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Random Walks with Lookahead
on Power Law Random Graphs
Milena Mihail, Amin Saberi, and Prasad Tetali

Abstract. We show that in power law random graphs, almost surely, the expected rate
at which a random walk with lookahead discovers the nodes of the graph is sublinear.

Searching a graph by simulating a random walk is a natural way to abstract web
crawling [Cooper and Frieze 02, Cooper and Frieze 03a]. Recently, the random
walk simulation method has also been proposed to search P2P networks [Lv et
al. 02, Chawathe et al. 03, Gkantsidis et al. 04]. Therefore, it is important to
characterize the rate at which a random walk discovers the vertices of large,
sparse graphs. Strong bounds indicating behavior similar to coupon collection
have been obtained by Cooper and Frieze who show that, almost surely, the
expected cover time of a random d-regular graph is d−1

d−2n log n [Cooper and Frieze
03b, Cooper and Frieze 05], and that, almost surely, the expected cover time of
a random scale free graph, in the model of growth with preferential attachment,
is 2d

d−1n log n, where d is the average degree [Cooper and Frieze 04]. Since the
degrees of the World Wide Web are known to follow heavy-tailed statistics, it
is important to study random graph models resulting in heavy-tailed degree
distributions.

In this paper we formalize a common practice of crawling, namely lookahead.
In a lookahead-1 scenario, when a crawler visits a node v, he is assumed to
also discover all the neighbors of v. This is particularly efficient to implement
in a sparse network by having each node keep a copy of the indices of all his
neighbors. The resulting replication overhead is proportional to the number of
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edges in the network, which for sparse networks is linear. A further practice is
lookahead 2, where, for every visited node v, the random walk is assumed to also
discover all the neighbors of v and all the neighbors’ neighbors, N2(v) (see also
[Manku et al. 04] for an application of lookahead 2 in routing).

We show that, in the power law random graph model [Aiello et al. 00], a.s. (for
all but a vanishingly small fraction of the graphs), the expected time at which
a random walk with lookahead discovers the graph is sublinear, in particular,
much faster than even coupon collection. Intuitively, the reason for these sav-
ings is that the stationary distribution of the random walk biases the search
towards high-degree nodes that yield a large amount of information about their
neighbors. Therefore, in some sense, our results suggest that the practice of
lookahead explores the heavy-tailed statistics of the network to sharply improve
the performance of the search algorithm.

The power law random graph model is as follows. Given n and ε, 0<ε< 1, we
first generate degrees di, 1≤ i≤n, independently, according to the distribution
Pr[di = x] � c

x2+ε , dmin ≤ x≤√
n, where c is a normalizing constant. We then

consider D=
∑n

i=1 di minivertices that correspond to vertices in the natural way.
Finally, we consider a random perfect matching over D and, for every edge in
the matching between a minivertex corresponding to vertex i and a minivertex
corresponding to vertex j, we add a distinct edge connecting vertex i with vertex
j. This is a multigraph with self loops; we maintain multiple edges and self loops
for analytic convenience. Gkantsidis et al. [Gkantsidis et al. 03] show that, for
a large enough constant dmin, this random graph has conductance Ω(1), almost
surely. Following the standard theory of mixing times, this implies that, after
O(log n) steps, the distribution of the random walk is within variation distance
O(poly−1(n)) from its stationary distribution. Now, standard coupon collection
arguments suggest an expected cover time of O(n log2 n). For a description of
the coupon collector’s problem and Chernoff bounds, see [Alon and Spencer
00, Motwani and Raghavan 95]. Our results are Theorems 1.1 and 1.2 below.

Theorem 1.1. For any δ, 0<δ< 1
2 , the expected number of simulation steps for a ran-

dom walk (starting from an arbitrary distribution) with lookahead 1 to discover
Ω(n1−ε( 1

2−δ)) vertices is O(n
1
2+δ log n), a.s.

Theorem 1.2. For any δ, 0<δ< 1
2 , the expected number of simulation steps for a ran-

dom walk (starting from an arbitrary distribution) with lookahead 2 to discover
Ω(n1−2ε( 1

2−δ)−δ) vertices is O(nε( 1
2−δ) log n), a.s.

The proofs of Theorems 1.1 and 1.2 follow from the rapid mixing of the random
walk and the structural Lemmas 1.6, 1.7, and 1.8, given below. We also need
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Facts 1.3, 1.4, and 1.5. The form of the Chernoff bounds quoted below is from
page 29 of [Spencer 93].

Fact 1.3. D=
∑n

i=1 di =O(n), a.s.

Proof. The mean of D is dn, for some constant d, and the variance of D can be
computed to be σ=Θ(n

3
4− ε

4 ). Now, using the tail inequality in Theorem A.1.19
of [Alon and Spencer 00], we get that, for every α ≤ O(σ/

√
n), Pr[D − dn >

ασ] < e−
α2
4 . If we pick α=n

1
4− ε

4 , we get the desired bound.

Fact 1.4. There are Ω(n
1
2−ε( 1

2−δ)+δ) vertices of degree n
1
2−δ, a.s.

Proof. We first compute that

Pr[di ≥ n
1
2−δ]=

√
n∑

x=n
1
2−δ

c

x2+ε
=Ω(n−( 1

2−δ)(1+ε)).

Hence, the expected number of large vertices is Ω(n
1
2−ε( 1

2−δ)+δ), and, by the
Chernoff bounds, there are Ω(n

1
2−ε( 1

2−δ)+δ) large vertices, a.s.

Henceforth we will call the vertices guaranteed by Fact 1.4 large vertices.

Fact 1.5. There are Ω(n) vertices of degree dmin, a.s.

Proof. The probability that a vertex has degree dmin is a constant, therefore the
expected number of vertices of degree dmin is Ω(n), and by the Chernoff bounds,
there are Ω(n) vertices of degree dmin, a.s.

Lemma 1.6. Each large vertex has Ω(n
1
2−2ε( 1

2−δ)) edges incident to distinct large
vertices, a.s.

Proof. First, for k=Θ(n
1
2−ε( 1

2−δ)), we bound the probability that a large vertex
has at least k+1 edges incident to other distinct large vertices, conditioned on the
fact that it has at least k edges incident to distinct large vertices. This can be

bounded by Ω(n
1
2−ε( 1

2−δ)+δ)Ω(n
1
2−δ)−kn

1
2

Θ(n) = Ω(n−ε( 1
2−δ)). Now, we can see that,

over k edges incident to the large vertex, the expected number of edges incident
to distinct large vertices is Ω(kn−ε( 1

2−δ))=Ω(n
1
2−2ε( 1

2−δ)), and, by the Chernoff
bounds, there are Ω(n

1
2−2ε( 1

2−δ)) edges incident to distinct large vertices, a.s.
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Lemma 1.7. Each large vertex has Ω(n
1
2−δ) edges incident to vertices of degree dmin,

a.s.

Proof. Let d be the degree of a large vertex. First notice that, if we condition on
the fact that the first d−1 edges incident to the large vertex have their other
endpoint incident to vertices of degree dmin, the probability that the dth edge
has its other endpoint incident to a vertex of degree dmin is Ω(1). Now, it can
be seen that the expected number of edges incident to the large vertex that have
their other endpoint incident to a vertex of degree dmin is Ω(n

1
2−δ), and, by the

Chernoff bounds, there are Ω(n
1
2−δ) such edges, a.s.

Lemma 1.8. For every large vertex v, |N2(v)|=Ω(n1−2ε( 1
2−δ)−δ)), a.s.

Proof. By Lemma 1.6, v has Ω(n
1
2−2ε( 1

2−δ)) distinct large neighbors. By Lemma 1.7,
each large neighbor has Ω(n

1
2−δ) edges incident to vertices of degree dmin, for a

total of Ω(n1−2ε( 1
2−δ)−δ) edges incident to vertices of degree dmin. But, each ver-

tex of degree dmin can take at most dmin edges, hence there are Ω(n1−2ε( 1
2−δ)−δ)

distinct vertices of degree dmin in N2(v).

Proof of Theorem 1.1. By the rapid mixing shown in [Gkantsidis et al. 03], O(log n)
simulation steps get a sample from a distribution arbitrarily close to the station-
ary. By Facts 1.3 and 1.4, we can compute the stationary probability of the set
of large vertices as Ω(n−ε( 1

2−δ)), and hence, in expected time O(nε( 1
2−δ)), we get

a large vertex. Now, by coupon collection we will get Ω(n
1
2+δ−ε( 1

2−δ)) distinct
large vertices in expected time O(n

1
2+δ log n). Let L be the set of sampled large

vertices. By Lemma 1.7, L has Ω(n1−ε( 1
2−δ)) edges incident to vertices with de-

gree dmin, and since each vertex with degree dmin can be incident to at most dmin

distinct large vertices, we get Ω(n1−ε( 1
2−δ)) distinct vertices of degree dmin.

Proof of Theorem 1.2. The expected time to see one large vertex is O(nε( 1
2−δ)). Now,

Theorem 1.2 follows from the size of the 2-neighborhood of this large vertex
established in Lemma 1.8.

Finally, we should mention that the first reference to the potential power of
lookahead in searching power law graphs is due to [Adamic et al. 01]. However,
their analytic results refer to a graph with all its crucial random variables be-
having as their expected values. In particular, the theorem in [Adamic et al. 01],
namely cover time O(log2 n) for a random walk with lookahead 2, does not seem
to hold here. This is because, a.s., the graph will have Ω(n) small degree vertices
with their entire 2-neighborhoods also consisting of small degree vertices; hence,
we need Ω(n) sample points to discover this set.
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