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Cuts and Disjoint Paths in the
Valley-Free Path Model
Thomas Erlebach, Alexander Hall, Alessandro Panconesi, and
Danica Vukadinovic′

Abstract. In the valley-free path model, a path in a given directed graph is valid if
it consists of a sequence of forward edges followed by a sequence of backward edges.
This model is motivated by routing policies of autonomous systems in the Internet. We
give a 2-approximation algorithm for the problem of computing a maximum number
of edge- or vertex-disjoint valid paths between two given vertices s and t, and we show
that no better approximation ratio is possible unless P = NP . Furthermore, we give a
2-approximation algorithm for the problem of computing a minimum vertex cut that
separates s and t with respect to all valid paths and prove that the problem is APX-
hard. The corresponding problem for edge cuts is shown to be polynomial-time solvable.
For the multiway variant of the cut problem, we give a 4-approximation algorithm. We
present additional results for acyclic graphs.

1. Introduction

Let G = (V,E) be a directed, simple graph. For s, t ∈ V , a path from s to t is
valid if it consists of a (possibly empty) sequence of forward edges followed by
a (possibly empty) sequence of backward edges. We refer to this model of valid
paths as the valley-free path model. The reason for this terminology is that if we
view directed edges as “pointing upward” towards their heads, a path is valid
if and only if it does not contain a “downward” edge followed by an “upward”
edge, i.e., a valley (

•↖•↗
•
).
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The motivation for studying the valley-free path model comes from BGP rout-
ing policies in the Internet on the level of autonomous systems, as explained in
more detail in Section 1.1. Robustness considerations of the Internet topology
then lead naturally to the problems of computing large sets of disjoint valid
paths between two given vertices and of computing small vertex or edge cuts
separating two given vertices with respect to all valid paths. The corresponding
optimization problems for standard directed paths can be solved efficiently using
network flow techniques (see, e.g., [Ahuja et al. 93]). In this paper, we initiate
the investigation of these problems in the valley-free path model. It turns out
that several of these problems are NP -hard in this model. We also consider the
multiway version of the cut problems, where the goal is to separate all pairs
among a given set of k terminal nodes. Our main results are the following:

• We give 2-approximation algorithms for the problems of computing a max-
imum number of vertex- or edge-disjoint valid paths between two given
vertices s and t, and we show that it is NP -hard to approximate these
problems within ratio 2− ε for any fixed ε > 0.

• We prove APX -hardness for the problem of computing a minimum valid
s-t vertex cut, i.e., a minimum-size set of vertices whose removal from
G disconnects all valid paths between s and t. Furthermore, we give a
2-approximation algorithm for this problem.

• For the edge version of the latter problem, i.e., computing a minimum valid
s-t edge cut, we give a polynomial algorithm that computes an optimal
solution.

• For the problem of computing a minimum-size valid multiway cut, we
present 4-approximation algorithms for the vertex version and the edge
version.

• We prove that the size of a minimum valid s-t cut is at most twice the
maximum number of disjoint valid s-t paths, both for the edge version and
the vertex version of the problems, and we show that this bound is tight.

• For the special case that the given graph G is acyclic (where “acyclic” is to
be understood in the standard sense, i.e., the directed graph G is acyclic
if it does not contain a directed cycle), we give a polynomial algorithm
for finding k edge- or vertex-disjoint valid paths between s and t if they
exist, where k is an arbitrary constant. We also prove NP -hardness for
the general problem of computing a maximum number of vertex- or edge-
disjoint valid s-t paths in acyclic graphs.
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Our results give interesting insights for natural variations of the classical prob-
lems of computing disjoint s-t paths, minimum s-t cuts, and minimum multiway
cuts. Furthermore, the algorithms we provide may be useful for investigating is-
sues related to the robustness of the Internet topology while taking into account
the effects of routing policies.

1.1. Motivation: Autonomous Systems in the Internet

In this section, we provide some information about the issues in Internet routing
on the autonomous system level that have motivated our study. An autonomous
system (AS) in the Internet is a subnetwork under separate administrative con-
trol. ASs are connected by physical links and exchange routing information using
the Border Gateway Protocol (BGP). An AS can consist of tens to thousands
of routers and hosts. On the level of ASs, the Internet can be represented as an
undirected graph by creating a vertex for each AS and adding an edge between
two ASs if they have at least one physical link between them. However, such an
undirected graph is not sufficient to model the effects of routing policies enforced
by individual ASs.

ASs exchange BGP update messages that announce or withdraw routes. Here,
a route is specified by a prefix, representing a contiguous block of IP addresses,
and an AS path, specifying the sequence of ASs that traffic can traverse to reach
a destination within that prefix. If AS A announces a route for prefix α with
AS path p to AS B, this means that A tells B, “you can send traffic destined
for prefix α to me, and I will forward it via path p.” The AS B can then
insert its own AS number at the beginning of the AS path p and announce
the extended route to (some of) its other neighbors, so that these also learn a
route to α. Generally, each AS originates some routes (those for prefixes that
lie within the AS itself) and receives other routes from neighbors. We refer to
the routes that an AS originates as its own routes and to the set of all routes
that an AS stores as its routes. The AS can announce routes to all or some of
its neighboring ASs. The decisions of which routes will be announced to which
neighbor are determined by BGP routing policies. These policies depend mostly
on the economic relationships between the ASs.

The nature of the commercial agreements between ASs has attracted a lot
of attention in the Internet economics research community [Huston 99a, Hus-
ton 99b, Baake and Wichmann 99]. The main trends in the diversity of these
agreements were described in a two-part work by Huston [Huston 99a, Hus-
ton 99b]. The impact of economic relationships on the engineering level, more
precisely on BGP routing, has not been immediately recognized despite the direct
implication that an existing link between two ASs will not be used to transfer
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traffic that collides with their mutual agreement. Then, several papers show-
ing the impact of BGP policies on features such as path inflation and routing
convergence appeared [Tangmunarunkit et al. 01, Labovitz et al. 01].

As a consequence, the previously developed undirected model for the AS topol-
ogy is not satisfactory because it allows some prohibited paths between ASs and
thus might produce a distorted picture of BGP routing. On the other hand,
involving all of the peculiarities of the contracts between autonomous systems
in a new model would add too much complexity. Thus, a rough classification
into a small number of categories was proposed for the BGP policies adopted
by a pair of ASs: customer-provider, peer-to-peer, and siblings [Gao 01]. A sim-
plified model with only two categories, customer-provider and peer-to-peer, was
proposed [Subramanian et al. 02]. A customer-provider relationship between A

and B can be represented as a directed edge from A to B, and a peer-to-peer
relationship as an undirected edge. If ASs A and B are in a customer-provider
relationship, B announces all its routes to A, but A announces to B only its own
routes (i.e., those that it originates) and routes that it has learnt by announce-
ments from its customers. If they are peers, they exchange their own routes and
routes of their customers but not routes that they learn from their providers or
other peers. This leads to the proposed model [Subramanian et al. 02] that
a path is valid if and only if it consists of a sequence of customer-provider
edges (•→•), followed by at most one peer-to-peer edge (•−•), followed by a
sequence of provider-customer edges (•←•). Furthermore, it is easy to see that
a peer-to-peer edge (undirected edge) between A and B can be replaced by two
customer-provider edges from A to X and from B to X, where X is a new node,
without affecting the solutions to any of the optimization problems (minimum
cut problems and maximum disjoint paths problems) that we study in this paper.
Therefore, without losing generality, we can consider a model without peer-to-
peer edges. Furthermore, if we incorporate the third type of AS relationship
[Gao 01], two ASs A and B are siblings if they announce all their routes to each
other. A sibling relationship between A and B can be suitably represented as a
pair of directed edges, one from A to B and one from B to A, because a sibling
relationship can act like a customer-provider edge and like a provider-customer
edge. In summary, the model we consider consists of a directed graph with
ASs as nodes and where the edge directions represent economic relationships.
Here, the valley-free paths are exactly the paths permitted by the BGP routing
policies.

Information about the economic relationships between autonomous systems is
not publicly available. Therefore, several approaches to inferring these relation-
ships from available topology data or AS path information have been proposed
in the literature [Gao 01, Subramanian et al. 02, Erlebach et al. 02, Di Bat-
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tista et al. 03, Xia and Gao 04]. Other recent work investigates the formation
of business relationships between ASs in a game-theoretic model [Anshelevich
et al. 06].

If a communication network is represented as an undirected or directed graph
in a model without routing policies, it is natural to measure the connectivity
provided to an s-t pair as the maximum number of disjoint s-t paths or the
minimum size of an s-t cut; by Menger’s theorem, these two quantities are the
same. This motivates us to study the corresponding notions for the valley-free
path model in this paper.

It seems natural to expect that the directed graph of customer-provider edges
will be acyclic (i.e., does not contain a directed cycle), because providers should
always be higher up in the Internet hierarchy than their customers. However,
it turns out that the graphs obtained with several of the abovementioned algo-
rithms do in fact contain directed cycles. Therefore, we are interested in cuts
and disjoint paths both in general directed graphs and in acyclic graphs.

1.2. Outline

The remainder of the paper is structured as follows. In Section 2, we give
the necessary definitions and discuss some preliminaries. Section 3 contains
our complexity results and algorithms for disjoint paths and minimum cuts in
general directed graphs. In Section 4, we consider acyclic graphs. We give our
conclusions and point to some open problems in Section 5.

2. Preliminaries

Following the terminology from papers in which the problem of classifying the re-
lationships between ASs is called the Type-of-Relationship (ToR) problem [Sub-
ramanian et al. 02, Di Battista et al. 03, Erlebach et al. 02], we will call a simple
directed graph G = (V,E) without loops a ToR graph. In terms of the under-
lying motivation, a directed edge from u to v, where u, v ∈ V, means that u is
a customer of v, and a pair of anti-parallel edges (u, v) and (v, u) means that u

and v are siblings.
A path p = (v1, v2, . . . , vr) in a ToR graph is valid (and called a valid v1-vr-

path), if it satisfies the following condition: there exists some j, 1 ≤ j ≤ r, such
that (vi, vi+1) ∈ E for 1 ≤ i ≤ j − 1 and (vi, vi−1) ∈ E for j + 1 ≤ i ≤ r. The
part of the path from v1 to vj is called its forward part, the part from vj to vr

its backward part. If a path does not satisfy the condition, it is called invalid.
Note that the reverse of a valid s-t path is a valid t-s path. The existence of a
valid s-t path can be checked in linear time by performing a standard directed
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depth-first search from s and from t and testing if any vertex is reachable from
both s and t along a directed path.

Let G = (V,E) be a ToR graph, and let s, t ∈ V be two distinct vertices. A
set C ⊆ V \ {s, t} is a valid s-t vertex cut if there is no valid path from s to t in
G−C. A smallest such set C is called a min valid s-t vertex cut. Note that there
is no valid s-t vertex cut if there is a direct edge (s, t) or (t, s). The min valid s-t
edge cut is defined analogously: instead of removing vertices, we remove edges.
Two valid s-t paths are called vertex-disjoint if the only vertices that they have
in common are s and t. Similarly, they are called edge-disjoint if they have no
edges in common.

For a given ToR graph G = (V,E) and a subset T ⊂ V of k terminals, a
valid multiway vertex cut is a subset C ⊆ V \ T such that no two terminals in T

are connected by a valid path in G − C. A valid multiway edge cut is defined
analogously.

The optimization problems in which we are interested are those of computing
minimum-size cuts and maximum-size sets of disjoint paths, both in the vertex
version and in the edge version: the min valid s-t vertex cut problem, the min
valid s-t edge cut problem, the min valid multiway vertex cut problem, the min
valid multiway edge cut problem, the max vertex-disjoint valid s-t paths problem,
and the max edge-disjoint valid s-t paths problem.

An approximation algorithm A for an optimization problem P is a polyno-
mial algorithm that always outputs a feasible solution. We say that A is a ρ-
approximation algorithm, or that its approximation ratio is ρ, if for all inputs I,
OPT (I)/A(I) ≤ ρ if P is a maximization problem or A(I)/OPT (I) ≤ ρ if P is
a minimization problem. Here OPT (I) is the objective value of an optimal so-
lution, and A(I) is the objective value of the solution computed by algorithm A,
for a given input I.

APX is the class of all optimization problems (with some natural restrictions
[Ausiello et al. 99]) that can be approximated within a constant factor. A prob-
lem is APX -hard if every problem in APX can be reduced to it via an approxima-
tion preserving reduction. A consequence of APX -hardness is that there exists
a constant ρ > 1 such that it is not possible to find a ρ-approximation algorithm
for the problem unless P = NP . (For further information about approximability
classes and approximation preserving reductions, see [Ausiello et al. 99].)

3. Complexity and Algorithms for General Graphs

Before treating the complexity issues and algorithms, we introduce a two-layer
model that leads to a relaxation of disjoint paths and cuts in ToR graphs.
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3.1. The Two-Layer Model

From a ToR graph G = (V,E) and s, t ∈ V , we construct a two-layer model H,
which is a directed graph, in the following way. Two copies of the graph G are
made, called the lower layer and the upper layer. In the upper layer all edge
directions are reversed. Every node v in the lower layer is connected with an
edge to the corresponding copy of v, denoted v′, in the upper layer. The edge
is directed from v to v′. For the edge versions of the considered problems, i.e.,
min valid s-t edge cut and max edge-disjoint valid s-t paths, we actually add
2n = 2|V | parallel copies of the edge (v, v′); the reason for this will become
clear later. Finally, we obtain the two-layer model H by identifying the two s

nodes (of lower and upper layer) and also the two t nodes, and by removing the
incoming edges of s and the outgoing edges of t.

A valid path p = (v1, . . . , vr) in G with v1 = s and vr = t is equivalent to a
directed path in H in the following way. The forward part of p, i.e., all edges
(vi, vi+1) ∈ p that are directed from vi to vi+1, is routed in the lower layer.
Then, there is a possible switch to the upper layer with a (v, v′)-type edge (there
can be at most one such switch). The backward part of p is routed in the upper
layer. See Figure 1 for an example. If there is only a forward or a backward
part of p, then the corresponding path in H is only in the lower or upper layer,
respectively.

We now describe in detail in which sense the two-layer model yields relaxations
of vertex- (respectively edge-) disjoint paths and vertex (respectively edge) cuts
in ToR graphs.

Note that two vertex-disjoint valid paths in G directly give two vertex-disjoint
paths in H, but two vertex-disjoint paths p1, p2 in H do not necessarily corre-
spond to vertex-disjoint valid paths in G. The path p1 might use the node v and
the path p2 its counterpart v′ in the other layer, yielding two valid paths that
are not vertex-disjoint in G. The analogous statements apply to edge-disjoint

G ts

backward partforward part

upper layer

lower layer

reverse(G)

G

ts

H

Figure 1. A path in the ToR graph G (left) and the corresponding path in the
two-layer model H (right).
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paths. The 2n parallel edges of type (v, v′) going from each node of the lower
layer to its copy in the upper layer have been added to H so as to ensure that
an arbitrary number of paths arising from edge-disjoint paths in G can switch
from the lower layer to the upper layer at the same node.

A valid s-t vertex cut in G directly gives an s-t vertex cut in H of twice the
cardinality: simply take for each cut node in G the corresponding nodes from
both layers in H. On the other hand, there might be an s-t vertex cut in H

without the property that for each node v in the cut, also its counterpart v′ is in
the cut. Analogous statements apply to edge cuts. The 2n parallel edges of type
(v, v′) have been added to H to ensure that no min s-t edge cut in H will ever
contain an edge of type (v, v′); note that an s-t edge cut of size at most 2n− 2
always exists.

3.2. Min Valid s-t Vertex Cut

3.2.1. NP- and APX-hardness. First, we study the complexity and approximation hard-
ness of the min valid s-t vertex cut problem.

Theorem 3.1. For a given ToR graph G = (V,E) and s, t ∈ V, finding the min valid
s-t vertex cut is NP-hard and even APX-hard.

Proof. We use a technique similar to Garg et al.’s, reducing the undirected three-
way edge cut problem to the min valid s-t vertex cut problem in ToR graphs
[Garg et al. 94]. In the undirected three-way edge cut problem, we are given
an undirected graph G and three terminals v1, v2, v3. The goal is to find a
minimum set of edges in G such that after removing this set, all pairs of vertices
in {v1, v2, v3} are disconnected. This problem has been proven to be NP -hard
and APX -hard [Dahlhaus et al. 94].

Let G = (V,E) be such an undirected graph with three distinct terminals v1,
v2, and v3. We create a ToR graph G′ in the following way: Each node v of G

is replaced with deg(v) copies of the same node. For each edge {u,w} in G, a
gadget consisting of two new nodes, eu,w

1 and eu,w
2 , is added. The gadget includes

an edge from eu,w
1 to eu,w

2 , edges from all copies of u and w to eu,w
1 , and edges

from eu,w
2 to all copies of u and w. We also add two nodes s and t and the edges

from s to all copies of v1, from all copies of v2 to s and t, and from t to all copies
of v3. See Figure 2 for a simple example.

Note that every valid path between any copy of u and any copy of w via the
gadget added for the edge {u,w} contains eu,w

1 . This holds because no path
(copy of w, eu,w

2 , copy of u) or (copy of u, eu,w
2 , copy of w) is valid.

In the following we will first show that any valid s-t vertex cut in G′ can be
transformed into a cut of at most the same cardinality that only contains e1-type
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v2v1 v3

w
G

s

ew,v3
1

ew,v1
2

t

v2

v3v1

wG′

to, respectively from, all
copies of the node

copies of one original node

ew,v2
2 ew,v2

1

ew,v3
2ew,v1

1

Figure 2. A simple example for the transformation of the original undirected
graph G (left) to the ToR graph G′ (right).

nodes. Then we prove that there is a direct correspondence between three-way
cuts in G and valid s-t vertex cuts in G′ that contain only such e1-type nodes.
This yields, in particular, that an approximation algorithm for the min valid s-t
vertex cut problem gives an approximation algorithm of the same ratio for the
three-way edge cut problem.

Assume that we are given a valid s-t vertex cut C in G′ that contains nodes that
are not of type e1. We can assume that C is a minimal cut (inclusion-wise). If the
cut contains a copy u′ of u, where u is a node in the original graph G, it must also
contain all other copies of u. Otherwise there is always an equivalent “detour”
path via one of these other copies, rendering the addition of u′ to C superfluous,
which would contradict the minimality of C. If C contains all deg(u) copies of
a node u, we replace these nodes in C by the e1-type nodes of the neighboring
gadgets. There are exactly deg(u) such nodes. Every valid s-t path containing
a copy of u traverses at least one of these neighboring gadgets (and therefore
its e1 node, see above). To see this, note that the paths (s, copy of v2, t) and
(t, copy of v2, s) are not valid. Thus, by this replacement we did not reintroduce
previously cut paths. The cardinality of C did not increase. If C contains an
e2-type node, we replace it by the corresponding e1-type node. Once more the
cardinality of C does not increase and no valid paths are reintroduced. Now C

contains only e1-type nodes.
Next, we show that for a set of edges Q in the graph G, the corresponding set

of nodes C = {eu,w
1 |{u,w} ∈ Q} in G′ is a valid s-t vertex cut if and only if Q

is a three-way cut for terminals v1, v2, and v3 in G. Recall that a three-way cut
disconnects all possible pairs in {v1, v2, v3}.

Note that the gadgets ensure that for any two nodes u and w in G′ correspond-
ing to the endpoints of an undirected edge {u,w} in G, there exists a directed
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path from u to w and from w to u in the gadget added for {u,w}. To disconnect
all such u-w paths, it suffices to cut the eu,w

1 node.
First, if C is a valid s-t vertex cut, Q is a three-way cut, because otherwise,

if any pair in {v1, v2, v3} is connected in G, then there is a valid path between s

and t, which gives a contradiction. On the other hand, if Q is a three-way cut,
there is no valid path between s and t in G′ − C, because at least one gadget is
disconnected on every valid path corresponding to an undirected path between
vi and vj for i 	= j in G and, as noted before, the paths (s, copy of v2, t) and
(t, copy of v2, s) are not valid.

Thus, we have shown that min valid s-t vertex cut is NP -hard. APX -hardness
also follows directly from the APX -hardness of three-way edge cuts [Dahlhaus
et al. 94].

Note that the proof does not carry over to the min valid s-t edge cut, because
no gadget can be found where the role of the eu,w

1 node is taken over by exactly
one edge (such that the copies of u and the copies of w are disconnected if this
edge is deleted). In fact, in Section 3.3 we show that a polynomial-time optimal
algorithm exists for the min valid s-t edge cut problem.

3.2.2. A simple 2-approximation. Given a ToR graph G = (V,E) and s, t ∈ V (where
we assume that there is no direct edge in G between s and t, because otherwise
a valid s-t vertex cut does not exist), the min valid s-t vertex cut approximation
algorithm is given in Algorithm 1.

Clearly |CG| ≤ |CH | holds and CG is a valid s-t vertex cut in G. Let Copt be a
min valid s-t vertex cut in G. As mentioned in Section 3.1, by duplicating Copt

for both layers of H, one obtains an s-t vertex cut in H. Thus, |CH | is at most
twice |Copt|. This gives the following theorem.

Theorem 3.2. There is a 2-approximation algorithm for the min valid s-t vertex cut
problem in ToR graphs.

Algorithm 1. (VertexCut.)

1. From G construct the two-layer model H as described in Section 3.1.

2. Compute a min s-t vertex cut CH in H.

3. Output the set CG = {v ∈ V | at least one copy of v is in CH} as a valid
s-t vertex cut.
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3.3. Min Valid s-t Edge Cut

Quite surprisingly, there is a polynomial-time optimal algorithm for the min
valid s-t edge cut problem in ToR graphs. This is in contrast to many flow and
cut problems in directed and undirected graphs, where the node and the edge
variant of the respective problem are of the same complexity.

Let EdgeCut be the reformulation of VertexCut (Algorithm 1) that considers
edges instead of vertices. It is clear that the same simple argumentation as given
in Section 3.2.2 shows that EdgeCut is a 2-approximation algorithm for the min
valid s-t edge cut problem in ToR graphs. The proof of the following theorem
shows that this algorithm in fact computes an optimal solution.

Theorem 3.3. There is a polynomial-time optimal algorithm for the min valid s-t
edge cut problem in ToR graphs.

Before proving the theorem, we first prove a lemma that states a crucial prop-
erty of (optimal) valid s-t edge cuts in ToR graphs.

Lemma 3.4. Let G = (VG, EG) be a ToR graph, s, t ∈ VG, and CG any valid s-t
edge cut in G. From CG an s-t edge cut CH in the corresponding two-layer
model H = (VH , EH) can be derived with |CH | = |CG|.

Proof. We start by adding for each edge e ∈ CG the two corresponding edges from
the lower and upper layer to CH . This yields an s-t edge cut CH in H with
|CH | = 2 · |CG|, as already described in Section 3.1. Then, iteratively for each
edge pair e, e′ ∈ CH , either e or e′ is removed from CH , where e = (v, w) ∈ EH

is in the lower layer and e′ = (w′, v′) ∈ EH is its counterpart in the upper layer.
We will show that, assuming CH is a cut before the removal, it will still be a cut
afterwards, if the edge is properly chosen. Thus, in the end, after considering all
edge pairs in the original cut, CH is still a cut and |CH | = |CG| holds.

Now we consider a single step of the iteration where the pair e = (v, w), e′ =
(w′, v′) ∈ CH is treated, assuming that the (perhaps already modified) set CH is
still an s-t edge cut in H. Assume that an s-t path p exists that traverses only e

and no other edge of the cut, i.e., e ∈ p and ec 	∈ p for all ec ∈ CH \ {e}. We
claim that in this case no s-t path p′ exists that traverses only e′ and no other
edge of the cut. It is then safe to remove e′ from CH . Symmetrically, if such a
path p′ exists, there cannot be a path p and thus e can be removed safely. (If
neither p nor p′ exists, remove e and continue the iteration.)

Aiming for a contradiction, we assume that both such paths p and p′ exist.
The edge e ∈ p is directed from v to w, thus p has the form (s, . . . , v, w, . . . , t).
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Figure 3. Example showing how p and p′ can be recombined.

Let p1 = (s, . . . , v) denote the first part of p. Analogously, the edge e′ ∈ p′

is directed from w′ to v′, and thus p′ has the form (s, . . . , w′, v′, . . . , t). Let
p2 = (v′, . . . , t) denote the last part of p′. Neither p1 nor p2 contain an edge
from CH . Therefore, p1 and p2 can be recombined via the edge (v, v′) to form
an s-t path that does not contain any cut edge. See Figure 3 for an example.
This is a contradiction to the assumption that CH is an s-t edge cut.

Proof of Theorem 3.3. Lemma 3.4 implies that the optimal s-t edge cut in H has at
most as many edges as the optimal valid s-t edge cut in G. Conversely, every
cut in H gives a valid cut in G of at most the same cardinality: consider the
sets CG and CH in the EdgeCut algorithm; clearly |CG| ≤ |CH | holds. Thus,
an optimal s-t edge cut in the two-layer model H yields an optimal valid s-t
edge cut in the ToR graph G. The former can be found in polynomial time by
network flow techniques [Ahuja et al. 93]. Note that a min s-t edge cut in H

does not contain any edge of type (v, v′), since there are 2n parallel copies of
such an edge by construction of the two-layer model. This concludes the proof
of Theorem 3.3.

3.4. Min Valid Multiway Cut

In this section, we consider the multiway version of the cut problems. We are
given a ToR graph G = (V,E) and a subset T ⊂ V of terminals, and the goal is
to separate each terminal from all the other terminals. For the standard model
of directed paths in directed graphs, the edge version and the vertex version of
the multiway cut problem are polynomially equivalent and have been shown to
be NP -hard and APX -hard [Garg et al. 94]. These hardness results hold even
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for the case |T | = 2, i.e., for the problem of cutting all directed paths from s to t

and all directed paths from t to s. The multiway cut problem in directed graphs
can be approximated within a factor of 2 using an algorithm due to Naor and
Zosin [Naor and Zosin 01].

In order to tackle multiway cut problems in the valley-free path model, we
adapt the two-layer model of Section 3.1. Again, we create two copies of the
given ToR graph G, the lower layer and the upper layer, and we reverse the
edge directions in the upper layer. Furthermore, we join each vertex v in the
lower layer to its counterpart v′ in the upper layer by a directed edge (or by
4|E| + 1 parallel directed edges, if we are dealing with the edge version of the
valid multiway cut problem). Finally, for each of the terminals in T , we identify
its copy in the lower layer with its copy in the upper layer. Let H denote the
resulting two-layer model.

To solve the min valid multiway vertex cut problem in G, we compute a
standard multiway vertex cut in H using the 2-approximation algorithm from
[Naor and Zosin 01]. Let CH denote the set of vertices in this cut. Then we
output the set CG of vertices in G at least one of whose copies is contained
in CH .

To solve the min valid edge-cut problem, we proceed analogously and apply
Naor and Zosin’s 2-approximation algorithm [Naor and Zosin 01] to compute a
standard multiway edge cut FH in H; then we output the set of edges of G at
least one of whose copies is contained in FH . Note that taking all edges of the
upper layer and of the lower layer gives a multiway edge cut of size 2|E| in H,
hence the 2-approximation algorithm will output a multiway edge cut of size at
most 4|E|. Thus, as H contains 4|E|+1 parallel vertical edges from each vertex
in the lower layer to its copy in the upper layer, we can assume without loss of
generality that none of the vertical edges are contained in FH .

Theorem 3.5. There is a 4-approximation algorithm for the min valid multiway
vertex cut problem and for the min valid multiway edge cut problem.

Proof. Let us first consider the vertex version of the problem. Let C∗ be an
optimal valid multiway cut in G. By taking both copies of each vertex in C∗,
we obtain a multiway cut C∗

H in H satisfying |C∗
H | ≤ 2|C∗|. As the algorithm

being used [Naor and Zosin 01] is a 2-approximation algorithm, we get that the
computed cut CH has size at most 4|C∗|. The set CG output by the algorithm
is a valid multiway cut and satisfies |CG| ≤ |CH | ≤ 4|C∗|.

The analysis for the edge version of the problem is analogous.

In Theorem 3.1 we have shown that the min valid s-t vertex cut problem is
APX -hard. The min valid multiway vertex cut problem, being a generalization,
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is thus also APX -hard. We do not know the complexity of the min valid multiway
edge cut problem.

3.5. Max Disjoint Valid s-t Paths

3.5.1. NP-hardness and inapproximability. The following theorem clarifies the complex-
ity of the max vertex- and edge-disjoint valid s-t paths problems and gives an
inapproximability bound that turns out to be tight.

Theorem 3.6. For a given ToR graph G = (V,E) and s, t ∈ V , finding the maximum
number of vertex- and edge-disjoint valid s-t paths is NP-hard. Moreover the
number of paths is even inapproximable within a factor 2 − ε for any ε > 0,
unless P equals NP.

Proof. We will reduce the problem of finding two disjoint paths between two pairs
of terminals in a directed graph to this problem. Let G be a directed graph
and s1, t1 and s2, t2 four distinct vertices of G. Form a ToR graph G′ from
G by adding two vertices s and t, and edges from s to s1, from t1 to t, from
t to s2 and from t2 to s, see Figure 4. Note that no path (s, t2, . . . , t1, t) is
valid. Thus, revealing the maximum number of vertex- and edge-disjoint valid
s-t paths would give a solution to the problem of finding two vertex- and edge-
disjoint paths between s1, t1 and s2, t2. The latter two problems are known to
be NP -complete in general directed graphs [Fortune et al. 80].

This also directly gives the inapproximability gap, even for instances with
arbitrarily large objective value: For an arbitrary k ∈ N, we simply make k

copies of the graph G′. Next we identify all copies of s to one node and all copies
of t to one node. We then, so to speak, have k “parallel” copies of G. Depending
on G, there are either k or 2k vertex-disjoint valid paths between s and t (same
for the edge case). Let ε > 0 be some constant, independent of k. Clearly, if a

ts

s1

t1

s2

t2

?

G
G′

Figure 4. From a directed graph G with sources s1, s2 and sinks t1, t2, a ToR
graph G′ is constructed. It is NP -hard to decide whether there are two vertex-
or edge-disjoint paths between s1, t1 and s2, t2 in the directed graph G.
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(2− ε)-approximation existed for max vertex- and edge-disjoint valid s-t paths,
we could again solve the problem of finding two vertex- and edge-disjoint paths
between s1, t1 and s2, t2 in G in polynomial time.

3.5.2. A tight approximation algorithm. For simplification of presentation we focus on
the max vertex-disjoint valid s-t paths problem and comment at the end of the
section how the result can be transferred to the edge-disjoint case. Furthermore,
in the proof of Theorem 3.7, we assume that every valid s-t path in the given
graph G = (V,E) contains a nonempty forward and a nonempty backward part.
This is not true in general, but we can enforce this property with a simple re-
placement procedure that produces an instance that is equivalent to the original
instance: we replace each edge e = (v, s) ∈ E by the edges (s, ve) and (v, ve),
where ve is a new node, and we proceed similarly for all incoming edges of t.
Note that after this replacement s and t have only outgoing edges and thus all
valid paths have both a nonempty forward and backward part. Moreover, no
new valid paths were introduced, and all previously valid paths remain valid.

In order to state the approximation algorithm, we need some definitions. If a
forward part of a valid s-t path p1 intersects with the backward part of a path
p2 at a node v, we call this a crossing at v. We also refer to v itself as a crossing
sometimes. The two paths can be recombined at the crossing to form a new path,
consisting of the first part of p1, (s, . . . , v), and the last part of p2, (v, . . . , t).
The path that results from recombining p1 and p2 at v is denoted by p1 ⊗v p2.
We also use this notation if p1 is a forward part of a path and p2 is the backward
part of a path (possibly of the same path). Note that if a path p consists of a
forward and a backward part that meet at node u, the two parts cross at u.

The basic idea of the algorithm is to start with a set of paths that is at least
as large as the optimal solution but not necessarily vertex-disjoint. However,
the forward parts are vertex-disjoint, and so are the backward parts. Then the
algorithm repeatedly recombines a forward part pf at its first crossing x with a
backward part pb. When such a recombination happens, the crossings on pb that
lie before x are discarded. However, if pb gets recombined with a different forward
part p′f later on, then pf loses its recombination and can be recombined with
another backward part at another crossing. The algorithm maintains the set X
of crossings that have not yet been discarded, and the sets Fr and F of forward
parts that are and are not currently recombined, respectively. Furthermore, the
set Ri represents the currently recombined paths after i recombination steps.
The detailed algorithm is shown in Algorithm 2.

Theorem 3.7. The VertexDisjointPaths algorithm is a 2-approximation algorithm
for the max vertex-disjoint valid s-t paths problem.
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Algorithm 2. (VertexDisjointPaths.)

1. From G construct the two-layer model H, and compute max
vertex-disjoint s-t paths PH in H.

2. Interpret PH as set PG of valid s-t paths in G. Note that PG is not
necessarily vertex-disjoint! Let F denote the forward parts of paths in PG

and B the backward parts. Let X be the set of all crossings (i.e., all
v ∈ V \ {s, t} that are contained in some pf ∈ F and in some pb ∈ B). Let
Fr = ∅, R0 = ∅, and i = 0. Repeat the following steps until F is empty
or all paths in F do not contain a crossing from X :

(a) Select any pf ∈ F that contains at least one crossing from X .

(b) Let x be the first crossing from X on pf , and let pb ∈ B be the
backward part containing x. (There is only one such pb as all
backward parts are vertex-disjoint.)

(c) Remove from X all crossings on pb before x.

(d) Set Ri+1 = Ri. If Ri+1 contains a path p that was obtained as a
recombination of some forward part p′f with pb, remove p from Ri+1,
remove p′f from Fr, and insert p′f into F .

(e) Remove pf from F and insert it into Fr. Insert pf ⊗x pb into Ri+1.

(f) Set i = i + 1.

3. Output Ri.

Proof. We first prove that the algorithm actually outputs a set of vertex-disjoint
paths, then mention why the running time is polynomial, and finally show that
the approximation ratio of 2 is achieved.

Note that since the paths PG are derived in the two-layer model H, all forward
parts F are disjoint and also all backward parts B. We observe that once a
backward part pb gets recombined with some forward part pf , that backward part
pb will remain recombined until the end of the algorithm; it may get recombined
with different forward parts over time, however. On the other hand, a forward
part may switch back and forth between F (not being recombined) and Fr (being
recombined) several times. We also observe that if a recombined path pf ⊗x pb

is in Ri at the end of the ith iteration of Step 2, then all the original crossings
on pb from x onward (towards t) are still in X (only the crossings on pb before
x have been removed from X ).

The set R0 is the empty set and thus vertex-disjoint. We now argue that if
Ri is vertex-disjoint, then Ri+1 will be as well. In the (i + 1)th recombination
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Figure 5. (a) Setting with three forward parts (solid edges) and backward parts
(dotted and dashed edges). (b) Impossible situation discussed in the proof of
Theorem 3.7.

the selected forward part pf does not intersect with any backward part of a
path in Ri up to the chosen crossing. Since Step 2(b) chooses the first crossing
x ∈ X on pf , all potential crossings before x on pf have already been removed
from X . Crossings that lie on backward parts of paths in Ri cannot have been
discarded, as observed above. See Figure 5(a) for an example. In this figure,
the algorithm may first recombine at u, forming the recombined path (s, u, t)
and removing crossings v and w from X ; if the algorithm now considers the
forward part starting (s, v, x), the first crossing from X on that path is at x, and
the algorithm will form the recombined path (s, v, x, t). Indeed, since crossings
before x on the forward part have already been discarded, the forward part of
the newly formed recombined path does not intersect the backward part of any
previously formed recombined path in Ri.

We argue that also the rest of the backward part pb = (x, . . . , t), that becomes
part of the recombined path does not intersect any other path q in Ri. Assume
the contrary; then, there is a path q in Ri whose forward part qf intersects pb,
say at node u. Refer to Figure 5(b) for an illustration. Let qb be the backward
part of q. Since the paths were derived from the two-layer model, at most two
paths cross in each node. Thus, qf and qb were recombined at a node w 	= u, and
clearly w is after u on the forward part qf (otherwise pb would not intersect qf ).
This gives the contradiction, since the algorithm would then have recombined qf

and pb at node u instead of qf and qb at node w.
We have shown that the first part of pf from s to x and the last part of pb from

x to t do not intersect any other path in Ri. In case pb was already recombined
in Ri with some other forward part, this previous recombination is removed
from Ri+1; see Step 2(d). We conclude that Ri+1 is vertex-disjoint. Since each



�

�

“imvol3” — 2007/7/30 — 17:52 — page 350 — #18
�

�

�

�

�

�

350 Internet Mathematics

crossing is considered at most once for recombination, the number of iterations
of Step 2 is O(|V |), and thus the running time is polynomial.

It remains to prove the approximation ratio. Assume that k is the optimal
number of paths for a given instance. Clearly |PG| is at least k. For each path p

in PG, we argue that either its forward part pf , its backward part pb, or both are
in the recombined state when the algorithm terminates (i.e., constitute part of a
path in the final set Rt, where t is the number of iterations of Step 2). Assume
for a contradiction that neither pf nor pb are in the recombined state when the
algorithm terminates. (Note that pf may have been recombined earlier but lost
its recombination before the algorithm terminated.) Then, pf must have at least
one crossing in X , namely the crossing with pb. This crossing could not have been
discarded, since pb was never recombined with any forward part. Hence, either
the forward or backward part of each path is recombined when the algorithm
terminates, and thus at least |PG|/2 ≥ k/2 disjoint valid s-t paths are found.

The algorithm can be easily adapted to the edge-disjoint paths setting. Here
the crossings are at edges instead of nodes (except for the crossings where a for-
ward part meets its corresponding backward part initially). The recombination
of two paths that cross at an edge e = (u, v) is done at node u, where e is directed
from u to v. An analogous argumentation as in the proof of Theorem 3.7 yields
the next assertion.

Theorem 3.8. There is a 2-approximation algorithm for the max edge-disjoint valid
s-t paths problem.

Note that Theorem 3.6 implies that the approximation ratios of Theorems 3.7
and 3.8 are best possible unless P = NP .

3.6. On the Gap between Disjoint Paths and Minimum Cuts

In the standard model of paths in directed or undirected graphs, it is well known
by Menger’s theorem that the maximum number of edge-disjoint s-t paths is
equal to the size of a minimum s-t edge cut, and the analogous result holds for
vertex-disjoint paths and vertex cuts (provided that there is no direct edge from
s to t). Therefore, it is interesting to consider whether similar properties hold
for the valley-free path model.

Our approximation algorithms for disjoint valid paths and valid cuts are based
on the two-layer graph model introduced in Section 3.1. If we consider stan-
dard directed paths in the two-layer graph H obtained from the ToR graph
G, Menger’s theorem applies and shows that the maximum number of vertex-
disjoint paths from s to t in H is equal to the size of a minimum s-t vertex cut
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s t s t

Figure 6. ToR graphs demonstrating a gap of 2 between disjoint paths and cuts.

in H (assuming that there is no direct edge (s, t) in H). Denote this number
by k. Algorithm 1 of Theorem 3.2 outputs a valid s-t vertex cut of size at most k

in G, and Algorithm 2 of Theorem 3.7 produces a set of at least k/2 vertex-
disjoint valid s-t paths in G. This shows that if s and t are not connected by a
direct edge, the size of a min valid s-t vertex cut is at most twice the maximum
number of vertex-disjoint valid s-t paths. To see that the bound of 2 is tight,
consider the ToR graph shown in Figure 6 (left). A similar argumentation shows
that the bound of 2 applies also to the edge version of disjoint valid paths and
valid cuts, and again the bound is tight as witnessed by the example shown in
Figure 6 (right). In both examples, the maximum number of disjoint valid paths
is one and the size of a minimum valid cut is 2. The examples can be generalized
so that the maximum number of disjoint paths is k and the size of a minimum
cut is 2k, simply by introducing k copies of the subgraph between the vertices s

and t.

4. Max Disjoint Valid s-t Paths in DAGs

In this section, we consider the problem of computing vertex- or edge-disjoint
valid paths in directed acyclic graphs. This is motivated by the consideration
that in a strictly hierarchical network where customer-provider edges (see Sec-
tion 1.1) always go from a lower to a higher level of the hierarchy, one would
obtain ToR graphs that are acyclic.

4.1. NP-Hardness for Arbitrary Number of Paths

First, we are able to prove that the problems remain NP -hard even for acyclic
graphs.

Theorem 4.1. For a given acyclic ToR graph G = (V,E) and s, t ∈ V , finding the
maximum number of vertex- or edge-disjoint valid s-t paths is NP-hard.

Proof. In the following we will reduce the well-known three-partition problem
[Garey and Johnson 79]. In this problem a set of 3n items A = {1, . . . , 3n} with
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s

row j:

a1,j-type nodes:
a2,j-type nodes:
a3,j-type nodes:

B − a1 + 1 nodes
B − a2 + 1 nodes
B − a3 + 1 nodes

0 1 2 a1 a1 + 1 a2 a2 + 1
t

B

Figure 7. The structure added for the jth set-path. For each item i, a set of
B − ai +1 nodes is added: these are referred to as ai,j-type nodes. Each of these
nodes serves as a “bridge” to skip ai nodes in the jth row.

associated sizes a1, . . . , a3n ∈ N and a bound B ∈ N are given, with B/4 <

ai < B/2 for each i and
∑3n

i=1 ai = nB. It is then strongly NP -hard to decide
whether A can be partitioned into n disjoint sets I0, . . . , In−1 such that

∑
i∈Ij

ai =
B, for j = 0, . . . , n − 1. Note that due to the bounds for the item sizes ai, all
sets Ij must have cardinality 3. Since the problem is strongly NP -hard, it is
already NP -hard if all ai and consequently B are polynomially bounded in the
input size. For our proof, we assume that this is the case.

For simplicity of notation we again focus on the vertex-disjoint case. It is easy
to see that all arguments, with slight modification, transfer to the edge-disjoint
case.

We start by describing how to construct an acyclic ToR graph G from the
given three-partition instance. In optimal solutions for G, there will generally
be two different types of paths: the set-paths where each path corresponds to
one of the sets I0, . . . , In−1 and the blocker-paths that make sure that each item
in A is only in one of the sets Ij .

The structure in G that is dedicated to contain the set-paths consists of n

rows, where the jth row corresponds to set Ij , and at most one set-path can be
routed along this row. Figure 7 depicts the subgraph added for the jth row.

Clearly the graph so far is acyclic: all edges except the ones leaving s are
directed from “right to left.” An s-t path traversing the jth row must contain
three ai,j-type nodes, say an ai1,j-, an ai2,j-, and an ai3,j-type node, such that
ai1 + ai2 + ai3 = B. Note that if we set Ij to be {i1, i2, i3} and repeat this
analogously for all j, the resulting sets I0, . . . , In−1 need not be disjoint. In the
previous example it could even hold that, e.g., i1 = i2.

The goal of the blocker-paths is to force that the sets I0, . . . , In−1 correspond-
ing to the set-paths are actually disjoint. For item i ∈ A we add the subgraph
depicted in Figure 8. One can check that no cycles are created by the addition
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s

ai,1-type nodes:
ai,2-type nodes:
ai,3-type nodes:

t

from row 1
from row 2
from row 3
(B − ai + 1 nodes each)

v1

vki
uki

u1

Figure 8. The structure added for the blocker-paths for item i. Note that each of
the nodes u1, . . . , uki is connected to each ai,j-type node (for fixed i). Similarly,
each ai,j-type node (for fixed i) is connected to each of the v1, . . . , vki nodes. The
number of potential blocker-paths is bounded by ki, which is set to be the total
number of ai,j-type nodes (for fixed i and all j = 0, . . . , n − 1) minus one.

of these subgraphs to G. Note that the size of G is polynomial in the size of the
three-partition instance.

The idea of the construction is that in an optimal solution each blocker-path
will come from some u node, pass through exactly one ai,j-type node, and then
go directly to t via some v node. Then, for each item i there remains only one
ai,j-type node that is free and can be traversed by one of the set-paths.

Let K =
∑3n

i=1 ki, where ki is defined as in the caption of Figure 8, be the
total number of possible blocker-paths. Our goal is to prove that the given three-
partition instance can be partitioned in the desired way if and only if there are
K + n vertex-disjoint valid s-t paths in G.

We start with the easier direction: given a partition I0, . . . , In−1, we describe
how to route K + n vertex-disjoint paths. For the set Ij = {i1, i2, i3} we add a
set-path pj via the jth row of G, such that it passes through an ai1,j-, an ai2,j-,
and an ai3,j-type node. This can be done in an arbitrary order: the choice of
the order determines which three ai,j-type nodes are actually traversed. Clearly
pj is a valid s-t path. We repeat this for all j = 0, . . . , n− 1. Since I0, . . . , In−1

are disjoint, the set-paths will touch exactly one ai,j-type node for each item i.
Thus, the K possible blocker-paths can be routed in the canonical way.

Now we come to the harder direction: given K + n vertex-disjoint paths, we
show how to derive a partition I0, . . . , In−1. First of all, note that a valid s-t
path entering row j of G cannot “leave” this row. In other words, when it passes
through an ai,j-type node, it has to continue back to row j: it cannot continue
directly to t via a v node (see Figure 8), since this would produce a valley. It
also cannot continue via a u node, since such a path cannot be completed to be
a valid s-t path because the only incoming edge of a u node is incident to s.
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Thus, our set-paths have the desired form, and in particular each such path
contains exactly three ai,j-type nodes, whose corresponding item sizes sum up
to B. We are given K + n vertex-disjoint paths, hence there must be exactly n

set-paths and exactly K paths leaving s via the subgraphs added for the blocker-
paths. Clearly each of the latter paths contains at least one ai,j-type node. This
yields that for each item i at most one ai,j-type node is free and can be used
by a set-path. This concludes the proof, since the sets I0, . . . , In−1 derived from
the set-paths are disjoint and

∑
i∈Ij

ai = B holds for all j = 0, . . . , n− 1.

4.2. Efficient Algorithm for Constant Number of Paths

In general ToR graphs, it turned out to be NP -hard to decide whether there are
two edge- or vertex-disjoint valid paths from s to t (Theorem 3.6). For acyclic
graphs, on the contrary, we are able to show that this decision problem can be
solved in polynomial time for any constant number of paths. Our proof is an
extension of a pebbling game introduced by Fortune et al. in order to solve the
subgraph homeomorphism problem for subgraphs of fixed size in directed acyclic
graphs (for example, their algorithm solves the problem of computing edge- or
vertex-disjoint paths for a constant number of terminal pairs in a directed acyclic
graph) [Fortune et al. 80].

Theorem 4.2. For a given acyclic ToR graph G = (V,E), s, t ∈ V , and a constant k,
one can decide in polynomial time if there exist k vertex-disjoint (edge-disjoint)
valid paths between s and t in G (and compute such paths if the answer is yes).

Proof. We present a polynomial-time algorithm that solves this problem. The
algorithm uses a pebbling game played on the vertices of G.

First, consider the vertex-disjoint case. We will show that winning the peb-
bling game corresponds to finding k vertex-disjoint paths in G and that if there
is no winning strategy, there are no k vertex-disjoint paths in the graph.

First, for each node we define its level as the length of the longest directed
path starting at the node. At the beginning of the game, there are k red pebbles
on vertex s and k blue pebbles on vertex t. The game is won when all pebbles
are removed. The rules for how to move pebbles through the graph and how to
remove them are as follows:

1. Pebble Pi can be moved along directed edge (v, w) from vertex v to vertex
w if

(a) v has the highest level of any vertex containing a pebble,

(b) there is no pebble with the opposite color at v,
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(c) w is equal to s or t; or w does not contain any pebble; or if Pi is red,
w contains exactly one blue pebble and no red pebble, and if Pi is
blue, w contains exactly one red pebble and no blue pebble.

2. If v is a vertex of highest level among all vertices containing at least one
pebble and if v contains a red pebble and a blue pebble, then these two
pebbles can be removed from the graph.

If the pebble game is won, we have k vertex-disjoint valid paths, each one given
by the trails of moving pebbles P r

i from s and P b
i from t to the vertex where

they meet and are removed.
We have to show that these paths are indeed vertex-disjoint. Suppose for a

contradiction that the trails of pebbles P x
i and P y

j (which do not arrive at the
same node and are removed together) cross at a node w 	= s, t. The pebble
that came first had to be moved away from w before the other pebble arrived,
because of Rule 1(c); otherwise, the two pebbles would have different colors and
would be removed together from w, contrary to our assumption. But the first
pebble cannot be moved away from w before the second pebble arrives, because
Rule 1(a) ensures that only pebbles at nodes with highest level can be moved
(note that the vertex from which the second pebble arrives at w must have higher
level than w). Thus, we arrive at a contradiction. This shows that the trails of
pebbles belonging to different paths cannot cross at any nodes except s and t,
implying that the k paths corresponding to the trails of the pebbles are indeed
vertex-disjoint.

On the other hand, if there are k vertex-disjoint valid paths between s and t

in G, it is easy to see that the pebbling game can be won. For each of the k

paths from s to t, let a pebble start at s and trace the forward part of the path,
let a second pebble start at t and trace the (reverse of the) backward part of the
path, and remove the pebbles when they meet. During this process, the pebbles
can obviously be moved and removed according to the rules.

A configuration of the pebbling game is given by the at most 2k positions
of the red pebbles and the blue pebbles. Thus, there are at most (|V | + 1)2k

configurations. One can build a graph on these configurations, with a directed
edge from one configuration to another if it can be reached with one move or
removal operation satisfying the rules. The graph has polynomial size, and it
suffices to check whether the node corresponding to the configuration without any
pebbles can be reached from the node corresponding to the initial configuration.
This can obviously be done in polynomial time, and the path from the initial to
the final configuration yields also the trails of the pebbles and thus the vertex-
disjoint valid s-t paths for which we are looking.
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The adaptation of this algorithm to the case of edge-disjoint paths is straight-
forward. Essentially it suffices to place pebbles on edges instead of vertices of G.

5. Conclusions

In this paper, we have initiated the study of disjoint valid s-t paths and valid s-t
cuts in the valley-free path model. These problems arise in the analysis of the
autonomous systems topology of the Internet if commonly used routing policies
are taken into account. For example, the size of a minimum valid s-t vertex cut
can be viewed as a reasonable measure of the robustness of the Internet connec-
tion between autonomous systems s and t. If the minimum cut has size k, this
means that k autonomous systems must fail in order to completely disconnect s

and t. Therefore, our algorithms could be useful for network administrators who
want to assess the quality of their network’s connection to the Internet. Note
that our approximation algorithm for the min valid s-t vertex cut problem can
be easily adapted to the weighted version of the problem, where an AS that is
unlikely to fail can be given a large weight.

We have proved that the problem of maximizing the number of vertex- or edge-
disjoint valid paths can be approximated within a factor of 2, but no better unless
P = NP . For the min valid s-t cut problem, we showed that the vertex version
is APX -hard and can be approximated within a factor of 2 while, somewhat
surprisingly, the edge version can be solved optimally in polynomial time. We
have given a 4-approximation algorithm for the min valid multiway cut problem,
both in the edge version and in the vertex version. For acyclic graphs, we
have shown that a constant number of disjoint valid s-t paths can be found in
polynomial time (if they exist), while the max disjoint valid s-t paths problem
remains NP -hard.

The problems we have studied may be seen as instances of a more general
family of problems whose common theme is that the allowed paths in the graph
must obey certain restrictions. One example of such a restriction is given by
oriented paths, i.e., paths containing at least one directed edge, in mixed graphs,
i.e., graphs with undirected and directed edges. Oriented paths were considered
by Wanke and Kötter in the context of the analysis of different parcellation
schemes of the macaque brain [Wanke and Kötter 04]. Another example is given
by paths in graphs with labeled edges where a path is only valid if the sequence
of its edge labels forms a word from a given formal language; shortest-path
problems for this type of restriction are studied by Barrett et al. in the context
of transportation problems [Barrett et al. 00]. It would be interesting to study
the max disjoint s-t paths problem and min s-t cut problem in such a setting.
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There are also several open problems for the valley-free path model. First, we
do not have any inapproximability results for computing disjoint valid paths in
acyclic graphs. It would be useful to study whether the maximum edge-disjoint
or vertex-disjoint valid s-t paths problem can be approximated better for acyclic
graphs. Also, one could study the question of whether there is a fixed-parameter
tractable (FPT) algorithm [Downey and Fellows 99] for the problem of finding k

disjoint valid s-t paths in acyclic graphs, i.e., an algorithm whose running time is
a polynomial of the input size multiplied by an arbitrary function of k. Recently,
it was shown that the disjoint-paths problem (in the standard model of directed
paths) for k terminal pairs in directed acyclic graphs is W[1]-hard, implying that
the existence of FPT algorithms for that problem is unlikely [Slivkins 03].

In addition, it would be interesting to determine the complexity and approx-
imability of the min s-t vertex cut problem for acyclic graphs. Furthermore,
improved approximation algorithms for the min valid multiway edge and vertex
cut problems would be desirable. Moreover, we do not know the complexity of
the min valid multiway edge cut problem.
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113, 00198 Rome, Italy (ale@dsi.uniroma1.it)
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ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland (vukadin@tik.ee.ethz.ch)

Received October 31, 2005; accepted March 4, 2007.


