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Real Number Labelings for
Paths and Cycles
Jerrold R. Griggs and Xiaohua Teresa Jin

Abstract. The problem of radio channel assignments with multiple levels of interference
depending on distance can be modelled using graph theory. The authors previously
introduced a model of labeling by real numbers. Given a graph G, possibly infinite,
and real numbers k1, k2 ≥ 0, an L(k1, k2)-labeling of G assigns real numbers f(x) ≥ 0
to the vertices x, such that the labels of vertices u and v differ by at least ki if u
and v are at distance i apart. We denote by λ(G; k1, k2) the infimum span over such
labelings f . It is enough to determine λ(G; k, 1) for reals k ≥ 0, which will be a
continuous nondecreasing piecewise linear function. Here we present these functions
for paths, cycles, and wheels.

1. Introduction

Hale (1980) used graph theory to model the efficient assignment of numerical
channels to a network of transmitters such that interference between nearby
transmitters is avoided [Hale 80]. Transmitters can be represented by vertices,
with vertices for nearby transmitters joined by an edge. The goal is to min-
imize the span of the assignment between the longest and shortest channels.
The resulting graph theory problems concern “generalized colorings,” in which
the colors are integers. Here the difference between integer labels is a concern,
whereas in traditional coloring we only care whether vertices receive the same or
different colors.

In the late 1980s Lanfear described to Roberts [Roberts 03] a channel assign-
ment problem of this kind in which there are two levels of interference, depend-
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ing on the distance between the transmitters. In the basic problem, channels for
close locations must be distinct (i.e., must differ by at least 1), while those for
very close locations must differ by at least 2 (due to spectral spreading). Griggs
introduced the analogous “lambda-labeling” problem for graphs and made the
initial investigation of this graph theory problem with Yeh [Griggs and Yeh 92].
The generalization of the problem in which integer separations are specified at
distances 1, 2, . . . , p was also introduced, and a sizable literature considering
these labelings of graphs (see [Griggs 00, Calamoneri 06, Jin 05, Griggs and
Jin 05, Griggs and Král’, to appear] for overviews) has since appeared.

Over the past several years such problems have generated considerable atten-
tion due to the growth of large networks for wireless and mobile communications.
Often, the transmitter towers are laid out in regular arrays that can be modeled
effectively by the graph interpretation above. Since there is no reason why the
channels and separations have to be restricted to integers, Griggs proposed a
more general real number model for labeling graphs with distance conditions,
which he has been investigating jointly with Xiaohua Teresa Jin [Griggs and
Jin 06]. The purpose of this article is to present the optimal spans of label-
ings with arbitrary conditions at distance 2 for two fundamental graph families
(paths and cycles) and a closely related family (wheels). In the real-number
model, scaling allows us to reduce these problems for each graph to one with
only a single parameter. These formulas will be useful in the future development
of the theory of labelings with distance conditions.

For the remainder of this section, we shall review the basic definitions of real-
number labelings, along with the tools from the theory that will be helpful. For
this paper, we restrict our attention to conditions at distance p = 2, though
the theory has been developed for general distance p. Section 2 collects our
results and compares them with what is already in the literature. The following
three sections contain the proofs of the formulas for paths, cycles, and wheels,
respectively. The proofs are complicated, as is to be expected when one examines
the surprisingly elaborate functions for the optimal spans. For instance, the
formula for the n-cycle depends on n modulo 12 for n ≥ 6.

Let us fix a graph G, which we assume to be finite in this paper, although the
theory considers infinite graphs as well. Let us also specify the separations, which
are real numbers k1, k2 ≥ 0. We say an L(k1, k2)-labeling of G is an assignment
of real numbers f(v) to the vertices v of G, such that |f(u)− f(v)| ≥ ki if u and
v are at distance i in G. We say that labeling f belongs to the set L(k1, k2)(G).
We denote by λ(G; k1, k2) the infimum span over such f , where the span is the
difference between the greatest and least labels f(v).

Clearly, for finite G such labelings exist for all k1, k2, and so the infimum,
λ(G; k1, k2), exists as well. Griggs and Jin proved the existence of an optimal
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labeling of a nice form, in which all labels belong to the discrete set, denoted by
D(k1, k2), of linear combinations

∑
i aiki, with nonnegative integer coefficients ai

[Griggs and Jin 06].

Theorem 1.1. (The D-Set Theorem (finite case, p = 2).) [Griggs and Jin 06] Let G = (V,E)
be a finite graph. Let real numbers k1, k2 ≥ 0. There exists a finite optimal
L(k1, k2)-labeling f∗ : V (G) → [0,∞) in which the smallest label is 0, and all
labels (and the span λ(G; k1, k2)) belong to the set D(k1, k2) such that the sum
of coefficients a1 + a2 < |V |.

Due to the D-set Theorem, previous optimal integer labeling results are com-
patible with the theory of real-number labeling. An important property manifest
in the setting of real-number labelings is scaling:

Proposition 1.2. (Scaling Property.) For real numbers d, k1, k2 ≥ 0,

λ(G; d · k1, d · k2) = d · λ(G; k1, k2).

It is proven in [Griggs and Jin 06] that λ(G; k1, k2) is a continuous nonde-
creasing piecewise linear function of the real numbers ki, where the pieces have
nonnegative integer coefficients and where there are only finitely many pieces.
The continuity means that it suffices to determine λ(G; k1, k2) for rational ki’s,
and by scaling, it is enough to determine λ(G; k1, k2) for integer ki’s, which is the
setting in which other researchers have worked. Indeed, our proofs here often re-
duce to the integer case. The analysis is more clear with the real-number model,
however, and more results have emerged by considering real-number labelings.
The theoretical results mentioned above give us additional tools.

Scaling implies, in particular, that for k2 > 0, λ(G, k1, k2) = k2λ(G; k, 1),
where k = k1/k2. This reduces the two-parameter function to a one-parameter
function, λ(G; k, 1), k ≥ 0. The results above ensure that this is a continuous
nondecreasing piecewise linear function of k with finitely many pieces. Further,
each piece has the form ak + b for some integers a, b ≥ 0. It is this function that
we will obtain for

1. paths Pn on n vertices;

2. cycles Cn on n ≥ 3 vertices; and

3. wheels Wn, n ≥ 3, consisting of a cycle Cn and a vertex adjacent to all of
its vertices (see Figure 3).
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In their original paper on distance labeling, Griggs and Yeh [Griggs and
Yeh 92] worked out the (2, 1)-labeling number for paths and cycles, showing
that λ(Cn; 2, 1) = 4 for all n, which is the same value as λ(Pn; 2, 1) for all
n ≥ 5.

While working out the basics of the general theory of real-number labeling
with distance conditions, the authors determined λ(Pn; k, 1) and λ(Cn; k, 1) for
arbitrary real k ≥ 0. This was in 2003. But it took longer to work out the basics
of the theory, which needed to be in the first paper of the series, see [Griggs and
Jin 06]. In reviewing past work on integer labelings with distance conditions, the
authors discovered that Georges and Mauro had already determined the values
λ(Pn; k1, k2) and λ(Cn; k1, k2) for integers k1 ≥ k2 [Georges and Mauro 95].
Their formulas are given in terms of the ratio k1/k2, which makes sense in view
of the reduction above to the one-parameter values λ(Pn; k, 1) and λ(Cn; k, 1)
for k ≥ 1.

Thus, our formulas for paths and cycles can be deduced from the existing
theory for k ≥ 1. We place them in the context of real-number labelings, where
the formulas are more illuminating. Because our proofs use different methods,
which will be useful for other graphs in the future, we present them in detail.
Further, we offer new results, by expanding the formulas to allow k1 < k2 (that
is, k ≥ 0). We also obtain new formulas, solving the wheels Wn.

For actual networks, the frequency channel separations ki for two transmitters
are often inversely proportional to the distance i between them [Bertossi et al. 03].
Most articles assume that the separations are nonincreasing, k1 ≥ k2. But this
is not required in our theory, and there are different settings for which these
labelings are a good model, but without the added assumption on the separations
ki (see [Griggs and Jin 08]).

For additional motivation for studying paths and cycles, we mention these
network models:

• A typical n-cell linear highway cellular system [Anand et al. 03] along a
highway (with the base-stations/transmitters in the center of each cell) can
be modeled by a path Pn.

• A loop cellular system around a big city [Anand et al. 03, Bertossi et al. 03],
due to high buildings, can be modeled by a cycle Cn.

Also, paths and cycles are induced subgraphs of many graphs, such as those
that occur in typical cellular systems.
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2. Results on Paths, Cycles, and Wheels.

Here are our results:

Theorem 2.1. (Path Theorem.) For real k ≥ 0, we have
λ(P2; k, 1) = k,

λ(P3; k, 1) =

⎧⎨
⎩

1 if 0 ≤ k ≤ 1
2

2k if 1
2 ≤ k ≤ 1

k + 1 if k ≥ 1,
λ(P4; k, 1) = k + 1,

λ(P5; k, 1) = λ(P6; k, 1) =

⎧⎨
⎩

k + 1 if 0 ≤ k ≤ 1
2k if 1 ≤ k ≤ 2
k + 2 if k ≥ 2.

For n ≥ 7, we have

λ(Pn; k, 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k + 1 if 0 ≤ k ≤ 1
2

3k if 1
2 ≤ k ≤ 2

3
2 if 2

3 ≤ k ≤ 1
2k if 1 ≤ k ≤ 2
k + 2 if k ≥ 2.

Pn, n ≥ 7
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Figure 1. The minimum span λ(Pn; k, 1).
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Theorem 2.2. (Cycle Theorem.) For real k ≥ 0, we have
λ(C3; k, 1) = 2k,

λ(C4; k, 1) =

⎧⎪⎨
⎪⎩

k + 1 if 0 ≤ k ≤ 1
2

3k if 1
2 ≤ k ≤ 1

k + 2 if k ≥ 1,

λ(C5; k, 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if 0 ≤ k ≤ 1
2

4k if 1
2 ≤ k ≤ 1

4 if 1 ≤ k ≤ 2
2k if k ≥ 2.

For n ≥ 6, the values of λ(Cn, k, 1) are indicated in the following tables:

λ(Cn; k, 1) n ≡ 0 (mod 4) n �≡ 0 (mod 4)

if 0 ≤ k ≤ 1
2

k + 1 2

if 1
2
≤ k ≤ 2

3
3k 2

λ(Cn; k, 1) n ≡ 0 (mod 3) n �≡ 0 (mod 3)

if 2
3
≤ k ≤ 1 2 3k

if 1 ≤ k ≤ 2 2k k + 2

λ(Cn; k, 1) n ≡ 0 (mod 4) n ≡ 2 (mod 4) n ≡ 1 or 3 (mod 4)

if 2 ≤ k ≤ 3 k + 2 2k 2k

if k ≥ 3 k + 2 k + 3 2k
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Figure 2. The minimum span λ(Cn; k, 1) for n = 3, 4, 5 and n ≥ 6.
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Theorem 2.3. (Wheel Theorem.) For real k ≥ 0, we have

λ(W3; k, 1) = 3k,

λ(W4; k, 1) =

⎧⎪⎨
⎪⎩

k + 1 if 0 ≤ k ≤ 1
3

4k if 1
3 ≤ k ≤ 1

2k + 2 if k ≥ 1.

For odd n ≥ 5, we have

λ(Wn; k, 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n−1
2 if 0 ≤ k ≤ 1

3

3k + n−3
2 if 1

3 ≤ k ≤ 1
2

nk if 1
2 ≤ k ≤ 1

k + n − 1 if 1 ≤ k ≤ n−1
2

3k if k ≥ n−1
2 .

For even n ≥ 5, we have

λ(Wn; k, 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k + n
2 − 1 if 0 ≤ k ≤ 1

3

4k + n
2 − 2 if 1

3 ≤ k ≤ 1
2

nk if 1
2 ≤ k ≤ 1

k + n − 1 if 1 ≤ k ≤ n
2 − 1

2k + n
2 if k ≥ n

2 − 1.

n

0
3

2

1

v

v

v

vv

2k + 2

4k

k + 1
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(1/3,4/3)

k11/30

1

Figure 3. Wheel Wn, n ≥ 3 (left), and λ(W4; k, 1) (right).
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Figure 4. λ(Wn; k, 1) for odd n ≥ 5 (left), and for even n ≥ 6 (right).

3. The Proof for Paths

Let the vertices of path Pn be called, in order starting from one end, v1, . . . , vn.
The result is immediate for P2, which is a single edge. Next, consider P3.

Proposition 3.1. For real k ≥ 0, we have

λ(P3; k, 1) =

⎧⎪⎨
⎪⎩

1 if 0 ≤ k ≤ 1
2

2k if 1
2 ≤ k ≤ 1

k + 1 if k ≥ 1.

Proof. The upper bound is attained by labeling f with

(f(v1), f(v2), f(v3)) =

⎧⎪⎨
⎪⎩

(0, k, 1) if 0 ≤ k ≤ 1
2

(0, k, 2k) if 1
2 ≤ k ≤ 1

(0, k + 1, 1) if k ≥ 1.

We will show that is the lower bound, too. Assume f is an optimal labeling
with least label 0, as in the D-Set Theorem. By the condition at distance 2,
f(v1) or f(v3) ≥ 1. Hence, λ(P3; k, 1) ≥ 1, which gives the desired bound for
0 ≤ k ≤ 1

2 .

Claim 3.2. For 1
2 ≤ k ≤ 1, λ(P3; k, 1) ≥ 2k.

Proof. The labels for any two of the three vertices of P3 must differ by at least k

in this range, and so the span of any labeling must be at least 2k, proving the
claim.
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Claim 3.3. For k ≥ 1, λ(P3; k, 1) ≥ k + 1.

Proof. Assume λ(P3; k, 1) = l < k + 1. By the D-Set Theorem, we may assume
that at least two of the three labels are less than k (otherwise, we may replace
f(v) by l − f(v) for all vertices v). By the distance conditions, labels less than
k cannot be adjacent, so f(v1), f(v3) < k. By the condition at distance 2, f(v1)
or f(v3) ≥ 1. Hence, f(v2) ≥ k + 1, which contradicts the assumption, proving
the claim.

Proposition 3.4. For real k ≥ 0, we have λ(P4; k, 1) = k + 1.

Proof. The upper bound is attained by labeling(f(v1), f(v2), f(v3), f(v4)) =
(k, 0, k + 1, 1). We will show that is also the lower bound.

For k ≥ 1, we have λ(P4; k, 1) ≥ λ(P3; k, 1) = k + 1, as desired. It remains to
treat small k. It suffices to prove the lower bound of k + 1 for 0 < k < 1, since
it follows at k = 0 by continuity of λ.

Claim 3.5. For 0 < k < 1, we have λ(P4; k, 1) ≥ k + 1.

Proof. Assume to the contrary that, for some such k, l = λ(P4; k, 1) < k + 1, and
let f be an optimal labeling as in the D-Set Theorem.

Suppose f(v2) < 1. If f(v2) = 0, then by the distance conditions, both
f(v1), f(v3) ≥ k, and the greater of the two must then be at least k + 1, con-
tradicting the assumption on l. So f(v2) must of the form ik for some integer
i > 0 (since it is in D(k, 1) and is less than 1). Then f(v4) must be at least
ik + 1 ≥ k + 1, again contradicting the assumption.

Hence, f(v2) ≥ 1. Now we define a complementary labeling f ′ by f ′(v) =
l−f(v). While f ′ is also an optimal L(k, 1)-labeling, it may not be one as in the
D-Set Theorem (with all labels in D(k, 1)). But we can obtain such a labeling,
call it f ′′, as in the proof of the D-Set Theorem [Griggs and Jin 06]: For each v,
let f ′′(v) be the largest element of D(k, 1) that is at most f ′(v). Now we have
that f ′′(v) ≤ f ′(v) = l − f(v) ≤ l − 1 < k < 1, and we get a contradiction the
same way as before, proving the claim and the proposition.

Proposition 3.6. For real k ≥ 0, we have

λ(P5; k, 1) = λ(P6; k, 1) =

⎧⎪⎨
⎪⎩

k + 1 if 0 ≤ k ≤ 1
2k if 1 ≤ k ≤ 2
k + 2 if k ≥ 2.
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Proof. Both graphs have the same spans. For the upper bound, it is enough to
show how to label P6:

⎧⎪⎨
⎪⎩

(k + 1, k, 0, k + 1, 1, 0) if 0 ≤ k ≤ 1
(0, k, 2k, 0, k, 2k) if 1 ≤ k ≤ 2
(0, k + 1, 1, k + 2, 0, k + 1) if k ≥ 2.

It remains to prove the lower bound on P5. For 0 ≤ k ≤ 1 we use λ(P5; k, 1) ≥
λ(P4; k, 1) = k + 1. Next consider k between 1 and 2.

Claim 3.7. For 1 ≤ k ≤ 2, λ(P5; k, 1) ≥ 2k.

Proof. Assume l = λ(P5; k, 1) < 2k, and let f be an optimal labeling as in
the D-Set Theorem. We may assume that at least two of the three labels
f(v2), f(v3), f(v4) are less than k (or else take a complementary labeling f ′′ as in
the proof of Claim 3). By the distance conditions, these two labels cannot be ad-
jacent, so f(v2) and f(v4) are both less than k and at least 1 apart. The greater
of the two labels, say f(v2), then satisfies 1 ≤ f(v2) < k. So f(v1), f(v3) ≥ k+1.
By the condition at distance 2, f(v1) or f(v3) ≥ k+2 ≥ 2k, contradicting l < 2k,
and the claim follows.

Claim 3.8. For k ≥ 2, λ(P5; k, 1) ≥ k + 2.

Proof. Assume to the contrary that l = λ(P5; k, 1) < k+2, and let f be an optimal
labeling as in the D-Set Theorem. Following the proof of Claim 4 again leads to
f(v1) or f(v3) ≥ k + 2, a contradiction, proving the claim and proposition.

Proposition 3.9. Let n ≥ 7. For real k ≥ 0, we have

λ(Pn; k, 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k + 1 if 0 ≤ k ≤ 1
2

3k if 1
2 ≤ k ≤ 2

3

2 if 2
3 ≤ k ≤ 1

2k if 1 ≤ k ≤ 2
k + 2 if k ≥ 2.
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Proof. According to the value of k, we repeat an underlined pattern until all of
Pn is labeled to achieve the stated optimal spans:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0, k + 1, 1, k, . . .) if 0 ≤ k ≤ 1
2

(0, k, 2k, 3k, . . .) if 1
2 ≤ k ≤ 2

3

(0, 1, 2, . . .) if 2
3 ≤ k ≤ 1

(0, k, 2k, . . .) if 1 ≤ k ≤ 2
(0, k + 1, 1, k + 2, . . .) if k ≥ 2.

The lower bounds follow from those for P5, except in the range 1
2 < k < 1.

Next, one can easily check that for 1
2 < k ≤ 2

3 , (k + 1, 3k)∩D(k, 1) = ∅, and for
2
3 < k < 1, (k + 1, 2) ∩ D(k, 1) = ∅. By the D-Set Theorem, it then suffices to
prove the next claim.

Claim 3.10. For 1
2 < k < 1, λ(P7; k, 1) > k + 1.

Proof. Assume for some such k that l = λ(P7; k, 1) ≤ k+1, and let f be an optimal
labeling as in the D-Set Theorem. We may assume that at least two of the three
labels f(v3), f(v4), f(v5) are less than 1 (or else take a complementary labeling
f ′′ as in the proof of Claim 3.5). These two labels cannot be at distance 2, so
we may assume they are at v3 and v4 (or else reverse the order of the vertices
on P7). We only need to work now on v1 through v6. By symmetry, we may
assume f(v3) > f(v4), so that f(v3) ≥ k.

Since f(v3) < 1, the condition at distance 2 forces f(v1) ≥ f(v3) + 1 ≥ k + 1.
Due to the span of f , it must be that f(v1) = k + 1, which forces f(v3) = k

and f(v4) = 0. Then v1 forces f(v2) ≤ 1, while v3 and v4 force f(v2) > 1, a
contradiction, proving the claim and proposition.

This completes the proof of Theorem 2.1.

4. The Proof for Cycles

Let the vertices of cycle Cn be called, in order going around, v1, . . . , vn. The
result is almost immediate for C3, for which the optimal labeling is (0, k, 2k).
We take care of C4 and C5 in the next two propositions.

Proposition 4.1. For real k ≥ 0, we have

λ(C4; k, 1) =

⎧⎪⎨
⎪⎩

k + 1 if 0 ≤ k ≤ 1
2

3k if 1
2 ≤ k ≤ 1

k + 2 if k ≥ 1.
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Proof. The upper bound is attained by the labeling

(f(v1), f(v2), f(v3), f(v4)) =

⎧⎪⎨
⎪⎩

(0, k, 1, k + 1) if 0 ≤ k ≤ 1
2

(0, k, 2k, 3k) if 1
2 ≤ k ≤ 1

(0, k + 1, 1, k + 2) if k ≥ 1.

For the lower bound, consider an optimal labeling f as described by the D-Set
Theorem. Suppose f(v1) = 0. The distance conditions force f(v2), f(v3), f(v4) ≥
min{k, 1}. The span among {f(v2), f(v3), f(v4)} is at least λ(P3; k, 1), so
λ(C4; k, 1) ≥ λ(P3; k, 1) + min{k, 1}. Applying Theorem 2.1 to evaluate this,
we obtain the stated bound.

Proposition 4.2. For real k ≥ 0, we have

λ(C5; k, 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 if 0 ≤ k ≤ 1
2

4k if 1
2 ≤ k ≤ 1

4 if 1 ≤ k ≤ 2
2k if k ≥ 2.

Proof. The upper bound is attained by labeling

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, k, 1, k + 1, 2) if 0 ≤ k ≤ 1
2

(0, k, 2k, 3k, 4k) if 1
2 ≤ k ≤ 1

(0, 2, 4, 1, 3) if 1 ≤ k ≤ 2
(0, k, 2k, 1, k + 1) if k ≥ 2.

We will show that is the lower bound, too. Assume f is an optimal labeling
as in the D-Set Theorem.

Claim 4.3. For 0 ≤ k ≤ 1
2 , we have λ(C5; k, 1) ≥ 2.

Proof. For any three vertices of C5, some two are at distance 2, so at most two
vertices have labels f(v) in [0, 1). Similarly, at most two vertices have labels in
[1, 2). So some vertex must have label at least 2, and the span of f is at least 2,
proving the claim.

Claim 4.4. For 1
2 ≤ k ≤ 1, we have λ(C5; k, 1) ≥ 4k, and for 1 ≤ k ≤ 2, we have

λ(C5; k, 1) ≥ 4.
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Proof. Suppose 1
2 ≤ k ≤ 1. The distance conditions imply that any two labels

differ by at least k, and so the span of f is at least 4k, as claimed. For k ≥ 1,
we then have λ(C5; k, 1) ≥ λ(C5; 1, 1) = 4, proving the claim.

Claim 4.5. For k ≥ 2, we have λ(C5; k, 1) ≥ 2k.

Proof. Of any three vertices, some two are adjacent. Thus, the conditions at
distance 1 imply that at most two vertices have labels f(v) in [0, k). Similarly,
at most two vertices have labels in [k, 2k). So some vertex must have label at
least 2k, and the span of f is at least 2k. This proves the claim and proposition.

It remains to treat Cn for all n ≥ 6. The first proposition gives labelings that
achieve the stated bounds.

Proposition 4.6. Let n ≥ 6. For real k ≥ 0, there are labelings that achieve the
bounds in the Cycle Theorem.

Proof. Here are the labelings, depending on the value of k and on n mod 3 and
mod 4. The underlined sections are repeated as many times as needed.

For 0 ≤ k ≤ 1
2 ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, k, 1, k + 1) if n ≡ 0 (mod 4)
(0, 1, 2, 0, 1, 2, 0, 1, 2, 0, k, 1, 2) if n ≡ 1 (mod 4)
(0, 1, 2, 0, 1, 2, 0, k, 1, 2) if n ≡ 2 (mod 4)
(0, 1, 2, 0, k, 1, 2) if n ≡ 3 (mod 4).

For 1
2 ≤ k ≤ 2

3 ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, k, 2k, 3k) if n ≡ 0 (mod 4)
(0, 1, 2, 0, 1, 2, 0, 1, 2, 0, k, 2k, 2) if n ≡ 1 (mod 4)
(0, 1, 2, 0, 1, 2, 0, k, 2k, 2) if n ≡ 2 (mod 4)
(0, 1, 2, 0, k, 2k, 2) if n ≡ 3 (mod 4).

For 2
3 ≤ k ≤ 1,

⎧⎪⎨
⎪⎩

(0, 1, 2) if n ≡ 0 (mod 3)
(0, k, 2k, 3k, 0, 1, 2) if n ≡ 1 (mod 3)
(0, k, 2k, 3k, 0, k, 2k, 3k, 0, 1, 2) if n ≡ 2 (mod 3).
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For 1 ≤ k ≤ 2,
⎧⎪⎨
⎪⎩

(0, k, 2k) if n ≡ 0 (mod 3)
(0, k + 1, 1, k + 2, 0, k, k + 2) if n ≡ 1 (mod 3)
(0, k + 1, 1, k + 2, 0, k + 1, 1, k + 2, 0, k, k + 2) if n ≡ 2 (mod 3).

For 2 ≤ k ≤ 3,
⎧⎪⎪⎨
⎪⎪⎩

(0, k + 1, 1, k + 2) if n ≡ 0 (mod 4)
(0, k, 2k, 0, k, 2k, 0, k, 2k, 0, k + 1, 1, k + 2) if n ≡ 1 (mod 4)
(0, k, 2k, 0, k, 2k, 0, k + 1, 1, k + 2) if n ≡ 2 (mod 4)
(0, k, 2k, 0, k + 1, 1, k + 2) if n ≡ 3 (mod 4).

For k ≥ 3,
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, k + 1, 1, k + 2) if n ≡ 0 (mod 4)
(0, k, 2k, 0, k, 2k, 0, k, 2k, 0, k + 1, 1, k + 2) if n ≡ 1 (mod 4)
(0, k + 1, 1, k + 2, 2, k + 3, 0, k + 1, 1, k + 2) if n ≡ 2 (mod 4)
(0, k, 2k, 0, k + 1, 1, k + 2) if n ≡ 3 (mod 4).

It remains to prove the lower bounds for n ≥ 6.
Let f be an optimal labeling as in the D-Set Theorem. We begin with k ≤ 2

3 ,
which splits into cases according to n (mod 4). If n ≡ 0 (mod 4), then n ≥ 8,
and Cn contains an induced P7. Thus, λ(Cn; k, 1) ≥ λ(P7; k, 1), which is the
desired formula, k + 1 for 0 ≤ k ≤ 1

2 and 3k for 1
2 ≤ k ≤ 2

3 . We now treat the
other values of n.

Proposition 4.7. Let n ≥ 6 with n �≡ 0 (mod 4). For 0 ≤ k ≤ 2
3 , the spans stated in

the Cycle Theorem cannot be improved.

Proof. It suffices to prove the lower bound, 2, at k = 0. Assume to the contrary
that for some such n, l = λ(Cn; 0, 1) < 2. Then each vertex vi has its label
f(vi) either in the interval [0, 1) or the interval [1, 2). Since no two vertices at
distance 2 can have labels in the same unit interval, it must be that the labels
going around Cn have two in [0, 1) followed by two in [1, 2) followed by two in
[0, 1) again, and so on. But this is possible only if 4 divides n, a contradiction.

We next treat 2
3 ≤ k ≤ 1. If n ≥ 8, then Cn contains an induced P7 as above,

and the value of λ(P7; k, 1) = 2 is a lower bound. For n ≡ 0 (mod 3), this is
the desired bound, though we must still prove it for C6: The vertices v1, v3, v5

in C6 are pairwise at distance two, so require span at least 2. This still leaves
n �≡ 0 (mod 3) for this range in k.



Griggs and Jin: Real Number Labelings for Paths and Cycles 79

Proposition 4.8. Let n ≥ 7 with n �≡ 0 (mod 3). For 2
3 ≤ k ≤ 1, we have that

λ(Cn; k, 1) ≥ 3k.

Proof. Assume to the contrary that for some such n and k we have λ(Cn; k, 1) < 3k.
Every label f(vi) is in one of the intervals [0, k), [k, 2k), [2k, 3k), and no two
labels within distance 2 are in the same interval. Hence, each of these intervals
contains labels for at most 	n/3
 of the vertices. But this is less than n/3, since
n �≡ 0 (mod 3), so we have not accounted for all n vertices, a contradiction.

The next range up is 1 ≤ k ≤ 2. The lower bound here for cycles Cn, n ≥ 6
with n ≡ 0 (mod 3), follows immediately from the span of P5, which is 2k in this
range. We then need to treat the remaining n.

Proposition 4.9. Let n ≥ 6 with n �≡ 0 (mod 3). For 1 ≤ k ≤ 2, we have λ(Cn; k, 1) ≥
k + 2.

Proof. No two labels less than 1 can be within distance 2 of each other, so there
are at most 	n/3
 < n/3 such labels. Thus, there exist some three consecutive
vertices with labels at least 1. Using the fact that λ(P3; k, 1) = k + 1, we get
that the span of f is at least k + 2.

We now treat the large values, k ≥ 2. Again, we get a lower bound from the
span of P5, which is k+2 in this range. It is the bound we want for n ≡ 0 (mod 4).
For other n ≥ 6 we must do better.

Proposition 4.10. Let n ≥ 6 with n �≡ 0 (mod 4). If n is odd, then we have
λ(Cn; k, 1) ≥ 2k for k ≥ 2. If n is even, then we have λ(Cn; k, 1) ≥ 2k for
2 ≤ k ≤ 3 and λ(Cn; k, 1) ≥ k + 3 for k ≥ 3.

Proof. First suppose n ≥ 6 is odd and k ≥ 2. No two adjacent vertices have
labels less than k apart, so the number of vertices with labels in [0, k) is at most
	n/2
 < n/2, and the same is true for labels in [k, 2k). Hence, some vertex has
label at least 2k, so the span of f is at least 2k.

Then suppose n ≥ 6 is even, but �≡ 0 (mod 4), say n = 2r where r is odd.
We must show that λ(Cn; k, 1) ≥ min{2k, k + 3} for k ≥ 2. Suppose not, say
l = λ(Cn; k, 1) < min{2k, k + 3}. Arguing as for odd n, we find that there are
n/2 labels each in the intervals [0, k) and [k, l] (as l < 2k), and they alternate
between the two intervals. Looking at the r labels in [0, k) in order going around,
we find that consecutive ones, which are at distance 2 in Cn, differ by at least
1. Since r is odd, some label in [0, k) is at least 2. Its two neighbors on Cn have
“large labels” (at least k). The distance conditions mean that each neighbor has
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label at least k + 2, and the greater of the two must then be at least k + 3. So
the span of f is at least k + 3, which contradicts the assumption on l.

This completes the proof of Theorem 2.2.

5. The Proof for Wheels

While the wheel Wn is closely related to the cycle Cn, note that the extra vertex
brings the diameter down to just 2, which clearly affects distance labelings. In
fact, for an L(k, 1)-labeling, any two of the n + 1 labels must differ by at least
min{k, 1}.

As before, we denote the vertices going around the n-cycle in Cn by v1, . . . , vn.
We denote the extra vertex adjacent to the cycle by v0. Since W3 is just the
complete graph K4, it has optimal span 3k. Next we consider W4.

Proposition 5.1. For real k ≥ 0, we have

λ(W4; k, 1) =

⎧⎪⎨
⎪⎩

k + 1 if 0 ≤ k ≤ 1
3

4k if 1
3 ≤ k ≤ 1

2k + 2 if k ≥ 1.

Proof. The upper bound is attained by the following labelings f , in which we
give the label of the central vertex, f(v0), first followed after a semicolon by the
labels going around the n-cycle:

⎧⎪⎨
⎪⎩

(2k; 0, k, 1, k + 1) if 0 ≤ k ≤ 1
3

(2k; 0, k, 3k, 4k) if 1
3 ≤ k ≤ 1

(0; k, 2k + 1, k + 1, 2k + 2) if k ≥ 1.

We must verify this is also a lower bound for all k. For 0 ≤ k ≤ 1
3 , we have

λ(W4; k, 1) ≥ λ(C4; k, 1) = k + 1.

For 1
3 ≤ k ≤ 1, any two labels must differ by at least k, so that the span of an

L(k, 1)-labeling is at least 4k. It remains to treat large k.

Claim 5.2. For k ≥ 1, λ(W4; k, 1) ≥ 2k + 2.

Proof. Let f be an optimal labeling as in the D-Set Theorem. Any three vertices
in W4 induce either a path P3, which has span k + 1, or a cycle C3, which has
span 2k ≥ k+1. So at most two vertices have labels in the interval [0, k+1), and
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at most two have labels in [k + 1, 2k + 2). Hence, some label is at least 2k + 2,
and so is the span of f , proving the claim and proposition.

For n ≥ 5, we split according to whether it is odd or even.

Proposition 5.3. Let n be an odd integer ≥ 5. For real k ≥ 0, we have

λ(Wn; k, 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n−1
2 if 0 ≤ k ≤ 1

3

3k + n−3
2 if 1

3 ≤ k ≤ 1
2

nk if 1
2 ≤ k ≤ 1

k + n − 1 if 1 ≤ k ≤ n−1
2

3k if k ≥ n−1
2 .

Proof. The upper bound is attained by these labelings f , in which f(v0) is listed
first:

For 0 ≤ k ≤ 1
3 ,

(2k; 0, k, 1, k + 1, 2, k + 2, 3, k + 3, . . . ,
n − 3

2
, k +

n − 3
2

,
n − 1

2
);

for 1
3 ≤ k ≤ 1

2 ,

(2k; 0, k, 3k, 4k, 3k + 1, 4k + 1, 3k + 2, 4k + 2, . . . , 4k +
n − 5

2
, 3k +

n − 3
2

);

for 1
2 ≤ k ≤ 1,

(0; k, 2k, 3k, . . . , nk);

for 1 ≤ k ≤ n−1
2 ,

(0; k, k+
n + 1

2
, k+1, k+

n + 3
2

, k+2, k+
n + 5

2
, . . . , k+

n − 3
2

, k+n−1, k+
n − 1

2
);

for k ≥ n−1
2 ,

(0; k, 2k+1, k+1, 2k+2, k+2, 2k+3, . . . , k+
n − 5

2
, 2k+

n − 3
2

, k+
n − 3

2
, 3k, 2k).

We need to verify that these values are lower bounds. Let f be an optimal
labeling as in the D-Set Theorem. We begin with small k.

Claim 5.4. Let n ≥ 5 be odd. For 0 ≤ k ≤ 1
3 , λ(Wn; k, 1) ≥ n−1

2 .
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Proof. Of the n vertices on the outer cycle, no three can be in the same interval
[i, i + 1), since some two of any three vertices on the cycle are at distance 2 in
Wn. Thus, some vertex on the cycle has label outside [0, n−1

2 ), so the span of f

is at least n−1
2 , proving the Claim.

Claim 5.5. Let n ≥ 5 be odd. For 1
3 ≤ k ≤ 1

2 , λ(Wn; k, 1) ≥ 3k + n−3
2 .

Proof. Using the distance conditions, all vertices with labels in the interval [0, 1)
are mutually adjacent. So there are at most three of them, and, if there are
three, one of them must be the center, v0 (and k < 1/2). The same is true for all
of the intervals Ii := [i, i + 1), 0 ≤ i ≤ n−3

2 . This means we can have at most n

vertices with labels in [0, n−1
2 ), so that some vertex w has label at least n−1

2 . If
there are two such vertices, the greatest label is at least k+ n−1

2 ≥ 3k+ n−3
2 , the

desired bound. If there is only one such vertex, we must look more closely: Some
interval [j, j +1) must contain labels for three vertices (one of which is v0), while
the others have just two each. The greatest label in [j, j + 1) is at least 2k + j.
The two labels in [j +1, j +2) are then at least k greater, 3k + j. The two labels
in [j + 2, j + 3) are at least 3k + j + 1, because each represents a vertex in the
n-cycle that is distance 2 from one or both vertices with labels in [j + 1, j + 2).
Repeating this idea, we eventually find that the label f(w) ≥ 3k + n−3

2 , proving
the Claim.

For 1
2 ≤ k ≤ 1, the lower bound is easy: Since any two vertices have labels at

least k apart (as k ≤ 1), and there are n+1 vertices, the optimal span is at least
nk.

For 1 ≤ k ≤ n−1
2 , any pair of labels in some optimal labeling f (as in the

D-Set Theorem) differ by at least min{k, 1} = 1. Suppose the labels are 0 =
x0 < x1 < x2 · · · < xn. Since v0 is adjacent to every other vertex, there exists i

such that xi+1 − xi ≥ k, hence the span xn ≥ k + n − 1, as claimed.
Finally, we consider large k.

Claim 5.6. Let n ≥ 5 be odd. For k ≥ n−1
2 , λ(Wn; k, 1) ≥ 3k.

Proof. Since Wn has diameter 2, no two adjacent vertices have labels in [0, k).
That is, the vertices with labels in [0, k) form an independent set, and the same
is true for the intervals [k, 2k) and [2k, 3k). Since Wn has chromatic number 4,
some vertex must have a larger label, which is at least 3k, so λ(Wn; k, 1) ≥ 3k.
This proves the claim and proposition.

Having completed the proof for odd n, it remains to treat even n ≥ 5.
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Proposition 5.7. Let n be an even integer ≥ 5. For real k ≥ 0, we have

λ(Wn; k, 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k + n
2 − 1 if 0 ≤ k ≤ 1

3

4k + n
2 − 2 if 1

3 ≤ k ≤ 1
2

nk if 1
2 ≤ k ≤ 1

k + n − 1 if 1 ≤ k ≤ n
2 − 1

2k + n
2 if k ≥ n

2 − 1.

Proof. The upper bound is attained by these labelings f , in which f(v0) is listed
first:

For 0 ≤ k ≤ 1
3 ,

(2k; 0, k, 1, k + 1, 2, k + 2, 3, k + 3, . . . ,
n

2
− 1, k +

n

2
− 1);

for 1
3 ≤ k ≤ 1

2 ,

(2k; 0, k, 3k, 4k, 3k + 1, 4k + 1, 3k + 2, 4k + 2, . . . , 3k +
n

2
− 2, 4k +

n

2
− 2);

for 1
2 ≤ k ≤ 1,

(0; k, 2k, 3k, . . . , nk);

for 1 ≤ k ≤ n−1
2 ,

(0; k, k +
n

2
, k + 1, k +

n

2
+ 1, k + 2, k +

n

2
+ 2, . . . , k +

n

2
− 1, k + n − 1);

for k ≥ n−1
2 ,

(0; k, 2k + 1, k + 1, 2k + 2, k + 2, 2k + 3, . . . , k +
n

2
− 1, 2k +

n

2
).

We now prove that the formulas above are lower bounds. As usual, assume f

is an optimal labeling as in the D-Set Theorem. Begin with small k.

Claim 5.8. Let n ≥ 5 be even. For 0 ≤ k ≤ 1
3 , λ(Wn; k, 1) ≥ k + n

2 − 1.

Proof. Because Wn has diameter 2, at most one vertex vi has label in [0, k). If
i is even, then all of the vertices in the independent set I := {v1, v3, v5, . . . , vn−1}
have labels at least k. If i is odd, instead use I := {v2, v4, v6,

. . . , vn}. Any two vertices in I are at distance 2, so their labels differ by at
least 1. Thus, the labels for I have span at least |I| − 1, and the span of f is at
least k + |I| − 1 = k + n

2 − 1, proving the claim.
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Claim 5.9. Let n ≥ 5 be even. For 1
3 ≤ k ≤ 1

2 , we have λ(Wn; k, 1) ≥ 4k + n
2 − 2.

Proof. By the upper bound, f has span at most n
2 (note that k ≤ 1

2 ). Similar to
the proof of Claim 3 above, we see that each interval Ii := [i, i+1), 0 ≤ i ≤ n−2

2 ,
contains labels for a set of two mutually adjacent vertices, except that for one
value j, Ij contains labels for three vertices, one of which is v0. The greatest of
the three labels in Ij is at least 2k + j.

If j = n−2
2 , then we have a label that is at least 4k + n

2 − 2, the bound we
seek.

On the other hand, suppose j < n−2
2 . Then the two labels in Ij+1 are at least

k greater, so they are at least 3k + j. We find successively (similar to the proof
of Claim 3) that the two labels in Ij+2 are at least 3k + j + 1, and so on, and at
least 3k + n−2

2 − 1 in In
2 −2. The greater of the two labels in the last interval is

then at least 4k + n
2 − 2, the desired bound, proving the claim.

For 1
2 ≤ k ≤ n

2 − 1, the lower bounds follow by the same arguments as for
Proposition 5.3. It remains to treat large k.

Claim 5.10. Let n ≥ 5 be even. For k ≥ n
2 − 1, we have λ(Wn; k, 1) ≥ 2k + n

2 .

Proof. The labels used by f are distinct and separated by at least 1, except that
f(v0) is separated by at least k from the others. If f(v0) is neither the least nor
the greatest label, then the span of f must be at least 2k+n−2 ≥ 2k+ n

2 , which
is the desired bound.

Hence, suppose f(v0) is an extreme value, say it is 0. (If instead it is the
greatest value, the span of f , just take the complementary labeling.) If f has
more than n

2 labels that are at least 2k, then the greatest of them must be at
least 2k + n

2 , which is the bound we want.
Else, there are at most n

2 labels that are at least 2k. Then we have at least
n
2 labels in [k, 2k). Indeed, we have exactly this many labels in [k, 2k) due to
the fact that the corresponding vertices must be independent in Wn. Hence, we
have exactly n

2 labels that are at least 2k. The greatest label in [k, 2k) must be
at least k + n

2 − 1, while its two neighbors on the cycle in Wn must both have
labels that are at least 2k + n

2 − 1; the greater one is at least 2k + n
2 . Hence the

span of f is at least this value. This proves the claim and proposition.

This completes the proof of Theorem 2.3.
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