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Growing Protean Graphs
Pawe�l Pra�lat and Nicholas Wormald

Abstract. The web may be viewed as a graph each of whose vertices corresponds to a
static HTML web page and each of whose edges corresponds to a hyperlink from one
web page to another. Recently, there has been considerable interest in using random
graphs to model complex real-world networks to gain an insight into their properties.
In this paper we propose an extended version of a new random model of the web graph
in which the degree of a vertex depends on its age. We use the differential equation
method to obtain basic results on the probability of edges being present. From this we
are able to characterize the degree sequence of the model and study its behaviour near
the connectivity threshold.

1. Introduction

Recently, many new random graphs models have been introduced and analyzed
by certain common features observed in many large-scale, real-world networks
such as the web graph (see, for instance, a general survey [Bonato 05]). The web
may be viewed as a directed graph whose nodes correspond to static pages on
the web and whose arcs correspond to links between these pages.

One of the most characteristic features of this graph is its degree sequence.
Broder et al. [Broder et al. 00] noticed that the distribution of degrees follows a
power law: the fraction of vertices with degree d is proportional to d−γ , where
γ is a constant independent of the size of the network (more precisely, γ ∼ 2.1
for in-degrees, and γ ∼ 2.7 for out-degrees). These observations suggest that the
web is not well modeled by traditional random graph models such as Gn,p (see,
for instance, [Janson et al. 00]).
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�Luczak and the first author introduced another random graph model of the
undirected web graphs, the protean graph Pn(d, η), which is controlled by two
additional parameters (d ∈ N and 0 < η < 1) [�Luczak and Pra�lat 06]. The major
feature of this model is that older vertices are preferred when joining a new vertex
into the graph. In the paper, it is proved that the degrees of the Pn(d, η) are
distributed according to the power law. The first author also showed [Pra�lat 06]
that the protean graph Pn(d, η) asymptotically almost surely (a.a.s.) has one
giant component, containing a positive fraction of all vertices, whose diameter
is equal to Θ(log n).

Note that, unlike most of the theoretical models of the internet graph, the
number of vertices of the protean graph is large but fixed and does not grow
during the protean process. One may view this as a weakness of the approach
since the internet graph is, at least at this moment, rapidly expanding. In the
present paper, the authors introduce another random graph model, a growing
protean graph Pt(p, d, η), which is an extended version of the standard protean
graph controlled by an additional parameter p, 0.5 < p ≤ 1. This extension
causes the number of vertices of Pt(p, d, η) to grow during the process.

In Section 4, we use the differential equation method to obtain a result (similar
to [�Luczak and Pra�lat 06, Lemma 3.5]) for the probability that a set of edges
is present or absent in the graph, and then we use this result to derive degree
distribution and connectivity properties of the growing protean graph, similar to
those in the paper discussed above [�Luczak and Pra�lat 06] (see Section 5).

2. Definitions

A protean process, defined below, is a sequence {Gt}∞t=0 = {(Vt, Et)}∞t=0 of undi-
rected graphs, where t denotes time. Our model has three fixed parameters:
0.5 < p ≤ 1, d ∈ N , and 0 < η < 1. Let G0 = (V0, E0) = ({v1}, ∅) be a fixed
initial graph with a single vertex without edges. Let Nt be a random variable
denoting the number of vertices minus 1 at time t, i.e., Nt = |Vt| − 1. For t > 0,
we form Gt from Gt−1 according to the following rules:

• With probability p, add a new vertex v = vNt−1+1 together with d edges
from v to existing vertices chosen randomly with weighted probabilities.
The edges are added in d substeps. In each substep, one edge is added,
and the vertex to which to join is chosen as vi with probability equal to
i−η/

∑Nt−1+1
j=1 j−η.

• Otherwise, which occurs with probability 1 − p, if Nt−1 = 0 (Gt−1 has a
single vertex only) do nothing, whilst if Nt−1 > 0, choose a random vertex
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vi, i ∈ [Nt−1 + 1] = {1, 2, . . . , Nt−1 + 1}, and delete vi together with all
edges incident to it. Finally, relabel the remaining vertices preserving their
order. Thus, vj+1 becomes vj for i ≤ j ≤ Nt−1.

Pt(p, d, η) denotes the protean graph Gt.
Our model allows loops and multiple edges; there seems no reason to exclude

them. However, there will not in general be very many of these, so excluding
them can be shown not to significantly affect our conclusions.

There is also some flexibility in the starting graph. We could alternatively start
with any arbitrary graph G0, provided its vertices are assigned distinct “ages.”
Since all our results are asymptotic, it is easy to see that the same results will
follow; the influence of the initial graph diminishes over time. In particular, our
starting point in some proofs, such as the first result in Section 3, is the point
at which the graph has grown suitably large but is otherwise arbitrary.

Note that during the process, a vertex vj “becomes” vj−1. Since we want to
track such changes for a particular vertex, we say that vj has label j and regard
the event of “becoming” vj−1 as a change of label only. So, when this occurs, vj

in Gt−1 is the same vertex as vj−1 in Gt.
We say that an event holds with extreme probability (wep), if it holds with

probability at least 1 − exp(−Θ(log2 t)) as t → ∞. More generally, an event
holds weps if it holds with probability at least 1 − exp(−Θ(log2 s)) as s → ∞.
To combine this notion with other asymptotic notation, such as O() and o(), we
follow the conventions of the second author [Wormald 04].

3. The Growing Protean Process

We first show that the number of vertices of Gt is concentrated.

Lemma 3.1. Let p ∈ (0.5, 1], d ∈ N, and η ∈ (0, 1). Then, wep

Nt = N0 + (2p − 1)t + O
(√

t log t
)

.

Proof. Let {Zi} be a sequence of t independent random variables each of which is
equal to 1 with probability p and −1 with probability 1 − p. Then,

Nt = N0 +
t∑

i=1

Zi + f
(
N0, {Zi}

)
,

where f = f(N0, {Zi}) is a deterministic function arising from the fact that a
vertex is not deleted if Ni is about to drop to zero. Since f is nonnegative, the
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random variable Nt is stochastically bounded from below by N0 +
∑t

i=1 Zi. The
lower tail of this variable has the sharp concentration, claimed by Chernoff’s
inequality (see, for instance, [Janson et al. 00, Corollary 2.3]). Thus, for every
ε = Θ

(
log t/

√
t
)
,

P

(
Nt < N0 + (1 − ε)(2p − 1)t

)

≤ P

( t∑
i=1

Zi < (1 − ε)E
t∑

i=1

Zi

)

≤ 2 exp
(
− ε2

3
E

t∑
i=1

Zi

)
= exp

(
− Θ(log2 t)

)
.

For the upper tail, we note first (again using Chernoff’s inequality) that wep
the random variable Z(k) =

∑k
i=1 Zi is positive for every k in the range t1/4 ≤

k ≤ t. Hence, wep f < t1/4. The upper tail bound again follows from Chernoff’s
inequality. For every ε = Θ

(
log t/

√
t
)
,

P

(
Nt > N0 + (1 + ε)(2p − 1)t

)

= P

( t∑
i=1

Zi > (1 + ε) E

t∑
i=1

Zi − f
)

≤ P

( t∑
i=1

Zi >
(

1 +
ε

2

)
E

t∑
i=1

Zi

)

≤ 2 exp
(
− ε2

12
E

t∑
i=1

Zi

)
= exp

(
− Θ(log2 t)

)
.

In the rest of this section, we will consider the growing protean process {Gt}tf

t=t0

from a time t0, conditional upon Gt0 = G for some fixed graph G, and let n de-
note the number of vertices of G minus 1, that is, n = Nt0 = |Vt0 | − 1. For
this section, we will consider the process only up to tf = t0 + 	cn2p/ log3 n
,
where c > 0 is an arbitrary constant (included to make a nicer statement of
Lemma 4.3). We desire effectively to assume that the vertex v = vn+1 ∈ Gt0

survives until time tf . Conditioning on this event, which we call S(t0, tf ), is
equivalent to considering an altered process in which, for each step that deletes
a vertex, the selection is made from the vertices other than v. Until further
notice, we consider this altered process. We define the random variable Jt to be
the number of vertices older than v in Gt. We need to show that Jt is sharply
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concentrated in the context of the conditional space under consideration. It is
easy for completeness to treat Nt at the same time, even though Lemma 3.1
shows concentration of Nt in general.

Note that the vector (Nt, Jt) is Markovian, that is, its distribution at time t+1
is determined by its value at time t and is independent of the earlier history. Also,
it is easy to see that for every t0 ≤ t ≤ tf , provided Nt > 0,

E(Nt+1 − Nt|Gt) = 2p − 1 ,

E(Jt+1 − Jt|Gt) = −(1 − p)
Jt

Nt
.

It provides some insight if we define real functions z(x) and y(x) to model the
behaviour of the scaled functions 1

nNxn and 1
nJxn, respectively. If we presume

that the changes in the functions correspond to the expected changes of random
variables, we obtain a system of differential equations

z′(x) = 2p − 1 ,
y′(x) = −(1 − p)y

z ,

with the initial conditions z(t0/n) = y(t0/n) = 1. The general solution of this
system can be put in the form

(2p − 1) log y = −(1 − p) log z + C1 ,
z = (2p − 1)x + C2 .

(3.1)

Defining

H(Nt, Jt) = (2p − 1) log
Jt

n
+ (1 − p) log

Nt

n
, (3.2)

in view of (3.1), the general solution of the scaled differential equation corre-
sponds to the system of equations

H(Nt, Jt) = C1 ,
Nt − (2p − 1)t = C2 .

This is a solution (taking Nt = N(t) etc.) of the unscaled differential equations

N ′(t) = 2p − 1 ,
J ′(t) = −(1 − p) J

N ,
(3.3)

where t is regarded as a real variable. Of course, C1 and C2 are determined by
the initial conditions. It should be emphasised that these differential equations
are only suggested (at this stage). However, we will be able to show that Jt is
well concentrated around the solution value y(t/n)n. For this we use the same
supermartingale method used by Pittel et al. [Pittel et al. 96]. It is encapsulated
by the following result [Wormald 99, Corollary 4.1].
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Lemma 3.2. Let G0, G1, . . . , Gt be a random process and Xi a random variable
determined by G0, G1, . . . , Gi, 0 ≤ i ≤ t. Suppose that for some real b and
constants ci, E(Xi − Xi−1|G0, G1, . . . , Gi−1) < b and |Xi − Xi−1 − b| ≤ ci for
1 ≤ i ≤ t. Then, for all α > 0,

P
(∃i (0 ≤ i ≤ t) : Xi − X0 ≥ ib + α

) ≤ exp
(
− α2

2
∑

c2
j

)
.

We now come to the main result of this section. Let It0,i,t denote the label
of the vertex in Gt that was vi in the graph Gt0 , provided that vertex is still
present in Gt. Note that we can express Jt in terms of this notation, that is,
Jt = It0,Nt0+1,t − 1. When i and t0 are understood, we abbreviate this to It.

Theorem 3.3. Let p ∈ (0.5, 1], d ∈ N, and η ∈ (0, 1); for arbitrary t0 let Gt, Nt, and
Jt be defined as above; and let i ≤ Nt0 . Condition on the events that Gt0 = G

for some fixed graph G and that S(t0, tf ) holds, and put n = Nt0 = |V (G)| − 1.
Then, wepn, for every t in the range t0 ≤ t ≤ tf , we have

Nt = n + (2p − 1)(t − t0) + O(np log n), (3.4)

Jt = n
(Nt

n

) p−1
2p−1

(1 + O(log−1/2 n)) , (3.5)

and, conditional upon the vertex vi ∈ Gt0 surviving until time tf ,

It =
iJt

n
(1 + O(log−1/2 n)) or

iJt

n
< log3 n . (3.6)

Proof. In the first main part of the proof, we show (3.5), and with almost no
effort we obtain (3.4) at the same time. Alternatively, one can at the outset
obtain (3.4) as follows. Note that for every t0 ≤ t ≤ t0 + np Equation (3.4)
holds (deterministically). We observe that Lemma 3.1 applies for the growing
protean process starting from an arbitrary initial graph with N0 + 1 vertices.
This implies immediately that wept−t0

Nt = n + (2p − 1)(t − t0) + O
(√

t − t0 log(t − t0)
)

holds for every t0 ≤ t ≤ tf . So, wepn for every t0 + np < t ≤ tf , (3.4) holds.
Let wt = (Nt, Jt), and consider the sequence of random variables

{Xt}tf

t=t0 = {H(wt)}tf

t=t0 ,
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where the function H is defined in (3.2) and the stopping time is

T = min{t ≥ t0 : Jt < np/2 ∨ Nt < n/2 ∨ t = tf} .

(A stopping time is any random variable T with values in {0, 1, . . . } ∪ {∞} such
that it is determined whether T = t̂ for any time t̂ from knowledge of the process
up to and including time t̂.) Note that the second-order partial derivatives of H

with respect to Nt and Jt are O(1/N2
t + 1/J2

t ) = O(1/J2
t ) = O(n−2p), provided

T > t. Therefore, with i ∧ T denoting min{i, T}, we have

H(w(t+1)∧T ) − H(wt∧T )

= (w(t+1)∧T − wt∧T ) · grad H(wt∧T ) + O(n−2p) . (3.7)

Recall that H(w) is constant along every trajectory w of the unscaled differential
equations (3.3). So, taking the expectation of (3.7) conditional on Gt∧T , we
obtain

E(H(w(t+1)∧T ) − H(wt∧T )|Gt∧T ) = O(n−2p) .

Also, from (3.7), noting that

grad H(wt) = (O(1/Nt), O(1/Jt)) ,

and from the fact that Nt and Jt change by at most 1 per each step of the
process, we also have

|H(w(t+1)∧T ) − H(wt∧T )|
= O(1/Nt∧T ) + O(1/Jt∧T ) + O(n−2p) = O(n−p) .

Now we can apply Lemma 3.2 to the sequence {H(wt∧T )}tf

t=t0 , and symmet-
rically to {−H(wt∧T )}tf

t=t0 , with α = log−1/2 n, b = O(n−2p) and cj = O(n−p),
to show that wepn

|H(wt∧T ) − H(wt0)| = O(log−1/2 n).

As H(wt0) = 0, this implies from the definition (3.2) of the function H, that
wepn Equation (3.5) holds for every t0 ≤ t ≤ T . By the same type of argument,
but much simpler, we immediately obtain (3.4) wepn for t up to T .

To complete the first part of the proof, we need to show that wepn, T = tf .
The events asserted by (3.4) and (3.5) hold with this probability up until time
T , as shown above, and the conjunction of these events implies that Jt > np/2
and Nt > n/2 for n sufficiently large, t0 ≤ t ≤ T . It follows that T = tf wepn.
Together with the conclusion above, this completes the proof of the claim on the
distribution of Nt and Jt.
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We now turn to the claim on the distribution of the random variable It. It is
easy to observe that, conditional upon vi surviving until time tf , It follows the
hypergeometric distribution with parameters n − 2, k − 1, and Jt − 2, that is,
conditional upon it surviving,

P(It = k | Jt) =

(
i−1
k−1

)(
n−i−1
Jt−k−1

)
(

n−2
Jt−2

) .

Thus,

E(It | Jt) =
(i − 1)(Jt − 2)

n − 2
=

iJt

n
(1 + O(np−1)) .

We can apply a well-known bound for the tail of the hypergeometric distribution
(see, for instance, [Janson et al. 00, Theorem 2.10]) to show that the random
variable It is sharply concentrated around its mean. Indeed, working in the
conditional space under consideration (that the vertex survives and that Jt is
given) using the fact that EIt ≥ log3 n, we obtain

P

(
|It − EIt| >

EIt

log1/2 n

)
≤ 2 exp

(
− EIt

3 log n

)
= exp

(− Ω(log2 n)
)

,

which is the assertion required for (3.6).

It is straightforward to obtain results like those in Theorem 3.3 but with much
smaller error bounds than O(log−1/2 n), at the expense of reducing the value of
tf . One could then apply the lemma to successive intervals of time, tracking
the progress of vertices in the later intervals using (3.6). However, to obtain the
main corollaries in later sections, this is not required. We do, however, need
to convert the theorem to a form that does not require conditioning on Gt0 , as
follows.

Corollary 3.4. Let p ∈ (0.5, 1], d ∈ N, and η ∈ (0, 1). For arbitrary t0 define Jt

and It as above, and define tF = t0 + 	ct2p
0 / log3 t0
, where c > 0 is an arbitrary

constant. Let D(i, t0, t) denote the event that either i > Nt0 + 1 or the vertex
of label i in Gt0 is not still present in Gt. Then, wept0 for every t in the range
t0 ≤ t ≤ tF , we have

Nt = (2p − 1)t + O(tp0 log t0), (3.8)

D(Nt0 + 1, t0, t) or Jt = Nt0

( Nt

Nt0

) p−1
2p−1

(1 + O(log−1/2 t0)) , (3.9)

and for all i > 0

D(i, t0, t) or It =
iJt

Nt0

(1 + O(log−1/2 t0)) or
iJt

Nt0

< log3 t0 . (3.10)
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Proof. Lemma 3.1 shows that Nt0 = Θ(t0) wept0 . Then, conditioning on the
event that Nt0 = Θ(t0), (3.4) implies that (3.8) holds wept0 . It then holds wept0

without the conditioning since Nt0 = Θ(t0) wept0 . We obtain (3.9) and (3.10)
similarly; replacing the conditioning in Theorem 3.3 by the disjunction with the
event D(i, t0, t) merely weakens the result.

4. Basic Lemma for Edge Probabilities

In this section we introduce the main tool that allows us easily to compute
the probability of some events in the protean graphs, Lemma 4.3. This shows
a relationship between Pt(p, d, η) and the random graph G(n, q) on the set of
vertices [n] = {1, 2, . . . , n} (where n = Nt + 1), in which a pair of vertices i, j,
1 ≤ i < j ≤ n, are adjacent with probability

q = q(i, j) = d(1 − η)n(p−1)/pjη+(1−2p)/pi−η

independently for each such pair. Of course, the protean graph Pt(p, d, η) has a
very rich dependence structure, so it only shares some properties with G(n, q).

First, we consider a generalization of the well-known balls-into-bins model,
which will be useful to prove Lemma 4.3. Suppose that we sequentially put d balls
into m bins by placing each ball into a bin independently, and the probability
that we choose a bin k, 1 ≤ k ≤ m, is equal to ρk, where

∑m
i=1 ρk = 1. Let

S1, S2 ⊆ [m], S1 ∩ S2 = ∅, |S1| ≤ d, and p(S1, S2) denote the probability that
every bin from the set S1 has at least one ball and bins from the set S2 have no
balls. In the following, we use the notation [x]k = x(x − 1) · · · (x − k + 1).

The following fact was used in [�Luczak and Pra�lat 06].

Fact 4.1. Using the notation above, we have

p(S1, S2) ≥
(

1 −
∑

j∈S1∪S2

ρj

)d−|S1|
[d]|S1|

∏
i∈S1

ρi

and

p(S1, S2) ≤
(

1 −
∑
j∈S2

ρj

)d−|S1|
[d]|S1|

∏
i∈S1

ρi .

The proof is simple: in the first inequality p(S1, S2) is estimated by the prob-
ability that each bin from S1 contains precisely one ball; in the second, some
configurations are counted more than once.
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Note that we may consider the process as two separate processes. The first
process adds and deletes vertices and decides what the vertex sets are for all
graphs Gt. Let us call this the vertex process. The second process (edge process)
then decides which pairs of vertices are adjacent by using the rules of the growing
protean process, at each time t, for the vertex added. We will consider the vertex
process first, and when we have enough facts about it at our fingertips, we will
consider the edge process. Note that Corollary 3.4 only really describes the
vertex process.

Before stating the main results of this section, we define n = n(t) to be the
deterministic function of t that approximates the number of vertices in Pt(p, d, η);
that is,

n = n(t) = (2p − 1)t . (4.1)

Given n, p, d, and η, define

u(j) = j(2p−1)/pn(1−p)/p

and
w(i, j) = (1 − η)(j/i)η/u(j) = (1 − η)n(p−1)/pjη+(1−2p)/pi−η.

Note that

w(i, j) =
(
1 + O

(
u(j)η−1

)) (iu(j)/j)−η∑u(j)
s=1 s−η

.

First, we need to “invert” Corollary 3.4 to obtain a statement that gives in-
formation about the vertex process for many times t0 earlier than t.

Lemma 4.2. Let j0 =
√

t log3/(4p−2) t. Then, wep for every i and j with 2 log3 t <

i < j ≤ Nt + 1 and j > j0, the vertex with label j at time t was added at time

t̂ =
j(2p−1)/pNt

(1−p)/p

2p − 1
(
1 + O(log−1/2 t)

)
.

Furthermore, if we let î denote the label in Gt̂ of the vertex of label i in Gt, then
wep

î =
iNt̂

j

(
1 + O(log−1/2 t)

)
=

iu(j)
j

(
1 + O(log−1/2 t)

)
.

Proof. Put tI = c′t1/(2p) log3/(2p) t for some c′ > 0. Then, for tI ≤ t0 ≤ t, wept0 is
equivalent to wep. Also, for any such t0, we may apply Corollary 3.4 since, for
appropriate c in that corollary, t < tF . Since a polynomial number of statements
holding individually wep also hold jointly wep, we deduce that wep Equations
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(3.8), (3.9), and (3.10) hold simultaneously for all t0 in the range tI ≤ t0 ≤ t.
By the same argument and Lemma 3.1, we have that wep

Nt0 = (2p − 1)t0 + O
(√

t0 log t0

)
(4.2)

for all t0 in the same range.
For some fixed C > 0, define t1 = 	t∗1
 where

t∗1 =
j(2p−1)/pNt

(1−p)/p
(

1 − C log−1/2 t
)

2p − 1
.

In view of the conclusions above, the following statements hold wep. From (4.2),
for every t3, tI ≤ t3 ≤ t1,

Nt3 = (2p − 1)t3
(
1 + O(t−1/2

3 log t3)
)

≤ (2p − 1)t∗1
(
1 + O(t−1/2

3 log t3)
)

= j(2p−1)/pNt
(1−p)/p

(
1 − C log−1/2 t

)(
1 + O(t−1/2

I log tI)
)

≤ j(2p−1)/pNt
(1−p)/p

(
1 − c′′C log−1/2 tI

)
≤ j(2p−1)/pNt

(1−p)/p
(

1 − c′′C log−1/2 t3

)
,

where c′′ > 0 is a constant, since t = Θ(t2p
I / log3 tI). Now, from the statement

above using (3.9), for sufficiently large C all vertices added at any time in the
interval [tI , t1] have label strictly less than j if they survive until time t. This
statement holds wep.

Note that, for small enough c′, tI can be made an arbitrarily small fraction
of t1. So for any time t̂, t1/2 < t̂ < tI , we may apply the same argument except
we reduce the value of t to a smaller value, t′—and if convenient reduce j to
a smaller value, j′—to deduce that wep the vertex added at time t̂ has label
strictly less than j at time t′, if it survives until then. Since the label of a vertex
cannot increase as the process continues, this is also true at time t. We may thus
extend the interval to encompass all vertices added in the time interval [t1/2, t1].
Of course, vertices added before this interval have label less than t1/2 < j0 ≤ j.
So, for sufficiently large C, wep all vertices added at any time before t1 have
label strictly less than j if they survive until time t.

Similarly, if we define t2 = �t∗2� where

t∗2 =
j(2p−1)/pNt

(1−p)/p
(

1 + C log−1/2 t
)

2p − 1
,
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then wep all vertices added at any time in the interval [t2, t] have label strictly
greater than j at time t, if they survive until then.

We deduce from these conclusions that wep for all j ∈ [j0, Nt], the vertex with
label j at time t was added at some time between t1 = t1(j) and t2 = t2(j).
In view of Corollary 3.4, we may approximate Nt by n, and this gives the first
statement in the lemma.

Again from the above observations, the number of vertices at such a time t̂,
t1 ≤ t̂ ≤ t2, is wep equal to (recalling the definitions (4.1), etc.)

Nt̂ = t̂(2p − 1)
(
1 + O(t̂−1/2 log t̂)

)
= j(2p−1)/pn(1−p)/p

(
1 + O(log−1/2 t)

)
= u(j)

(
1 + O(log−1/2 t)

)
.

Taking t0 ∈ [t1, t2], as mentioned above, we may assume that (3.10) holds
wep. Hence, using a sandwiching argument as above (but for positions rather
than times), if we let î denote the label in Gt0 of the vertex of label i in Gt, then
wep

î =
iNt0

j

(
1 + O(log−1/2 t)

)
=

iu(j)
j

(
1 + O(log−1/2 t)

)
.

(Note in particular that the condition 2 log3 t ≤ i ensures that the condition
îJt

Nt0
< log3 t0 wep does not hold.) This gives the second assertion of the lemma.

We will use the following lemma to estimate the probability that pairs of
vertices are adjacent in Gt and that others are not.

Lemma 4.3. Let 0.5 < p ≤ 1, d ∈ N, 0 < η < 1,

E1, E2 ⊆ {{vi, vj} : 2 log3 t < i < j ≤ Nt + 1 and j ≥ j0}, and E1 ∩ E2 = ∅ .

For every i, j ∈ [Nt + 1] and r = 1, 2, let

Vr(j) = {i : i < j and {vi, vj} ∈ Er} ,

wr(j) =
∑

i∈Vr(j)

w(i, j) ,

and assume that |V1(j)| ≤ d for every j ∈ [n].
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Let Pt(E1, E2, p, d, η) denote the probability that all pairs from E1 are edges of
Pt(p, d, η) and no pair from E2 is an edge of Pt(p, d, η). Then,

Pt(E1, E2, p, d, η) ≤ o(exp(− log3/2 t))

+
n∏

j=1

[1 − (1 + O(log−1/2 t))w2(j)]d−|V1(j)|

× [d]|V1(j)|
∏

i∈V1(j)

(1 + O(log−1/2 t))w(i, j),

and

Pt(E1, E2, p, d, η) ≥ o(exp(− log3/2 t))

+
n∏

j=1

[1 − (1 + O(log−1/2 t))(w1(j) + w2(j))]d−|V1(j)|

× [d]|V1(j)|
∏

i∈V1(j)

(1 + O(log−1/2 t))w(i, j).

Proof. For this we need to consider the edge process as defined at the start of this
section. To obtain conclusions wep, we may condition on any of the times t0 that
vertex of label j in Gt was added in the vertex process, with t1(j) ≤ t0 ≤ t2(j).
The assertion then follows from Fact 4.1, Lemma 4.2, and the definition of the
edge process.

From Lemma 4.3 it follows that the behaviour of the protean graph Pt(p, d, η)
is related to that of the random graph with vertex set [n] in which two vertices
i and j, 2 log3 t ≤ i < j ≤ n, j0 ≤ j, are adjacent with probability

p(i, j) = dw(i, j) = d(1 − η)n(p−1)/pjη+(1−2p)/pi−η ,

independently for each such pair.
Indeed, if |V1(j)| = o(d) for every j ∈ [n], then Lemma 4.3 gives

Pt(E1, E2, p, d, η) ∼
n∏

j=1

(
1 −

∑
i∈V2(j)

w(i, j)
)d

d|V1(j)|
∏

i∈V1(j)

w(i, j)

= (1 + o(1)) exp
(
−

∑
{i,j}∈E2

p(i, j)
) ∏

{i,j}∈E1

p(i, j) ,

whereas if we consider a graph with independent edges, the probability that an
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analogous event holds is equal to

∏
{i,j}∈E2

(
1 − p(i, j)

) ∏
{i,j}∈E1

p(i, j)

= (1 + o(1)) exp
(
−

∑
{i,j}∈E2

p(i, j)
) ∏

{i,j}∈E1

p(i, j) .

Finally, note that the situation with these results is similar to that in [�Luczak
and Pra�lat 06]: since we claim nothing about edges between ‘small’ vertices i,
1 ≤ i < 2 log3 t, it is difficult to obtain a general theorem which relates properties
of our model to the model with independent edges (as is done, for instance, for
a different model by Chung and Lu [Chung and Lu 04]). For the same reason
we cannot use the general theory of Bollobás, Janson and Riordan [Bollobás
et al. 05] of inhomogeneous sparse random graphs. Nonetheless, as in [�Luczak
and Pra�lat 06], our Lemma 4.3 is strong enough to show that many properties of
the independent model which, roughly speaking, do not depend on the behaviour
of the first 2 log3 t vertices, hold also for the growing protean graph. We discuss
some examples in the next section.

5. Degrees of Vertices and Connectivity

In this section we study the shape of the degree sequence of Pt(p, d, η) and its
connectivity. The proofs are virtually the same as those for the corresponding
results in [�Luczak and Pra�lat 06], but with our new Lemma 4.3 in place of Lemma
3.5 of that paper. We begin with the expected degree of vertex vi. Recall that
j0 = j0(t) =

√
t log3/(4p−2) t and n = n(t) = (2p − 1)t.

Theorem 5.1. Let 0.5 < p ≤ 1, d = o
(
t(1−η)/3

)
, and 0 < η < 1. Then, the expected

degree of a vertex vi=i(t) is given by

Ed(vi) ∼ d
1 − η

(1 − p)/p + η

((n

i

)η

+
(1 − 2p)/p + 2η

1 − η

( i

n

)(1−p)/p)

for j0 < i ≤ Nt + 1 and

Ed(vi) ∼ d
1 − η

(1 − p)/p + η

(n

i

)η

for 2 log3 t < i ≤ j0. Moreover, the expected number of edges in the protean
graph Pt(p, d, η) is equal to (1 + o(1))pdn.
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Note that for small i = o(n), the expected degree of the vertex vi is dominated
by the factor d 1−η

(1−p)/p+η

(
n
i

)η. Consequently, the degrees of the protean graph
Pt(p, d, η) are distributed according to a power law. More specifically, let Zk =
Zk(n; p; d; η) denote the number of vertices of degree k in Pt(p, d, η) and Z≥k =∑

�≥k Z�. Here and below a.a.s. means “with probability tending to 1 as n → ∞.”

Theorem 5.2. Let 0.5 < p ≤ 1, d ∈ N, 0 < η < 1, k = k(n) ≥ log2 n, and d = o(k).
Then, a.a.s.

Z≥k = (1 + o(1))n
( 1 − η

(1 − p)/p + η
· d

k

)1/η

+ O(log3 n) .

As with the nongrowing protean graph in [�Luczak and Pra�lat 06], we may at-
tune the parameters of this model to obtain roughly the same degree distribution
as the (undirected) web graph.

We next consider the connectivity of Pt(p, d, η). Let ρt(p, d, η) denote the
probability that Pt(p, d, η) is connected.

Theorem 5.3. Let 0.5 < p ≤ 1, 0 < η < 1, and d = d(n) = a log n, where a is a
positive constant. Then,

lim
t→∞ ρt(p, d, η) =

{
1 if a > 1/g(x0)
0 if a < 1/g(x0) ,

where

g(x) =
1 − η

(1 − p)/p + η
(x−η − x(1−p)/p) − log(1 − x(1−p)/p)

and x0 = x0(p, η) is a value of x that minimizes function g(x) in the interval
(0, 1).

We observe that, as for the model in [�Luczak and Pra�lat 06], a.a.s. near the
threshold all isolated vertices have labels (1 + o(1))x0(p, η) n. The probability of
being isolated is greatest for the vertices of medium labels since they have lost
their old neighbours that have already been deleted, yet they are not old enough
to attract new ones.
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