it
is not hard to see that for this example the probability that Gn has only one
connected component goes to zero as n diverges (at least for β > 2 and square
matrices). This is a consequence of a more general proposition.

Proposition 4.1. Let mn = n and assume that limn→+∞(1 − μn)n−1P{Sn,i = 0} =
a > 0, then

lim
n→+∞P{Gn is connected } = 0.

Proof. If Y (n) =
∑n

i=1 Yi,n with Yi,n = I{Sn,i = 0, Zn,i = 0}, then

P{Gn is connected } ≤ P{Y (n) = 0} ≤ V ar(Y (n))
E(Y 2(n))

= 1 − E(Y (n))2

E(Y 2(n))
.

Since E(Y (n)) = nE(Y1,n) = nP{Sn,i = 0, Zn,i = 0} and

E(Y (n)2) = nE(Y 2
1,n) + n(n− 1)E(Y1,nY2,n)

= nP{Sn,1 = 0, Zn,1 = 0}
+ n(n− 1)P{Sn,1 = 0, Zn,1 = 0, Sn,2 = 0, Zn,2 = 0}

= n(1 − μn)n−1P{Sn,1 = 0} + n(n− 1)(1 − μn)2n−2P{Sn,1 = 0}2,

we get

P{Gn is connected }

≤ 1 − (1 − μn)2n−2P{Sn,1 = 0}2

n−1
n (1 − μn)2n−2P{Sn,1 = 0}2 + 1

n (1 − μn)n−1P{Sn,1 = 0} .

Taking the limit for n→ +∞ gives the thesis.
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5. Threshold Properties in the Kernel of An

Another interesting facet of the exchangeable graph ensemble is its connection
with the theory of systems of random equations over finite algebraic structures.

This problem has fairly important applications in the theory of finite-state
automata, the theory of coding, cryptography, and combinatorial optimization
problems (satisfiability, coloring). Problems of this kind arise in many branches
of science, ranging from statistical physics (theory of glasses) to information
theory (e.g., low-density parity-check codes). (See, e.g., [Erdős and Rényi 64,
Erdős and Rényi 68, Kolchin 99, MacKay 99, Mézard et al. 02, Mézard et al. 03,
Murayama and Okada 03, Levitskaya 05].)

One interesting problem in random linear systems over finite algebraic struc-
tures is to prove a threshold property for the random graph Gn with adjacency
matrix Xn of dimension mn × n. More precisely, one aims to prove that if mn

and n diverge with n/mn → γ ≤ 1, then an abrupt change in the behavior of the
rank of the matrix Xn occurs when the parameter γ exceeds a “critical” value
γc. This property can be expressed in terms of the total number of hypercycles
in Gn, defined as

S(Xn) = 2Ker(Xn) − 1 = 2n−mnN (Xn) − 1, (5.1)

where N (Xn) is the number of nontrivial (i.e., nonzero) solutions of the linear
system in GF2 (the field with elements 0 and 1)

X
T
nx =GF2 0. (5.2)

Problems of this kind have been extensively studied for a few ensembles of ran-
dom graphs. (See, for instance, [Kolchin 99, Theorem 3.5.1] and [Levitskaya 05,
Theorem 1].)

In the next proposition, we give an exact expression for the mean value of
the number of solutions of the linear system (5.2). This expression can be used
to prove the existence of a threshold property for S(Xn). Moreover, the same
expression is a first step for a more exhaustive characterization of solution space,
which shall be dealt with in a forthcoming paper. All the proofs of this section
are deferred to Section 8.

In order to state the next proposition, we introduce the following notations.
Define

ξn(i) =
∫

[0,1]

(1 − 2θ)iπn(dθ)

and
Zn = {j ∈ {0, 1, . . . , n} | ξn(j) = 0} .



380 Internet Mathematics

Proposition 5.1. Assume that Xn is a random adjacency matrix of dimension mn×n
with law (2.1). Then,

EN (Xn) = 2−n
n∑

i=1

(
n

i

)
(1 + ξn(i))mn

whenever Zn is the empty set.

Using the previous result one easily obtains the following large deviation esti-
mate.

Proposition 5.2. If mn = [n
γ ] (γ ≤ 1) and (Tn)n≥1 converges in distribution to a

random variable T with distribution function F , then

lim
n→+∞

1
n

log(EN (Xn)) = sup
x∈[0,1]

Θγ(x) =: Iγ ,

with

Θγ(x) :=

1
γ

[
log

(
1 +
∫

[0,+∞)

e−2xtdF (t)

)
− γ (x log(x) + (1 − x) log(1 − x) + log(2))

]
,

whenever Zn is the empty set for n large enough.

Combining the previous result with (5.1), it is clear that, under the hypotheses
of Proposition 5.2, the mean number of hypercycles ES(Xn) can be written as

ES(Xn) = (1 + o(1))(2n−mnenIγPn − 1)

= (1 + o(1))
(

exp
{
n

(
Iγ −

(
1
γ
− 1
)

log(2)
)}

Pn − 1
)
,

where Pn is a function of n that is at most polynomial, i.e., 1/n log(Pn) = o(1)
(as n → +∞). Hence, if Iγ > (1/γ − 1) log(2), it follows that ES(Xn) diverges
exponentially in n as n goes to +∞, while if Iγ = (1/γ − 1) log(2), it is sub-
exponential, that is, for some b ≥ 0, ES(Xn)/nb goes to zero as n diverges.

In point of fact, we have the following lemma.

Lemma 5.3. If
∫
[0,+∞)

tdF (t) < +∞, then

sup
x∈[0,1]

Θγ(x) > Θγ(0) =
(

1
γ
− 1
)

log(2).
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If

log(x)

(∫
[0,+∞)

te−2xtdF (t)

)−1

= o(1) (x→ 0), (5.3)

then there exists a γc such that for any γ ≤ γc

sup
x∈[0,1]

Θγ(x) = Θγ(0) =
(

1
γ
− 1
)

log(2),

while for γ > γc

sup
x∈[0,1]

Θγ(x) > Θγ(0) =
(

1
γ
− 1
)

log(2).

In particular, if
1 − F (t) = t−βL(t) (5.4)

with 0 < β < 1 and L a slowly varying function, then (5.3) holds true.

In other words, under the hypotheses of Proposition 5.2, if (5.3) holds true,
then there exists a constant 0 < γc < 1 such that

lim
n→+∞

ES(Xn)
nb

=
{

0 for some b = b(γ) ≥ 0 if γ ≤ γc,
+∞ for every b ≥ 0 if γ > γc.

That is, the above mentioned threshold property holds.

6. Other Models

In this short section we give some comments about the other two models pre-
sented in Sections 2.2–2.3.

6.1. Completely Exchangeable Graphs

Most of the properties and quantities discussed in Sections 3, 4, and 5 can be eas-
ily established for the totally exchangeable case. Again, μn := Q{X(n)

i,j = 1} =∫
[0,1] θπn(dθ) and, for instance, the degree distributions (for a square adjacency

matrix) are given by

Q{Sn,i = k} = Q{Zn,j = k} =
(
n

k

)∫
[0,1]

θk(1 − θ)n−kπn(dθ).

Hence, for instance, we have the following proposition.
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Proposition 6.1. If (Tn)n≥1 converges in distribution to a random variable T with
distribution function F , then, for every integer j ≥ 1,

lim
n→+∞Q{Sn,j = k} = E

[
1
k!
T ke−T

]
=
∫ +∞

0

tk

k!
e−tdF (t) (k = 0, 1, . . . )

and

lim
n→+∞Q{Zn,j = k} = E

[
1
k!
T ke−T

]
=
∫ +∞

0

tk

k!
e−tdF (t) (k = 0, 1, . . . ).

For this model, quantities such as the mean number of subgraphs, roots, and
leaves are again easily computed analytically along the same lines described in
Section 4. For example, for motifs

Q{H ∈ Gn} =
∫

[0,1]

θmπ(dθ),

when

H = {i1 → i(1,1), . . . , i1 → i(1,m1), i2 → i(2,1), . . . , ik → i(k,1), . . . , ik → i(k,mk)}

with
∑k

i=1mi = m. Hence,

EQ(NH(Gn)) = N(H)Q{H ∈ Gn}.

Finally, throwing triangular matrices with the same algorithm, one can easily
generate models for undirected graphs.

6.2. Hierarchical Models

One interesting use of this variant is that it can be exploited to produce directed
graphs having power-law tailed in- and out-degree distributions with different
exponents. To illustrate this point, we will consider the following example.

Example 6.2. If γ > β > 2, A > 0, λn(dα) ∝ I[A,n/2]α
−γdα and πn(dθ|α) ∝

I(α/n,1]θ
−βdθ, then Q∗{Sn,1 = k} = c1k

−β(1 + o(1)) and Q∗{Zn,1 = k} =
c2k

−γ(1 + o(1)). Indeed, it is easy to check (by means of a usual dominated
convergence argument) that

lim
k→+∞

Q∗{Sn,1 = k} =
(β − 1)(γ − 1)Aγ−1

k!

∫ +∞

A

∫ +∞

α

αβ−γ−1tk−βe−tdtdα
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and, moreover,

(β − 1)(γ − 1)Aγ−1

k!

∫ +∞

A

∫ +∞

α

αβ−γ−1tk−βe−tdtdα

=
γ − 1
γ − β

pA,β(k) − β − 1
γ − β

pA,γ(k).

In the same way it is easy to check that limk→+∞Q∗{Zn,1 = k} = pu,γ(k) with
u = A(β − 1)/(β − 2).

7. A Simple Two-Parameter Model

In this section, we focus our attention on random graphs generated by assum-
ing (2.2), and we shall specialize the results of previous sections to this two-
parameter model. This model has been suggested by a biological application.
Hence, before presenting the results, we briefly recall the main features of a
transcription network.

Transcription networks are directed graphs that represent regulatory interac-
tions between genes. Specifically, the link a → b exists if the protein coded by
gene a affects the transcription of gene b in mRNA formed by binding along DNA
in a site upstream of its coding region [Babu et al. 04]. For a few organisms,
such as E. coli and S. cerevisiae, a significant fraction of the wiring diagram of
this network is known [Lee et al. 02, Guelzim et al. 02, Salgado et al. 01, Har-
bison et al. 04]. The topological features of the graphs can be studied to infer
information on the large-scale architecture and evolution of gene regulation in
living systems. For instance, the connectivity and the clustering coefficient have
been considered [Guelzim et al. 02]. For this kind of analysis, one has to consider
null ensembles of random networks with some topological invariant compared to
the empirical case. The idea behind it is to establish when and to what extent
the empirical topology deviates from the “typical case” statistics of the null en-
semble. For example, a topological feature that has led to relevant biological
findings, in particular for transcription, is the occurrence of small subgraphs—or
“network motifs” [Milo et al. 02, Milo et al. 04, Wolf and Arkin 03, Yeger-Lotem
et al. 04].

As usual in statistical studies, the choice of the invariant properties for the
randomized counterpart is delicate. For instance, the null ensemble used for
motif discovery usually conserves the degree sequences of the original network.
The observed degree sequences for the known transcription networks roughly
follow a power-law distribution for the out-degree, with exponent between one
and two, while being Poissonian in the in-degree [Guelzim et al. 02, Cosentino
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Lagomarsino et al. 05]. These features suggest considering also alternative null
models for directed random graphs with Poisson in-degree distribution and (ap-
proximately) power-law out-degree distribution, which can be easily generated
with our model under (2.2). In the remainder of the paper, we will discuss this
case in more detail, showing explicit calculations of the observables discussed in
the previous sections.

7.1. In and Out Connectivity

By simple calculations from (2.2), we get the following:

• If 1 < β < 2, then

μn =
(β − 1)αβ−1

(2 − β)nβ−1

1 − (α
n

)2−β

1 − (α
n

)1−β
=

1
nβ−1

αβ−1(β − 1)
2 − β

[1+o(1)] as n→ +∞.

• If β = 2, then

μn =
α

n− α
(log n− logα) =

logn
n

α[1 + o(1)] as n→ +∞.

• If β > 2, then

μn =
(β − 1)
(β − 2)

(
n
α

)β−2 − 1(
n
α

)β−1 − 1
=

1
n

α(β − 1)
β − 2

[1 + o(1)] as n→ +∞.

The next proposition, which is a consequence of Proposition 3.1, shows that
Sn,i is asymptotically power-law distributed, while Zn,i, at least with a suit-
able choice of mn, is asymptotically Poisson distributed. One has to distinguish
among the different possible scalings for μn. More precisely, we have the follow-
ing.

Proposition 7.1. Assume that (2.2) holds true. Then, for every α > 0 and β > 1,

lim
n→+∞P{Sn,j = k} = pα,β(k) (j > 0, k ≥ 0).

Moreover, if β > 2 and mn = [δn] (δ ∈ (0, 1], [y] being the integer part of y),
then

lim
n→+∞P{Zmn,j = k} =

e−λλk

k!
(j > 0, k ≥ 0),

where λ = δα(β−1)
(β−2) . If β = 2 and mn = [δn/ log(n)], then

lim
n→+∞P{Zmn,j = k} =

e−δα(δα)k

k!
(j > 0, k ≥ 0).
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If 1 < β < 2 and mn = [δnβ−1], then

lim
n→+∞P{Zmn,j = k} =

e−λλk

k!
(j > 0, k ≥ 0),

where λ = δαβ−1(β−1)
(2−β) .

It is worth noticing that asking for a degree distribution that brings to an
out-degree having a power-law tail with divergent mean (β ≤ 2) poses a heavy
constraint on the number of regulator nodes (the rows of the matrix).

7.2. Subgraphs

We will discuss mainly the case of square matrices, where calculations are simpler
and conceptually equivalent.

7.2.1. k-cycles. Under (2.2), using (4.1), if β > 2, then

lim
n→+∞

1
2

E(NCk
(Gn)) =

1
k!

[
α(β − 1)
(β − 2)

]k

;

if β = 2, then

lim
n→+∞

1
2(logn)k

E(NCk
(Gn)) =

αk

k!
;

and if 1 < β < 2, then

lim
n→+∞

1
2nk(2−β)

E(NCk
(Gn)) =

1
k!

(
(β − 1)αβ−1

2 − β

)k

.

7.2.2. Triangles. The feedforward loop is a classical example of “network motif,”
i.e., it is overrepresented in known transcription networks. Conversely, feedback
loops (which in principle could form switches and oscillators) are usually under-
represented (“anti-motifs”) in transcription networks [Shen-Orr et al. 02, Milo
et al. 04].

Here, we evaluate, for our model, the mean number of feedback loops versus
feedforward loops. Under (2.2), (4.2) yields

ENffl(Gn) = 6
(
n

3

)
(β − 1)2

[(n
α )β−1 − 1]2

∫ 1

α/n

θ2−βdθ

∫ 1

α/n

θ1−βdθ.

Hence, if β > 3, then

lim
n→+∞ E(Nffl(Gn)) =

(β − 1)2α3

(β − 3)(β − 2)
> 3 lim

n→+∞ E(Nfbl(Gn)) =
(β − 1)3α3

(β − 2)3
;
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if β = 3, then

lim
n→+∞

1
logn

E(Nffl(Gn)) = α3;

if 2 < β < 3, then

lim
n→+∞

1
n3−β

E(Nffl(Gn)) =
αβ(β − 1)2

(β − 1)(3 − β)
;

if β = 2, then

lim
n→+∞

1
n logn

E(Nffl(Gn)) = α2;

and finally, if 1 < β < 2, then

lim
n→+∞

1
n5−2β

E(Nffl(Gn)) =
α2β−2(β − 1)2

(3 − β)(2 − β)
.

At this stage one can give the scaling behavior of the ratio of the mean number
of feedback and feedforward loops, which is

ENffl(Gn)
ENfbl(Gn)

∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nβ−1 if 1 < β < 2,
n/(logn)2 if β = 2,
n3−β if 2 < β < 3,
log n if β = 3,
λ if β > 3,

where λ = 3(β − 2)2(β − 3)−1(β − 1)−1 > 1. Here and in what follows we
use an ∼ bn to denote an = bn(1 + o(1)) as n → +∞. Thus, the ffl always
dominates, although there is a wide range of regimes. Note that the dominance of
feedforward triangles is even stronger if one considers the rectangular adjacency
matrices discussed in Section 7.1. For example, for 1 < β < 2 and rectangular
matrices with mn = nβ−1, we calculate

ENffl(Gn)
ENfbl(Gn)

∼ n.

As for the variances, for instance, one obtains

V ar(Nfbl(Gn)) ∼
⎧⎨
⎩

n5(2−β) if 1 < β < 2,
(logn)4 if β = 2,
1
3 (αβ−1

β−2 )3 if β ≥ 2.
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7.3. Roots and Leaves

By simple computations, from (4.4) we obtain the following:

• If 1 < β < 2, then

lim
n

1
n2−β

log[E(Ri(Gn))] = −β − 1
2 − β

αβ−1

and hence E(Ri(Gn)) ∼ e−
β−1
2−β αβ−1n2−β

.

• If β = 2, then

lim
n

1
logn

log[E(Ri(Gn))] = −α

and hence E(Ri(Gn)) ∼ 1
nα .

• If β > 2, then

lim
n

E(Ri(Gn)) = (1 − e−
β−1
β−2 α)pα,β(0).

Analogously, from (4.3) we derive the following:

• If 1 < β < 2, then

lim
n

1
n2−β

log[1 − E(Li(Gn))pα,β(0)−1] = −β − 1
2 − β

αβ−1

and hence E(Li(Gn)) ∼ (1 − e−
β−1
2−β αβ−1n2−β

)pα,β(0).

• If β = 2, then

lim
n

1
logn

log[1 − E(Li(Gn))pα,β(0)−1] = −α

and hence E(Li(Gn)) ∼ (1 − 1
nα )pα,β(0).

• If β > 2, then

lim
n

E(Li(Gn)) = (1 − e−
β−1
β−2 α)(1 − pα,β(0)).

Combining all the previous statements, we get E(L(Gn)) ∼ n while

E(R(Gn)) ∼
⎧⎨
⎩

e−λ2n2−β

if 1 < β < 2,
n1−α ifβ = 2,
n ifβ > 2,

where λ2 = β−1
2−βα

β−1.
In concrete applications, these properties can be used, for example, to impose

a well-defined scaling for the roots-to-leaves ratio of the null network ensemble.
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7.4. The Hub

In Section 3.2, we already explored the implications on the limit laws of the
maximally connected node of a power-law distributed out-degree. Using that
result under (2.2), it is possible to prove an explicit limit theorem for the size of
the hub.

Proposition 7.2. For β > 2 and for every positive number x,

lim
n→+∞P

{
Hn

bn
≤ x

}
= e−(α/x)β−1

(7.1)

with mn = n and bn = n1/(β−1). For β = 2 and for every positive number x,

lim
n→+∞P

{
Hn

bn
≤ x

}
= e−(α/x)β−1

with mn = bn = n/ logn. Finally, for 1 < β < 2 and mn = nβ−1,

lim
n→+∞P

{
Hn

n
≤ x

}
= e−(α/x)β−1

I(0,1)(x) + I[1,∞)(x)

for every positive x.

Remark 7.3. (a) Recall that e−(α/x)β−1
I[0,+∞)(x) is the Frechet type II extreme

value distribution, that is, one of the three kinds of extreme value distributions
that can arise from the limit law of the maximum of independent and identically
distributed random variables.

(b) Note that in the last case the limit distribution is not exactly of extreme
value kind and the probability of finding a hub of size n is asymptotically finite
and equal to 1−e−(α)β−1

. This concentration effect was already noted [Itzkovitz
et al. 03] for another kind of random graphs ensemble.

Proof of Proposition 7.2. Let β > 2. In the same notation of the proof of Proposi-
tion 3.7,

F ∗
n(t) = I

{α
n

≤ t
} αβ−1

nβ−1 − αβ−1
(t1−β − 1) + I

{α
n
> t
}
,

hence η = β − 1,

cn,γ =
αβ−1

1 − n1−β
→ cγ = αβ−1,

and

rn(t) = I

{α
n
> t
}(

1 − 1
(nt)β−1

αβ−1

1 − (α/n)β−1

)
−I

{α
n

≤ t
} 1
nβ−1

αβ−1

1 − (α/n)β−1
.
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The thesis follows from Proposition 3.7 and Lemma 3.8, noticing that

|rn(t)| ≤ C

((
1

(nt)β−1
+ 1
)

I

{α
n
> t
}

+
1

nβ−1

)
.

Arguing essentially in the same way, one can prove the statements for β ≤ 2.

For β > 2 one can guess that E[Hn] ∼ n1/(β−1), as claimed in the analysis of
another scale-free random graph ensemble [Itzkovitz et al. 03]. In point of fact,
we have the following proposition.

Proposition 7.4. If β > 2 and d is such that β − d > 1, then

lim
n→+∞ E[n−d/(β−1)Hd

n] = (β − 1)2α2Γ
(
β − 1 − d

β − 1

)
.

Proof. We begin with the case d = 1. In Proposition 7.2 we proved that (Yn)n≥1 :=
(Hn/n

γ)n≥1 converges in distribution with γ = 1/(β − 1). So, it is enough to
prove that (Yn)n≥1 is uniformly integrable, i.e.,

lim
L→+∞

sup
n

E[|Yn|I|Yn|≥L] = 0.

(See, for instance, [Kallenberg 02, Lemma 4.11].) Note, first, that

E[|Yn|I|Yn|≥L] ≤ LP

{
Hn

nγ
> L

}
+
∫ +∞

L

(
1 − P

{
Hn

nγ
≤ x

})
dx.

Now, by (7.1),

LP

{
Hn

nγ
> L

}
≤ C1L(1 − e−αβ−1L1−β

)

for a suitable constant C1. Hence, limL→+∞ supn LP{Hn/n
γ > L} = 0. As for

the second term, setting FSn(x) = P{Sn ≤ x}, one has

1 − P

{
Hn

nγ
≤ x

}
= 1 − [FSn(xnγ)]n

= 1 − exp{n log(FSn(xnγ))}
[using 1 − ex ≤ −x]

≤ −n log (1 − (1 − FSn(xnγ)))

≤ (1 + C2)n(1 − FSn(xnγ)).

Hence,∫ +∞

L

(
1 − P

{
Hn

nγ
≤ x

})
dx ≤ (1 + C2)

∫ +∞

L

n(1 − FSn(xnγ))dx =: In,
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since 1 − FSn(xnγ) = 0 if xnγ > n, that is, if x ≥ n
β−2
β−1 ,

In =
(β − 1)(1 + C2)n
nβ−1( 1

αβ−1 − 1
nβ−1 )

∫ nβ−2β−1

L

∫ 1

α/n

n∑
k=[xnγ ]+1

(
n

k

)
θk−β(1 − θ)n−kdθdx.

Now, if L > (β − 1)/nγ , then [xnγ ] + 1 > 0 for every x > L; hence,

In ≤ C3n
2−β

∫ nβ−2β−1

L

n∑
k=[xnγ ]+1

(
n

k

)
B(n− k + 1, k − β + 1)dx

= C3n
2−β

∫ nβ−2β−1

L

Γ(n+ 1)
Γ(n− β + 2)

n∑
k=[xnγ ]+1

Γ(k − β + 1)
Γ(k + 1)

dx

≤ C4n

∫ nβ−2β−1

L

n∑
k=[xnγ ]+1

1
kβ
dx

at least for L large enough. Since,

n∑
k=M

1
kβ

≤
∫ n

M−1

1
xβ
dx,

it follows that

In ≤ C4

∫ +∞

L

(
1

[xnγ ]

)
dx ≤ C5

1
(L − 1)β−2

.

The proof of the case with d > 1 follows an identical procedure, with x1/d in
place of x and L1/d in place of L.

7.5. Random Linear System in GF2

Under (2.2) one has

F (x) = αβ−1(β − 1)
∫ x

α

1
tβ
dt =

(
1 − αβ−1

xβ−1

)
(x > α).

Hence, applying Lemma 5.3, one has that, if 1 < β < 2, then there exists a
constant γc(β) such that

lim
n→+∞

ES(Xn)
nb

=
{

0 for some b = b(γ) if γ ≤ γc(β),
+∞ for every b ≥ 0 if γ > γc(β).

While, if β > 2, no threshold property holds since
∫ +∞
0 xdF (x) < +∞.
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8. Appendix

Proof of Lemma 3.6. Let k > γ, where k is an integer. By hypothesis,

Γ(k + 1)
Γ(k − γ + 1)

pk =
∫ +∞

0

tk−γ

Γ(k − γ + 1)
e−tdG(t),

where G(x) =
∫
(0,x] t

γdF (t). Summing both sides on k, one can write

M+[γ]+1∑
k=[γ]+1

Γ(k + 1)
Γ(k − γ + 1)

pk =
∫ +∞

0

φγ,M (t)e−tdG(t)

with

φγ,M (t) :=
M+[γ]+1∑
k=[γ]+1

tk−γ+1

Γ(k − γ + 1)
=

M∑
m=0

tm+νγ

Γ(m+ νγ + 1)

and νγ := [γ] + 1 − γ. Hence,

M∑
m=0

Γ(m+ [γ] + 2)
Γ(m+ ν + 1)

pm+1+[γ] =
∫ +∞

0

φγ,M (t)e−tdG(t). (8.1)

Now, for every t > 0 and νγ in (0, 1), by 5.2.7.20 in [Prudnikov et al. 86], one
has

lim
M→+∞

φγ,M (t) =
+∞∑
m=0

tm+νγ

Γ(m+ νγ + 1)
= g(νγ , t)et,

where
g(νγ , x) =

1
Γ(νγ)

∫ x

0

τνγ−1e−τdτ.

Moreover, φγ,M (t) ≥ 0 and the convergence is clearly monotone. Hence, taking
the limit as M goes to +∞ in (8.1), by monotone convergence one obtains

+∞∑
m=0

Γ(m+ [γ] + 2)
Γ(m+ νγ + 1)

pm+1+[γ] =
∫ +∞

0

g(νγ , t)tγdF (t),

with
∫ +∞
0

g(νγ , t)tγdF (t) < +∞ if and only if

+∞∑
m=0

Γ(m+ [γ] + 2)Γ(m+ νγ + 1)−1pm+1+[γ] < +∞.

Now, since g(νγ , x) is a distribution function, one has
∫ +∞
0 g(νγ , t)tγdF (t) < +∞

if and only if
∫ +∞
0 tγdF (t) < +∞. Moreover, since

Γ(m+ [γ] + 2)Γ(m+ νγ + 1)−1 = (m+ [γ] + 1)γpm+1+[γ](1 + o(1))
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as m→ +∞,

+∞∑
m=0

Γ(m+ [γ] + 2)Γ(m+ νγ + 1)−1pm+1+[γ] < +∞

if and only if
+∞∑
m=0

(m+ [γ] + 1)γpm+1+[γ] < +∞,

which proves the lemma.

Proof of Proposition 5.1. Denote by M(mn, n) the set of allmn×n adjacency matrices.
The number of solutions of linear system XT

nx =GF2 0 is defined as

N (Xn) =
∑

x∈GF
mn
2

I{X
T
nx =GF2 0}.

Now note that

I{x =GF2 0} =
1 + (−1)x

2
,

and write

EN (Xn) =
∑

An∈M(mn,n)

P{Xn = An}
∑

x∈GF
mn
2

n∏
j=1

1 + (−1)
∑mn

i=1(An)ijxi

2
.

Using (2.1), rewrite the last expression as

EN (Xn)

= 2−n
∑

x∈GF
mn
2

∑
An∈M(mn,n)

∫
[0,1]mn

[
mn∏
i=1

πn(dθi)

]⎡⎣ n∏
j=1

(
1 + (−1)

∑mn
i=1(An)ijxi

)⎤⎦

×
⎡
⎣ n∏

j=1

mn∏
i=1

θ
(An)ij

i (1 − θi)
1−(An)ij

⎤
⎦

= 2−n
∑

x∈GF
mn
2

∫
[0,1]mn

mn∏
i=1

πn(dθi)

⎡
⎣ n∏

j=1

∑
(An)j∈GF

mn
2

(
1 + (−1)

∑mn
i=1(An)ijxi

)

×
mn∏
i=1

θ
(An)ij

i (1 − θi)
1−(An)ij

]
,

where (An)j = {(An)1j , . . . , (An)mnj} and (An)ij is the element in position
(i, j) of matrix An. Since the above expression in square brackets is independent
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of j, EN (Xn) can be written as

EN (Xn) = 2−n
∑

x∈GF
mn
2

∫
[0,1]mn

[
mn∏
i=1

πn(dθi)

]

×
⎡
⎣ ∑

a∈GF
mn
2

(
1 + (−1)

∑mn
i=1 aixi

)mn∏
i=1

θai

i (1 − θi)
1−ai

⎤
⎦

n

.

At this stage note that

∑
a∈GF

mn
2

mn∏
i=1

θai

i (1 − θi)
1−ai = 1

and then

EN (Xn) = 2−n
∑

x∈GF
mn
2

∫
[0,1]mn

[
mn∏
i=1

πn(dθi)

]

×
⎡
⎣1 +

∑
a∈GF

mn
2

(−1)
∑mn

i=1 aixi

mn∏
i=1

θai

i (1 − θi)
1−ai

⎤
⎦

n

= 2−n
∑

x∈GF
mn
2

∫
[0,1]mn

[
mn∏
i=1

πn(dθi)

]

×
[
1 +

mn∏
i=1

∑
ai∈GF2

((−1)xiθi)
ai (1 − θi)

1−ai

]n

.

After summing over ai, we have

EN (Xn) = 2−n
∑

x∈GF
mn
2

∫
[0,1]mn

[
mn∏
i=1

πn(dθi)

] [
1 +

mn∏
i=1

(1 − θi (1 − (−1)xi))

]n

.

(8.2)

Now, using

I{x̄ =GF2 0} =
1 − (−1)x

2
,

where x̄ = x+ 1 in GF2, (8.2) can be written as

EN (Xn) = 2−n
∑

x∈GF
mn
2

∫
[0,1]mn

[
mn∏
i=1

πn(dθi)

][
1 +

mn∏
i=1

(1 − 2θi I{x̄i =GF2 0})
]n

.
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Moreover, since

(1 − 2θi I{x̄i =GF2 0}) = (1 − 2θi)
I{x̄i=GF2=0}

,

we can rewrite the mean number as

EN (Xn) = 2−n
∑

x∈GF
mn
2

∫
[0,1]mn

[
mn∏
i=1

πn(dθi)

][
1 +

mn∏
i=1

(1 − 2θi)
I{x̄i=GF20}

]n

.

After the expansion of the last square bracket, we obtain

EN (Xn) = 2−n
n∑

j=1

(
n

j

) mn∏
i=1

∑
xi∈GF2

∫
[0,1]

πn(dθi) (1 − 2θi)
I{x̄i=GF20}j

= 2−n
n∑

j=1

(
n

j

) mn∏
i=1

∑
xi∈GF2

ξn (I{x̄i =GF2 0}j) .

Finally, it is easy to see that the last sum is independent of i. Then,

EN (Xn) = 2−n
n∑

j=1

(
n

j

)[ ∑
σ∈GF2

ξn (I{σ̄ =GF2 0}j)
]mn

= 2−n
n∑

j=1

(
n

j

)
(1 + ξn(j))mn .

Proof of Proposition 5.2. First of all, observe that

EN (Xn) =
n∑

j=1

2−n

(
n

j

)
exp
{
nψn

(
j

n

)}
,

where

ψn(x) =
mn

n
log(1 + ξn(xn)) =

mn

n
log
(

1 + E

[(
1 − 2Tn

n

)xn])
.

Now recall that one of the most classical examples of a large deviation estimate
is

lim
M→+∞

1
M

log

⎛
⎝ M∑

j=0

(
M

j

)
eMfM (j/M)

⎞
⎠

= sup
x∈[0,1]

[f(x) − {x log(x) + (1 − x) log(1 − x) + log(2)}]
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whenever limM→+∞ supx∈[0,1] |fM (x)− f(x)| = 0, f being a continuous function
on [0, 1]. (See, e.g., [Ellis 06, Theorems 7.1 and 10.2].) Hence, the thesis follows
if we prove that for every K < +∞

lim
n→+∞ sup

|x|≤K

|ψn(x) − 1
γ

log

(
1 +
∫

[0,+∞)

e−2xtdF (t)

)
| = 0. (8.3)

To prove (8.3) it is enough to prove that for every K < +∞

lim
M→+∞

sup
|x|≤K

∣∣∣∣∣E
[(

1 − 2TM

M

)Mx

− e−2Tx

]∣∣∣∣∣ = 0. (8.4)

Since TM converges weakly to T and e−t is a bounded and continuous function
on [0,+∞), then

lim
M→+∞

E|e−2TM − e−2T | = 0. (8.5)

Moreover we claim that

lim
M→+∞

E

∣∣∣∣∣
(

1 − 2TM

M

)M

− e−2TM

∣∣∣∣∣ = 0. (8.6)

To prove this last claim, set φn(x) = (1 − x
n )n and note that φn converges

uniformly on every compact set to e−x. Hence, given K,

lim
M→+∞

sup
|x|≤K

|φM (x) − e−x| = 0.

Moreover, since (TM )M≥1 is tight, for every ε there exists K > 0 such that
supM≥1 P{|TM | ≥ K} ≤ ε. Now, |(1 − 2TM

M )M − e−2TM | ≤ 2, and then

lim
M→+∞

E

∣∣∣∣∣
(

1 − 2TM

M

)M

− e−2TM

∣∣∣∣∣
≤ lim

M→+∞
[ sup
|x|≤K

|φM (x) − φ(x)| + 2P{|TM | ≥ K}] ≤ 2ε.

That is (8.6). Finally, given a, b in [−1, 1] and x > 0,

|ax − bx| ≤ sup
y∈[−1,1]

| d
dy
yx||a− b| = x|a− b|;
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hence, since 0 < TM ≤M , one has −1 ≤ 1 − 2TM

M ≤ 1 and then∣∣∣∣∣E
[(

1 − 2TM

M

)Mx

− e−2Tx

]∣∣∣∣∣
≤ E|(1 − 2TM

M
)Mx − e−2TM x| + E|e−2TM x − e−2Tx|

≤ |x|
{

E

∣∣∣∣∣
(

1 − 2TM

M

)M

− e−2TM

∣∣∣∣∣+ E|e−2TM − e−2T |
}
.

(8.7)

Combining (8.5), (8.6), and (8.7), we get (8.4).

Proof of Lemma 5.3. Note that, for every x in (0, 1),

γ
d

dx
Θγ(x) =

2
∫
[0,+∞)

te−2xtdF (t)

1 +
∫
[0,+∞) e

−2xtdF (t)
− γ log x+ γ log(1 − x).

Hence, if
∫
[0,+∞) tdF (t) < +∞, then limx→0+ d/dxΘ(x) = +∞ and then Θ is

strictly increasing in a neighborhood of 0. This last fact implies that

sup
x∈[0,1]

Θγ(x) > Θγ(0) =
(

1
γ
− 1
)

log(2).

If (5.3) holds true, then limx→0+ d/dxΘγ(x) = −∞, and hence there exists γc

such that for any γ ≤ γc

sup
x∈[0,1]

Θγ(x) = Θγ(0) =
(

1
γ
− 1
)

log(2).

Now set

A(x) =
∫ x

0

tdF (t) and H(s) :=
∫ +∞

0

te−tsdF (t) =
∫ +∞

0

e−tsdA(t).

The well-known Karamata tauberian theorem (see, e.g., [Feller 71]) yields that,
given σ > 0 and L slowly varying, H(s) ∼ s−σL(1/s) as s goes to 0 if and only
if A(x) ∼ xσL(x)/Γ(1 + σ) as x goes to +∞. Hence, it remains to prove that if
(5.4) holds true, then A(x) ∼ xσL(x)/Γ(1 + σ). Observe that

A(x) = −L(x)x1−β +
∫ x

0

s−βL(s)ds.

At this stage the claim follows since it is easy to check that
∫ x

0 s
−βL(s)ds =

x1−βL̃(x), where L̃(x) is still slowly varying.



Bassetti et al.: Exchangeable Random Networks 397

Acknowledgments. We would like to thank Bruno Bassetti for useful discussions and for
having encouraged us during this work. We are also grateful to the referees for many
helpful comments.

References

[Aiello et al. 01] W. Aiello, F. Chung, and L. Lu. “A Random Graph Model for Power
Law Graphs.” Experiment. Math. 10 (2001), 53–66.

[Aiello et al. 02] W. Aiello, F. Chung, and L. Lu. “Random Evolution in Massive
Graphs.” In Handbook of Massive Data Sets, Massive Computing 4, edited by J.
Abello, P. M. Pardalos, and M. G. C. Resende, pp. 97–122. Dordrecht: Kluwer
Academic Publishers, 2002.

[Aldous 85] D. Aldous. Exchangeability and Related Topics, Lecture Notes in Mathe-
matics 1117. Berlin: Springer, 1985.

[Babu et al. 04] M. Babu, N. Luscombe, L. Aravind, M. Gerstein, and S. Teichmann.
“Structure and Evolution of Transcriptional Regulatory Networks.” Curr. Opin.
Struct. Biol. 14 (2004), 283–291.

[Barabasi and Albert 99] A. Barabasi and R. Albert. “Emergence of Scaling in Ran-
dom Networks.” Science 286 (1999), 509–512.

[Bassetti et al. 07] F. Bassetti, M. Cosentino Lagomarsino, B. Bassetti, and P. Jona.
“Random Networks Tossing Biased Coins.” Phys. Rev. E 75 (2007), 056109.

[Bollobás 01] B. Bollobás. Random Graphs, second edition,Cambridge Studies in Ad-
vanced Mathematics 73. Cambridge, UK: Cambridge University Press, 2001.

[Bollobás and Riordan 03a] B. Bollobás and O. M. Riordan. “Mathematical Results
on Scale-Free Random Graphs.” In Handbook of Graphs and Networks, edited by
S. Bornholdt and H. G. Schuster, pp. 1–34. Weinheim: Wiley-VCH, 2003.

[Bollobás and Riordan 03b] B. Bollobás and O. Riordan. “Robustness and Vulnerabil-
ity of Scale-Free Random Graphs.” Internet Math. 1:1 (2003), 1–35.

[Bollobás and Riordan 04a] B. Bollobás and O. Riordan. “Coupling Scale-Free and
Classical Random Graphs.” Internet Math. 1:2 (2004), 215–225.

[Bollobás and Riordan 04b] B. Bollobás and O. Riordan. “The Diameter of a Scale-
Free Random Graph.” Combinatorica 24:1 (2004), 5–34.

[Bollobás et al. 03] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan. “Directed Scale-
Free Graphs.” In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 132–139. Philadelphia: SIAM, 2003.

[Chen et al. 05] Y. Chen, P. Diaconis, S. P. Holmes, and J. S. Liu. “Sequential Monte
Carlo Methods for Statistical Analysis of Tables.” J. Amer. Statist. Assoc. 100:469
(2005), 109–120.

[Chung and Lu 03] F. Chung and L. Lu. “The Average Distance in a Random Graph
with Given Expected Degrees.” Internet Math. 1:1 (2003), 91–113.



398 Internet Mathematics

[Chung and Lu 04] F. Chung and L. Lu. “The Small World Phenomenon in Hybrid
Power Law Graphs.” In Complex Networks, Lecture Notes in Physics 650, pp. 89–
104. Berlin: Springer, 2004.

[Chung and Lu 06a] F. Chung and L. Lu. Complex Graphs and Networks, CBMS Re-
gional Conference Series in Mathematics 107. Washington, DC: American Math-
ematical Society, 2006.

[Chung and Lu 06b] F. Chung and L. Lu. “The Volume of the Giant Component of
a Random Graph with Given Expected Degrees.” SIAM J. Discrete Math. 20:2
(2006), 395–411.

[Cosentino Lagomarsino et al. 05] M. Cosentino Lagomarsino, B. Bassetti, and
P. Jona. “The Large-Scale Logico-chemical Structure of a Transcriptional Reg-
ulation Network.” Preprint, 2005. ArXiv:q-bio/0502017v1.

[Durrett 07] R. Durrett. Random Graph Dynamics, Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge, UK: Cambridge University Press, 2007.

[Ellis 06] R. S. Ellis. The Theory of Large Deviation and Applications to Statistical
Mechanics. Lectures for the International Seminar on Extreme Events in Complex
Dynamics. Dresden: Max-Planck-Institut, 2006.
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[Erdős and Rényi 68] P. Erdős and A. Rényi. “On Random Matrices. II.” Studia Sci.
Math. Hungar. 3 (1968), 459–464.

[Feller 48] W. Feller. “On Probability Problems in the Theory of Counters.” In Studies
and Essays Presented to R. Courant on His 60th Birthday, January 8, 1948, edited
by K. O. Freidrichs, pp. 105–115. New York: Interscience Publishers, Inc., 1948.

[Feller 71] W. Feller. An Introduction to Probability Theory and Its Applications, Vol.
II, second edition. New York: John Wiley & Sons Inc., 1971.

[Fortini et al. 96] S. Fortini, L. Ladelli, and E. Regazzini. “A Central Limit Problem
for Partially Exchangeable Random Variables.” Teor. Veroyatnost. i Primenen.
41:2 (1996), 353–379.

[Galambos 87] J. Galambos. The Asymptotic Theory of Extreme Order Statistics, sec-
ond edition. Melbourne, FL: Robert E. Krieger Publishing Co. Inc., 1987.

[Gradshteyn and Ryzhik 00] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals,
Series, and Products, sixth edition. New York: Academic Press Inc., 2000.

[Grandell 97] J. Grandell. Mixed Poisson Processes, Monographs on Statistics and
Applied Probability 77. London: Chapman & Hall, 1997.

[Guelzim et al. 02] N. Guelzim, S. Bottani, P. Bourgine, and K. Kepes. “Topological
and Causal Structure of the Yeast Transcriptional Regulatory Network.” Nat.
Genet. 31 (2002), 60–63.

[Harbison et al. 04] C. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D.
Macisacc, T. W. Danford, N. M. Hannett et al. “Transcriptional Regulatory Code
of a Eukaryotic Genome.” Nature 431 (2004), 99–104.



Bassetti et al.: Exchangeable Random Networks 399

[Itzkovitz et al. 03] S. Itzkovitz, R. Milo, N. Kashtan, G. Ziv, and U. Alon. “Subgraphs
in Random Networks.” Phys. Rev. E 68 (2003), 026127.

[Kallenberg 02] O. Kallenberg. Foundations of Modern Probability. Probability and
Its Applications, second edition. New York: Springer-Verlag, 2002.

[Kolchin 99] V. F. Kolchin. Random Graphs, Encyclopedia of Mathematics and Its
Applications, 53. Cambridge, UK: Cambridge University Press, 1999.

[Lee et al. 02] T. Lee N. Rinaldi, F. Robert, D. T. Odorn, Z. Bar-Joseph, G. K. Gerber,
N. M. Hannett et al. “Transcriptional Regulatory Networks in Saccharomyces
cerevisiae.” Science 298 (2002), 799.

[Levitskaya 05] A. A. Levitskaya. “Systems of Random Equations over Finite Algebraic
Structures.” Kibernet. Sistem. Anal. 41:1 (2005), 82–116, 190.

[MacKay 99] D. J. C. MacKay. “Good Error-Correcting Codes Based on Very Sparse
Matrices.” IEEE Transactions on Information Theory 45 (1999), 399–431.

[Magnus et al. 66] W. Magnus, F. Oberhettinger, and R. P. Soni. Formulas and Theo-
rems for the Special Functions of Mathematical Physics, third edition. New York:
Springer-Verlag, 1966.

[Matias 06] S. Matias, C. amd Schbath, E. Birmela, J. J. Daudin, and S. Robin. “Net-
works Motifs: Mean and Variance for the Count.” REVSTAT 4:1 (2006), 31–51.
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