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A Geometric Preferential
Attachment Model of Networks
Abraham D. Flaxman, Alan M. Frieze, and Juan Vera

Abstract. We study a random graph Gn that combines certain aspects of geometric
random graphs and preferential attachment graphs. The vertices of Gn are n sequen-
tially generated points x1, x2, . . . , xn chosen uniformly at random from the unit sphere
in R

3. After generating xt, we randomly connect that point to m points from those
points in x1, x2, . . . , xt−1 that are within distance r of xt. Neighbors are chosen with
probability proportional to their current degree, and a parameter α biases the choice
towards self loops. We show that if m is sufficiently large, if r ≥ ln n/n1/2−β for some
constant β, and if α > 2, then with high probabilty (whp) at time n the number of
vertices of degree k follows a power law with exponent α + 1. Unlike the preferential
attachment graph, this geometric preferential attachment graph has small separators,
similar to experimental observations of [Blandford et al. 03]. We further show that if
m ≥ K ln n, for K sufficiently large, then Gn is connected and has diameter O(ln n/r)
whp.

1. Introduction

Recently there has been much interest in understanding the properties of real-
world, large-scale networks such as the structure of the Internet and the World
Wide Web. For a general introduction to this topic, see [Bollobás and Riordan 02,
Hayes 00, Watts 99, Aiello et al. 01]. One approach is to model these networks by
random graphs. Experimental studies [Albert et al. 99, Broder et al. 00, Faloutsos
et al. 99] have demonstrated that in the World Wide Web/Internet the proportion
of vertices of a given degree follows an approximate inverse power law, i.e., the
proportion of vertices of degree k is approximately Ck−α for some constants
C,α. The classical models of random graphs introduced by Erdős and Renyi
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[Erdős and Rényi 59] do not have power law degree sequences, so they are not
suitable for modeling these networks. This has driven the development of various
alternative models for random graphs.

One approach is to generate graphs with a prescribed degree sequence (or
prescribed expected degree sequence). This has been proposed as a model for
the web graph [Aiello et al. 00]. Mihail and Papadimitriou also use this model
[Mihail and Papadimitriou 02] in their study of large eigenvalues, as do Chung,
Lu, and Vu [Chung et al. 03a].

An alternative approach, which we will follow in this paper, is to sample graphs
via some generative procedure that yields a power law distribution. There is a
long history of such models, outlined in the survey by Mitzenmacher [Mitzen-
macher 04]. We will use an extension of the preferential attachment model to
generate our random graph. The preferential attachment model has been the
subject of recently revived interest, though it dates back further [Yule 25, Si-
mon 55]. It was proposed as a random graph model for the web by Barabási
and Albert [Barabasi and Albert 99], and their description was elaborated by
Bollobás and Riordan who showed that at time n, with high probability (whp)
the diameter of a graph constructed in this way is asymptotic to ln n

ln ln n [Bol-
lobás and Riordan 04a]. Subsequently, Bollobás, Riordan, Spencer, and Tusnády
proved that the degree sequence of such graphs does follow a power law
distribution [Bollobás et al. 01].

The random graph defined in the previous paragraph has good expansion
properties. For example, Mihail, Papadimitriou, and Saberi showed that whp
the preferential attachment model has conductance bounded below by a constant
[Mihail et al. 03]. On the other hand, Blandford, Blelloch, and Kash found that
some web-related graphs have smaller separators than what would be expected
in random graphs with the same average degree [Blandford et al. 03]. The aim
of this paper is to describe a random graph model that has both a power-law
degree distribution and small separators.

We study here the following process, which generates a sequence of graphs
Gt, t = 1, 2, . . . , n. The graph Gt = (Vt, Et) has t vertices and mt edges. Here,
Vt is a subset of S, the surface of the sphere in R

3 of radius 1
2
√

π
(so that

Area(S) = 1).
For u ∈ S and r > 0, we let Br(u) denote the spherical cap of radius r around

u in S. More precisely, Br(u) = {x ∈ S : ||x− u|| ≤ r}.

1.1. The Random Process

The parameters of the process are m > 0, the number of edges added in every
step, and α ≥ 0, a measure of the bias towards self loops.
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Notice that there exists a constant c0 such that, for any u ∈ S, we have

Ar = Area(Br(u)) ∼ c0r
2.

• Time step 0. To initialize the process, we start with G0 being the empty
graph.

• Time step t + 1. We choose vertex xt+1 uniformly at random in S and add
it to Gt. Let Vt(xt) = Vt ∩ Br(xt+1), and let Dt(xt) =

∑
v∈Vt(xt)

degt(v).
We add m random edges (xt+1, yi), i = 1, 2, . . . ,m, incident with xt+1.
Here, each yi is chosen independently from Vt(xt) ∪ {xt+1} (parallel edges
and loops are permitted), such that for each i = 1, . . . ,m

Pr(yi = v) =
degt(v)

max (Dt(xt+1), αmArt)

and

Pr(yi = xt+1) = 1 − Dt(xt+1)
max (Dt(xt+1), αmArt)

for all v ∈ Vt(xt+1). (When t = 0, we have Pr(yi = x1) = 1.)

Let dk(t) denote the number of vertices of degree k at time t, and let dk(t)
denote the expectation of dk(t). We will prove the following.

Theorem 1.1.

(a) If 0 < β < 1/2 and α > 2 are constants, r ∼ nβ−1/2 lnn, and m is a
sufficiently large constant, then there exist constants c, γ, ε > 0 such that
for all k = k(n) ≥ m

dk(n) = Ck
n

k1+α
+O(n1−γ), (1.1)

where Ck = Ck(m,α) tends to a constant C∞(m,α) as k → ∞.

Furthermore, for n sufficiently large, the random variable dk(n) satisfies
the following concentration inequality:

Pr(|dk(n) − dk(n)| ≥ n1−γ) ≤ e−nε

. (1.2)

(b) If α ≥ 0 and r = o(1), then whp Vn can be partitioned into T, T̄ such that
|T |, |T̄ | ∼ n/2, and there are at most 4

√
πrnm edges between T and T̄ .

(c) If α ≥ 0, r ≥ n−1/2 lnn, m ≥ K lnn, and K is sufficiently large, then whp
Gn is connected.
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(d) If α ≥ 0, r ≥ n−1/2 lnn, m ≥ K lnn, and K is sufficiently large, then whp
Gn has diameter O(lnn/r).

We note that geometric models of trees with power laws have been considered
[Fabrikant et al. 02, Berger et al. 03, Berger et al. 04]. We also note that Gómez-
Gardeñes and Moreno have empirically analyzed a one-dimensional version of our
model when α = 0 and their experiments suggest that this yields a power-law
exponent of 3 [Gómez-Gardeñes and Moreno 04].

1.2. Open Questions

In an earlier version of the paper, there was no α and we have failed to produce
a proof of Theorem 1.1(a) when α ≤ 2. This remains a challenge for us at the
present moment. We do not think that the lnn factors are necessary in parts (c)
and (d).

1.3. Some Definitions

Given U ⊆ S and u ∈ S, we define

Vt(U) = Vt ∩ U and Vt(u) = Vt(Br(u))

and
Dt(U) =

∑
v∈Vt(U)

degt(v) and Dt(u) = Dt(Br(u)).

Given v ∈ Vt, we also define

deg−t (v) = degt(v) −m. (1.3)

Notice that deg−t (v) is the number of edges of Gt that are incident to v and were
added by vertices that chose v as a neighbor, including loops at v.

Given U ⊆ S, let D−
t (U) =

∑
v∈Vt(U) deg−t (v). We also define D−

t (u) =
D−

t (Br(u)). Notice that Dt(U) = m|Vt(U)| +D−
t (U).

We localize some of our notation: given U ⊆ S and u ∈ S, we define dk(t, U) to
be the number of vertices of degree k at time t in U and dk(t, u) = dk(t, Br(u)).

2. Outline of the Paper

In Section 3 we show that there are small separators. This is easy, since any
given great circle can whp be used to define a small separator.
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We prove a likely power law for the degree sequence in Section 4. We follow
a standard practise and prove a recurrence for the expected number of vertices
of degree k at time step t. Unfortunatley, this involves the estimation of the
expectation of the reciprocal of a random variable, and to handle this we show
that this random variable is concentrated. This is quite technical and is done in
Section 4.3.

Section 5 proves connectivity when m grows logarithmically with n. The idea
is to show that whp the subgraph Gn(B) induced by a ball B of radius r/2 and
of center u ∈ S is connected. This is done by constructing a connected subgraph
of Gn(B) via a coupling argument. We then show that the union of the Gn(B)
for u = x1, x2, . . . , xn is connected and has small diameter.

3. Small Separators

Theorem 1.1(b) is the easiest part to prove. We use the geometry of the instance
to obtain a sparse cut. Consider partitioning the vertices using a great circle of
S. This will divide V into sets T and T̄ which each contain about n/2 vertices.
More precisely, we have

Pr [|T | < (1 − ε)n/2] = Pr
[|T̄ | < (1 − ε)n/2

] ≤ e−ε2n/4.

Edges only appear between vertices within distance r, so only vertices appearing
in the strip within distance r of the great circle can appear in the cut. Since
r = o(1), this strip has area less than 3r

√
π, and, letting U denote the vertices

appearing in this strip, we have

Pr
[|U | ≥ 4

√
πrn

] ≤ e−
√

πrn/9.

Even if every one of the vertices chooses its m neighbors on the opposite side
of the cut, this will yield at most 4

√
πrnm edges whp. So, the graph has a cut

with e(T,T̄ )
|T ||T̄ | ≤ 17

√
πrm
n with probability at least 1 − e−Ω(rn).

4. Proving a Power Law

4.1. Establishing a Recurrence for dk(t)

Our approach to proving Theorem 1.1(a) is to find a recurrence for dk(t), the
expected number of vertices of degree k at time t. We define dm−1(t) = 0 for all
integers t with t > 0. Let ηk(Gt, xt+1) denote the (conditional) probability that
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a parallel edge to a vertex of degree no more than k is created. Then,

ηk(Gt, xt+1) = O

(
k∑

i=m

di(t, xt+1) i2

max{αmArt,Dt(xt+1)}2

)

= O

(
min

{
k2

max{αmArt,Dt(xt+1)} , 1
})

. (4.1)

Then, for k ≥ m,

E [dk(t+ 1) | Gt, xt+1] = dk(t) +mdk−1(t, xt+1)
k − 1

max{αmArt,Dt(xt+1)}
−mdk(t, xt+1)

k

max{αmArt,Dt(xt+1)}
+ Pr

[
degt+1(xt+1 = k) | Gt, xt+1

]
+O(mηk(Gt, xt+1)).

(4.2)

Let At be the event

{|Dt(xt+1) − 2mArt| ≤ C1Armt
γ lnn}

where

max{2/α, 1/2, 1 − 2β} < γ < 1

and C1 is some sufficiently large constant.

Note that if

t ≥ (lnn)2/(1−γ)

then

At implies Dt(xt+1) ≤ αmArt.

Then, because

E[dk(t, xt+1)] ≤ k−1E[m|Vt(B2r(xt+1))|] ≤ k−1m(4Art)

and

dk(t, xt+1) ≤ k−1Dt(xt+1) < mt,
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we have for t ≥ (lnn)2/(1−γ)

E
[

dk(t, xt+1)
max{αmArt,Dt(xt+1)}

]

= E
[

dk(t, xt+1)
max{αmArt,Dt(xt+1)}

∣∣∣∣ At

]
Pr [At]

+ E
[

dk(t, xt+1)
max{αmArt,Dt(xt+1)}

∣∣∣∣ ¬At

]
Pr [¬At]

=
E [dk(t, xt+1) | At]

αmArt
Pr [At] + E

[
O

(
dk(t, xt+1)
Dt(xt+1)

) ∣∣∣∣ ¬At

]
Pr [¬At]

=
E [dk(t, xt+1) | At]

αmArt
Pr [At] +O

(
Pr [¬At]

k

)

=
E [dk(t, xt+1)]

αmArt
+
(
O

(
1
k

)
− E [dk(t, xt+1) | ¬At]

αmArt

)
Pr [¬At]

=
E [dk(t, xt+1)]

αmArt
+O

(
1
k

+
1
Ar

)
Pr [¬At] .

In Lemmas 4.1 and 4.3 we prove that

E [dk(t, xt+1)] = mArdk(t)

and that

Pr [¬At] = O
(
n−2

)
. (4.3)

Thus, if t ≥ (lnn)2/(1−γ), then

E
[

dk(t, xt+1)
max{αmArt,Dt(xt+1)}

]
=
dk(t)
αmt

+O

(
1
n2

(
1
Ar

+
1
k

))
. (4.4)

In a similar way,

E
[

dk−1(t, xt+1)
max{αmArt,Dt(xt+1)}

]
=
dk−1(t)
αmt

+O

(
1
n2

(
1
Ar

+
1
k

))
. (4.5)

On the other hand, given Gt and xt+1, if

p = 1 − Dt(xt+1)
max (Dt(xt+1), αmArt)

,

then

Pr
[
degt+1(xt+1 = k) | Gt, xt+1

]
= Pr [Bi(m, p) = k −m] .
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So, if t ≥ (lnn)2/(1−γ),

Pr [xt+1 = k]

=
(

m

k −m

)
E
[
pk−m(1 − p)2m−k

∣∣∣∣ At

]
Pr [At] +O(Pr [¬At])

=
(

m

k −m

)(
1 − 2

α

)k−m( 2
α

)2k−m

(1 +O(tγ−1 lnn))Pr [At] +O(n−2)

=
(

m

k −m

)(
1 − 2

α

)k−m( 2
α

)2k−m

+O(tγ−1 lnn).

Now note from Equations (4.1) and (4.3) that if

t ≥ t0 = n(1−2β)/γ

and
k ≤ k0(t) = (mArt

γ lnn)1/2,

then
E(ηk(Gt, xt+1)) = O(tγ−1 lnn). (4.6)

Taking expectations on both sides of Equation (4.2) and using Equations (4.4),
(4.5), and (4.6), we see that, if t ≥ t0 and k ≤ k0(t), then

dk(t+ 1) = dk(t) +
k − 1
αt

dk−1(t) − k

αt
dk(t)

+
(

m

k −m

)(
1 − 2

α

)k−m( 2
α

)2m−k

+O
(
tγ−1 lnn

)
.

(4.7)

We consider the recurrence given by fm−1 = 0, and for k ≥ m

fk =
k − 1
α

fk−1 − k

α
fk +

(
m

k −m

)(
1 − 2

α

)k−m( 2
α

)2m−k

,

which, for k > 2m, has solution

fk = f2m

k∏
i=m+1

i− 1
i+ α

= φk(m,α)
(m
k

)α+1

,

where φk(m,α) tends to a limit φ∞(m,α) depending only on m,α as k → ∞.
We can absorb the values fm, fm+1, . . . , f2m into this notation.
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We finish the proof of Equation (1.1) by showing that there exists a constant
M > 0 such that

|dk(t) − fkt| ≤M(t0 + tγ lnn) (4.8)

for all 0 ≤ t ≤ n and m ≤ k ≤ k0(t). This is trivially true for t < t0. For
k > k0(t), this follows from dk(t) ≤ 2mt/k.

Let Θk(t) = dk(t) − fkt. Then, for t ≥ t0 and m ≤ k ≤ k0(t),

Θk(t+ 1) =
k − 1
αt

Θk−1(t) − k

αt
Θk(t) +O(tγ−1 lnn). (4.9)

Let L denote the hidden constant in O(tγ−1 lnn) in Equation (4.9). Our induc-
tive hypothesis Ht is that

|Θk(t)| ≤M(t0 + tγ lnn)

for every m ≤ k ≤ k0(t) and M sufficiently large. It is trivially true for t ≤ t0.
So, assume that t ≥ t0. Then, from Equation (4.9),

|Θk(t+ 1)| ≤ M(t0 + tγ lnn) + Ltγ−1 lnn

≤ M(t0 + (t+ 1)γ lnn).

This verifies Ht+1 and completes the proof by induction.

4.2. Expected Value of dk(t, u)

Lemma 4.1. Let u ∈ S, and let k and t be positive integers. Then, E [dk(t, u)] =
Ardk(t).

Proof. By symmetry, for any w ∈ S, dk(t, u) has the same distribution as dk(t, w).
Then,

E [dk(t, u)] =
∫

S

E [dk(t, u)] dw =
∫

S

E [dk(t, w)] dw

= E
[∫

S

dk(t, w)dw
]

= E
[∫

S

∑
v∈Vt

1deg v=k1v∈Br(w)dw

]

= E
[∑

v∈Vt

1deg v=k

∫
S

1w∈Br(v)dw

]
= E

[∑
v∈Vt

1deg v=kAr

]

= ArE [dk(t)] .
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Lemma 4.2. Let u ∈ S and t > 0. Then, E [Dt(u)] = 2Armt.

Proof.

E [Dt(u)] =
∑
k>0

E [dk(t, u)] = Ar

∑
k>0

E [dk(t)] = ArE
[∑

k>0

dk(t)
]

= 2Armt.

4.3. Concentration of Dt(u)

In this section we prove the following lemma.

Lemma 4.3. If t > 0 and u is chosen randomly from S, then

Pr
[
|Dt(u) −E [Dt(u)] | ≥ Arm(t2/α + t1/2 ln t) lnn

]
= O

(
n−2

)
.

Proof. We think of every edge added as two directed edges. We also think of
xt, the vertex added, as being added with (αmArt−Dt(xt))+ = max{αmArt−
Dt(xt), 0} “phantom” edges pointing to it. Then, choosing a vertex is equivalent
to choosing one of these directed edges uniformly and taking the vertex to which
this edge points as the chosen vertex. So the ith step of the process is defined
by a tuple of random variables T = (X,Y1, . . . , Ym) ∈ S × Em

i where X is the
location of the new vertex, a randomly chosen point in S, and Yj is an edge chosen
uniformly at random from among the edges directed into Br(X) in Gi−1. The
process Gt is then defined by a sequence 〈T1, . . . , Tt〉, where each Ti ∈ S × Em

i .
Let s be a sequence s = 〈s1, . . . , st〉 where si = (xi, y(i−1)m+1, . . . , yim) with

xi ∈ S and yj ∈ E�j/m�. We say s is acceptable if, for every j, yj is an edge
entering Br(x�t/j�). Notice that non-acceptable sequences have probability zero
of being realized. Fix t > 0. Fix an acceptable sequence s = 〈s1, . . . , st〉, and let
Aτ (s) = {z ∈ S×Em

τ : 〈s1, . . . , sτ−1, z〉 is acceptable}. For any τ with 1 ≤ τ ≤ t

and any z ∈ Aτ (s), let

gτ (z) = E [Dt(u) | T1 = s1, . . . , Tτ−1 = sτ−1, Tτ = z] ,

let rτ (s) = sup{|gτ (z)−gτ (ẑ)| : z, ẑ ∈ Aτ (s)}, and let r̂2(s) =
∑t

τ=1(sups rτ (s))2,
where the supremum is taken over all acceptable sequences.

From the Azuma-Hoeffding inequality (see, for example, [Alon and Spencer 00])
we know that, for all λ > 0,

Pr [|Dt(u) −E [Dt(u)] | ≥ λ] < 2e−λ2/2r̂2
. (4.10)

Fix τ , with 1 ≤ τ ≤ t. Our goal now is to bound rτ (s) for any acceptable
sequence s. Also, fix z, ẑ ∈ Aτ (s). We define Ω(Gt, Ĝt) as a coupling between
Gt = Gt(s1, . . . , sτ−1, z) and Ĝt = Gt(s1, . . . , sτ−1, ẑ).
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• Step τ . Start with the graphs Gτ (s1, . . . , sτ−1, z) and Ĝτ (s1, . . . , sτ−1, ẑ).

• Step σ (σ > τ ). Choose the same point xσ ∈ S in both processes. Let Eσ

(respectively Êσ) be the edges pointing to the vertices in Br(xσ) in Gσ−1

(respectively Ĝσ−1) plus the (αmArσ−Dσ(xσ))+ (respectively (αmArσ−
D̂σ(xσ))+) phantom edges pointing to xσ. Let Cσ = Eσ∩Êσ, Rσ = Eσ\Êσ,
and Lσ = Êσ \ Eσ.

Notice that |Eσ|, |Êσ| ≥ αmArσ. Notice also that if Dσ(xσ),D′
σ(xσ) ≤

αmArσ, then |Eσ| = |Êσ| and |Rσ| = |Lσ|. Without loss of generality,
assume that |Eσ| ≤ |Êσ|.
Now, define p = 1/|Eσ| and p̂ = 1/|Êσ|. Construct Gσ by choosing m

edges uniformly at random eσ
1 , . . . , e

σ
m in Eσ and then joining xσ to their

endpoints, yσ
1 , . . . , y

σ
m. For each of the m edges ei = eσ

i , we define êi = êσ
i

as

– if ei ∈ Cσ then, with probability p̂/p, êi = ei. With probability
1 − p̂/p, êi is chosen from Lσ uniformly at random.

– if ei ∈ Rσ, êi ∈ Lσ is chosen uniformly at random.

Notice that, for every i = 1, . . . ,m and every e ∈ Êσ, Pr [êi = e] = p̂. To
finish, in Ĝσ join xσ to the m vertices pointed to by the edges êi.

Now let

∆σ =
σ∑

ρ=τ

m∑
i=1

1yσ
i �=ŷσ

i
,

and for u ∈ S let

∆σ(u) =
σ∑

ρ=τ

m∑
i=1

1|{yσ
i ,ŷσ

i }∩Br(u)|=1.

Lemma 4.4.
|gτ (z) − gτ (ẑ)| ≤ E [∆t(u)] .

Proof.

|gτ (z) − gτ (ẑ)| = |EGt
[Dt(u)] −EĜt

[Dt(u)]|
= |EΩ(Gt,G′

t)
[Dt(u) −D′

t(u)]|
≤ EΩ(Gt,G′

t)
[∆t(u)],

since only when |{yσ
i , ŷ

σ
i } ∩Br(u)| = 1 do we add ±1 to the difference Dρ(u) −

D′
ρ(u).
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Recall that Ar = Area(Br(u)) ∼ c0n
2β−1(lnn)2 and that we have fixed τ to

be an integer with 1 ≤ τ ≤ t.

Lemma 4.5. Let t ≥ 1 and u ∈ S. Then, for some constant C > 0,

E [∆t(u)] ≤ CmAr

(
t

τ

)2/α

.

Proof. Let τ < σ ≤ t. We start with

∆σ = ∆σ−1 +
m∑

i=1

1yσ
i �=ŷσ

i
. (4.11)

Now fix Gσ−1, Ĝσ−1, xσ, and i. Then, taking expectations with respect to our
coupling,

E
[
1yσ

i �=ŷσ
i

]
= Pr(yσ

i = ŷσ
i ) = Pr(eσ

i = êσ
i )

= 1 − |Cσ|
|Eσ|

p̂

p
= 1 − |Cσ|

|Êσ|
=

|Lσ|
|Êσ|

=
max {|Lσ|, |Rσ|}
max{|Eσ|, |Êσ|}

≤ |Lσ| + |Rσ|
αmArσ

.

(4.12)
Therefore,

E
[
∆σ

∣∣∣∣ Gσ−1, Ĝσ−1, xσ

]
≤ ∆σ−1 +m

|Lσ| + |Rσ|
αmArσ

. (4.13)

For each e ∈ E(Ĝσ−1) \ E(Gσ−1), e ∈ Lσ implies that xσ is in the ball of
radius r centered at the end point e, similarly for e ∈ Rσ. Therefore,

E
[
|Lσ| + |Rσ| | Gσ−1, Ĝσ−1

]
≤ 2Ar∆σ−1. (4.14)

Then,

E [∆σ] ≤ E [∆σ−1] +m
E [|Lσ| + |Rσ|]

αmArσ
≤ E [∆σ−1] +

2E [∆σ−1]
ασ

= E [∆σ−1]
(

1 +
2
ασ

)
,

so E [∆t] ≤ e10/α2 ( t
τ

)2/α
E [∆τ ]. Now, ∆τ ≤ m, because the graphs Gτ and Ĝτ

differ at most in the last m edges. Therefore, E [∆t] ≤ me10/α2 ( t
τ

)2/α.
Finally, note that if v is a random point in S then E [∆t(v)] = ArE [∆t]. For

this, fix u and let φ denote a random rotation of S. Let v = φ(u), and then run
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the first process with φ(Gτ ), φ(Ĝτ ) and xσ, σ > τ . Then consider the second
process starting with Gτ , Ĝτ and φ−1(xσ), σ > τ . The mapping φ−1 does not
disturb the distribution of xσ, σ > τ . Therefore ∆t(u) in the second process is
equal to ∆t(v) in the first process.

By applying Lemma 4.5, we have that for any acceptable sequence

R2(s) =
t∑

τ=1

rτ (s)2 ≤ (CmAr)2t4/α
t∑

τ=1

τ−4/α = O
(
A2

rm
2(t ln t+ t4/α)

)
.

Therefore, by using Equation (4.10), we have that there is C1 such that

Pr
[
|Dt(u) −E [Dt(u)] | ≥ C1Arm(t2/α + t1/2 ln t)(lnn)1/2

]
≤ e−2 ln n = n−2.

4.4. Concentration of dk(t)

We follow the proof of Lemma 4.3, replacing Dt(u) by dk(t) and using the same
coupling. When we reach Lemma 4.4, we find that |gτ (z)−gτ (ẑ)| ≤ 2E[D̂t] (i.e.,
each edge discrepancy can affect two vertices); the rest is the same.

This proves Equation (1.1) and completes the proof of Theorem 1.1(a).

5. Connectivity

Here we are going to prove that for r ≥ n−1/2 lnn, m > K lnn, andK sufficiently
large, whp Gn is connected and has diameter O(lnn/r). Notice that Gn is a
subgraph of the graph G(n, r)—the intersection graph of the caps Br(xt), t =
1, 2, . . . , n—and therefore it is disconnected for r = o((n−1 lnn)1/2) [Penrose 03].
We denote the diameter of G by diam(G) and follow the convention of defining
diam(G) = ∞ when G is disconnected. In particular, when we say that a graph
has finite diameter, this implies it is connected.

Let
T =

K1 lnn
Ar

= O(n/ lnn),

where K1 is sufficiently large and K1 � K.

Lemma 5.1. Let u ∈ S, and let B = Br/2(u). Then,

Pr [diam(Gn(B)) ≥ 2(K1 + 1) lnn] = O(n−3),

where Gn(B) is the induced subgraph of Gn in B.
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Proof. Given τ0 and N , we consider the following process, which generates a
sequence of graphs Hs = (Ws, Fs), s = 1, 2, . . . , N . (The meanings of N and τ0
will become apparent soon).

• Time step 1. To initialize the process, we start with H1 consisting of τ0
isolated vertices y1, . . . , yτ0 .

• Time step s ≥ 1. We add vertex ys+τ0 . We then add m
8000(α+1)2 random edges

incident with ys+τ0 of the form (ys+τ0 , wi) for i = 1, 2, . . . , m
8000(α+1)2 . Here

each wi is chosen uniformly from Ws.

The idea is to couple the construction of Gn with the construction of HN for
N ∼ Bi(n− T,Ar/4) and τ0 = Bi(T,Ar/4) such that whp HN is a subgraph of
Gn with vertex set Vn(B). We are then going to show that whp diam(HN ) ≤
2(K1 + 1) lnn, and therefore diam(Gn(B)) ≤ 2(K1 + 1) lnn.

To do the coupling we use two counters: t for the steps in Gn and s for the
steps in HN .

• Given Gτ0 , set s = 0. Let W0 = VT (B). Notice that τ0 = |W0| ∼
Bi(T,Ar/4) and that τ0 ≤ K1 lnn whp.

• For every t > T ,

– if xt ∈ B, do nothing in Hs.

– if xt ∈ B, set s := s + 1. Set ys+τ0 = xt. Since we want HN to be
a subgraph of Gn, we must choose the neighbors of ys+τ0 among the
neighbors of xt in Gn. Let A be the set of vertices chosen by xt in
Vt(B). Notice that |A| stochastically dominates

at ∼ Bi
(
m,

Dt(B)
max{αmArt,Dt(xt)}

)
.

If
Dt(B)

max{αmArt,Dt(xt)} ≥ 1
50(α+ 1)

,

then at stochastically dominates bt ∼ Bi(m, 1
50α ) and so whp is at

least m
100(α+1) . If

Dt(B)
max{αmArt,Dt(xt)} <

1
50(α+ 1)

we declare failure (but as we see below this is unlikely to happen).
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For any R > 0,

m|Vt(BR(w))| ≤ Dt(BR(w)) = m|Vt(BR(w))| +D−
t (BR(w))

≤ 2m|Vt(BR+r(w))|, (5.1)

where D−
t (BR(w)) is the sum over vertices x ∈ BR(w) of the in-degree

degt(x) −m of x.
Now |Vt(BR(w)| ∼ Bi(t, (R/r)2Ar), and so

Pr(Dt(xt) ≥ 8mArt OR Dt(B) /∈ [mArt/5, 3mArt]

OR |Vt(B)| < Art/5) ≤ n−K1/100. (5.2)

So, we assume that Gt is such that the event described in Equa-
tion (5.2) does not happen. Thus, each vertex of B has probability
at least

m

8(α+ 1)mArt
≥ 1

40(α+ 1)|Vt(B)|
of being chosen under preferential attachment. Thus, as insightfully
observed by Bollobás and Riordan [Bollobás and Riordan 04b], we
can legitimately start the addition of xt in Gt by choosing m

8000(α+1)2

random neighbours uniformly in B.

Notice that N , the number of times s is increased, is the number of steps for
which xt ∈ B, and so N ∼ Bi(n− T,Ar/4). Now we are ready to show that HN

is connected whp.
By Chernoff’s bound we have that

Pr
[∣∣∣∣τ0 − K1

4
lnn

∣∣∣∣ ≥ K1

8
lnn

]
≤ 2n−K1/48

and

Pr
[
N ≤ 1

3
(lnn)2

]
≤ e−c(ln n)2

for some c > 0. Therefore, we can assume that lnn ≤ τ0 ≤ K1 lnn and N ≥
1
3 (lnn)2.

Let Xs be the number of connected components of Hs. Then,

Xs+1 = Xs − Ys and X0 = τ0,

where Ys ≥ 0 is the number of components (minus one) collapsed into one by
ys+τ0 . So,

Pr [Ys = 0 | Hs] ≤
Xs∑
i=1

(
ci

s+ τ0

)m/8000(α+1)2

,
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where the ci are the component sizes of Hs. If s < 2K1 lnn then, because
m ≥ K lnn, we have

Pr [Ys = 0 | Xs ≥ 2] ≤ 2
(

1 − 1
s+ τ0

)m/8000(α+1)2

≤ 2e−m/(8000(α+1)2(s+τ0))

≤ 1
10
.

Thus, Xs is stochastically dominated by the random variable max{1, τ0 − Zs}
where Zs ∼ Bi(s, 9/10). We then have

Pr [X2K1 ln n > 1] ≤ Pr [Z2K1 ln n < τ0] ≤ Pr [Z2K1 ln n < K1 lnn] ≤ n−3.

Therefore,
Pr [H2K1 ln n is not connected] ≤ n−3.

Now, to obtain an upper bound on the diameter, we run the process of con-
struction of HN by rounds. The first round consists of 2K1 lnn steps, and in
each new round we double the size of the graph: i.e., it consists of as many steps
as the total number of steps of all the previous rounds. Notice that we have less
than lnn rounds in total. Let A be the event “for all i > 0 every vertex created
in the (i + 1)th round is adjacent to a vertex in H2i−1K1 ln n, the graph at the
end of the ith round.”

On the event A, every vertex in HN is at distance at most lnn of H2K1 ln n,
whose diameter is not greater than 2K1 lnn. Thus, the diameter of HN is smaller
than 2(K1 + 1) lnn.

Now, we have that if v is created in the (i+ 1)th round,

Pr [v is not adjacent to H2i−1K1 ln n] ≤
(

1
2

)m

.

Therefore,

Pr [¬A] ≤
(

1
2

)m

n(lnn) ≤ lnn
nK ln 2−1

. �

To finish the proof of connectivity and the diameter, let u and v be two
vertices of Gn. Let C1, C2, . . . , CM , M = O(1/r), be a sequence of spherical
caps of radius r/4 such that u is the center of C1, v is the center of CM , and the
centers of Ci and Ci+1 are distance ≤ r/2 apart. The intersections of Ci and
Ci+1 have area at least Ar/40, and so whp each intersection contains a vertex.
Using Lemma 5.1 we deduce that whp there is a path from u to v in Gn of size
at most O(lnn/r).
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gree Sequence of a Scale-Free Random Graph Process.” Random Structures and
Algorithms 18 (2001), 279–290.



�

�

“imvol3” — 2007/2/7 — 18:03 — page 204 — #18
�

�

�

�

�

�

204 Internet Mathematics

[Broder et al. 00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins, and J. Wiener. “Graph Structure in the Web.” In “Proceedings
of the 9th International World Wide Web Conference,” special issue, Computer
Networks 33:1–6 (2000), 309–320.

[Buckley and Osthus 04] G. Buckley and D. Osthus. “Popularity Based Random
Graph Models Leading to a Scale-Free Degree Distribution.” Discrete Mathematics
282 (2004), 53–68.

[Chung et al. 03a] F. R. K. Chung, L. Lu, and V. Vu. “Eigenvalues of Random Power
Law Graphs.” Annals of Combinatorics 7 (2003), 21–33.

[Chung et al. 03b] F. R. K. Chung, L. Lu, and V. Vu. “The Spectra of Random Graphs
with Expected Degrees.” Proceedings of National Academy of Sciences 100 (2003),
6313–6318.

[Cooper and Frieze 03] C. Cooper and A. M. Frieze. “A General Model of Undirected
Web Graphs.” Random Structures and Algorithms 22 (2003), 311–335.

[Drinea et al. 01] E. Drinea, M. Enachescu, and M. Mitzenmacher. “Variations on Ran-
dom Graph Models for the Web.” Harvard Technical Report TR-06-01, 2001.
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