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Estimating Entropy and Entropy
Norm on Data Streams
Amit Chakrabarti, Khanh Do Ba, and S. Muthukrishnan

Abstract. We consider the problem of computing information-theoretic functions, such
as entropy, on a data stream, using sublinear space.

Our first result deals with a measure we call the entropy norm of an input stream: it
is closely related to entropy but is structurally similar to the well-studied notion of fre-
quency moments. We give a polylogarithmic-space, one-pass algorithm for estimating
this norm under certain conditions on the input stream. We also prove a lower bound
that rules out such an algorithm if these conditions do not hold.

Our second group of results is for estimating the empirical entropy of an input stream.
We first present a sublinear-space, one-pass algorithm for this problem. For a stream of
m items and a given real parameter α, our algorithm uses space �O(m2α) and provides
an approximation of 1/α in the worst case and (1+ε) in “most” cases. We then present
a two-pass, polylogarithmic-space, (1+ε)-approximation algorithm. All our algorithms
are quite simple.

1. Introduction

Algorithms for computational problems on data streams have been the focus of
plenty of recent research in several communities, such as theory, databases, and
networks [Alon et al. 96, Estan and Varghese 03, Babcock et al. 06, Muthukr-
ishnan 06]. In this model of computation, the input is a stream of “items” that
is too long to be stored completely in memory, and a typical problem involves
computing some statistics on this stream. The main challenge is to design algo-
rithms that are efficient not only in terms of running time, but also in terms of
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space (i.e., memory usage): sublinear space is a must and polylogarithmic space
is often the goal.

The seminal paper of Alon, Matias, and Szegedy [Alon et al. 96] considered the
problem of estimating the frequency moments of the input stream: if a stream
contains mi occurrences of item i (for 1 ≤ i ≤ n), its kth frequency moment is
denoted Fk and is defined by Fk :=

∑n
i=1 mk

i . Alon et al. showed that Fk could
be estimated arbitrarily well in sublinear space for all nonnegative integers k

and in polylogarithmic (in m and n) space for k ∈ {0, 1, 2}. Their algorithmic
results were subsequently improved by Coppersmith and Kumar [Coppersmith
and Kumar 04] and Indyk and Woodruff [Indyk and Woodruff 05].

In this work, we first consider a somewhat related statistic of the input stream,
inspired by the classic information-theoretic notion of entropy. We consider
the entropy norm of the input stream, denoted FH and defined by FH :=∑n

i=1 mi lg mi. 1 We prove (see Theorem 2.2) that FH can be estimated ar-
bitrarily well in polylogarithmic space provided that its value is not “too small,”
a condition that is satisfied if, e.g., the input stream is at least twice as long as
the number of distinct items in it. We also prove (see Theorem 2.5) that FH

cannot be estimated well in polylogarithmic space if its value is “too small.”
Second, we consider the estimation of entropy itself, as opposed to the entropy

norm. Any input stream implicitly defines an empirical probability distribution
on the set of items it contains; the probability of item i being mi/m, where m

is the length of the stream. The empirical entropy of the stream, denoted H, is
defined to be the entropy of this probability distribution:

H :=
n∑

i=1

(mi/m) lg(m/mi) = lg m − FH/m . (1.1)

An algorithm that computes FH exactly clearly suffices to compute H as well.
However, since we are only able to approximate FH in the data stream model,
we need new techniques to estimate H. We prove (see Theorem 3.1) that H

can be approximated using sublinear space. Although the space usage is not
polylogarithmic in general, our algorithm provides a tradeoff between space and
approximation factor and can be tuned to use space arbitrarily close to polylog-
arithmic space.

The standard data stream model allows us only one pass over the input. If,
however, we are allowed two passes over the input but still restricted to small
space, we have an algorithm that approximates H to within a factor of 1+ε and
uses polylogarithmic space (see Theorem 3.5).

1Throughout this paper “lg” denotes logarithm to the base 2.
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1.1. Background and Motivation

Both entropy and entropy norm are natural statistics to approximate on data
streams. Arguably, entropy-related measures are even more natural than Lp

norms or frequency moments Fk. In addition, they have direct applications.
The quintessential need arises in analyzing IP network traffic at the packet level
on high-speed routers. In monitoring IP traffic, one cares about anomalies. In
general, anomalies are hard to define and detect since there are subtle intru-
sions, sophisticated dependence amongst network events, and agents gaming the
attacks. A number of recent results in the networking community have, however,
converged on monitoring entropy as a reasonable approach [Gu et al. 05, Wagner
and Plattner 05, Xu et al. 05] to detect sudden changes in the network behav-
ior and as an indicator of anomalous events. The rationale is well explained
elsewhere, chiefly in Section 2 of [Wagner and Plattner 05], but the summary
is that there are intimate connections between the “randomness” of traffic se-
quences (formalized as the entropy) and the propagation of malicious events
such as worms and various attacks. The current research in this area [Wagner
and Plattner 05, Gu et al. 05, Xu et al. 05] relies on full-space algorithms for
entropy calculation; this is a serious bottleneck in high-speed routers where high-
speed memory is at a premium. Indeed, this is the bottleneck that motivated
data-stream algorithms and their applications to IP network analysis [Estan and
Varghese 03, Muthukrishnan 06]. Our small-space algorithms can immediately
make entropy estimation at line speed practical on high-speed routers. Our al-
gorithms are quite simple and rely on sampling and sketching that are already
part of operational traffic analysis systems such as Gigascope at AT&T [Cranor
et al. 03, Cormode et al. 04, Johnson et al. 05]. Thus, we expect our algorithms
to prove useful in real IP network traffic analysis systems.

1.2. Related Work and Comparison to Our Work

To the best of our knowledge, our upper and lower bound results for the en-
tropy norm are the first of their kind. Recently, and independently of our work,
Guha, McGregor, and Venkatasubramanian [Guha et al. 06] considered approx-
imation algorithms for the entropy of a given distribution under various models,
including the data stream model in which we work. They obtain a

(
e

e−1 + ε
)
-

approximation for the entropy H of an input stream provided that H is at least a
sufficiently large constant, using space Õ(1/(ε2H)), where the Õ-notation hides
factors polylogarithmic in m and n. They observe that a limitation of their tech-
nique is that “there will always be a constant bias between the entropy and [their]
estimate” and that “[their] particular method alone is unlikely to yield better
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results.” Our work, in particular, shows that H can be (1 + ε)-approximated
in Õ(1/ε2) space for H ≥ 1 (see Remark 3.2). More importantly, our work
shows that the most challenging inputs for the entropy estimation problem are
those that lead to H < 1, and we obtain efficient sublinear-space approximation
algorithms that handle these cases as well. Our space bounds are independent
of H.

Guha et al. [Guha et al. 06] also give a two-pass, (1 + ε)-approximation algo-
rithm for entropy, using Õ(1/(ε2H)) space. In our work, we do the same using
only Õ(1/ε2) space (see Theorem 3.5). Finally, Guha et al. consider the entropy
estimation problem in the random streams model, where it is assumed that the
items in the input stream are presented in a uniform random order. Under this
assumption, they obtain a (1+ε)-approximation using Õ(1/ε2) space. We study
adversarial data stream inputs only.

The algorithms behind our Theorems 3.1 and 3.5 are simpler and easier to
analyze than earlier work.

2. Estimating the Entropy Norm

In this section we present a polylogarithmic-space, (1 + ε)-approximation algo-
rithm for entropy norm that assumes that the norm is sufficiently large, and we
prove a matching lower bound if the norm is in fact not as large.

2.1. Upper Bound

Our algorithm is inspired by the work of Alon et al. [Alon et al. 96]. Their first
algorithm, for the frequency moments Fk, has the following nice structure to
it (some of the terminology is ours). A subroutine computes a basic estimator,
which is a random variable X whose mean is exactly the quantity we seek and
whose variance is small. The algorithm itself uses this subroutine to maintain
s1s2 independent basic estimators {Xij : 1 ≤ i ≤ s1, 1 ≤ j ≤ s2}, where each
Xij is distributed identically to X. It then outputs a final estimator Y defined by

Y := median
1≤j≤s2

(
1
s1

s1∑
i=1

Xij

)
.

The following lemma, implicit in [Alon et al. 96], gives a guarantee on the quality
of this final estimator.

Lemma 2.1. Let µ := E[X]. For any ε, δ ∈ (0, 1), if s1 ≥ 8Var[X]/(ε2µ2) and
s2 = 4 lg(1/δ), then the above final estimator deviates from µ by no more than
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εµ with probability at least 1 − δ. The above algorithm can be implemented to
use space O(S log(1/δ)Var[X]/(ε2µ2)), provided that the basic estimator can be
computed using space at most S.

Proof. The claim about the space usage is immediate from the structure of the
algorithm. Let Yj = 1

s1

∑s1
i=1 Xij . Then, E[Yj ] = µ and Var[Yj ] = Var[X]/s1 ≤

ε2µ2/8. Applying Chebyshev’s Inequality gives us

Pr[|Yj − µ| ≥ εµ] ≤ 1/8 .

Now, if fewer than s2/2 of the Yj deviate by as much as εµ from µ, then Y

must be within εµ of µ. So we upper bound the probability that this does not
happen. Define s2 indicator random variables Ij , where Ij = 1 iff |Yj − µ| ≥ εµ,
and let W =

∑s2
j=1 Ij . Then, E[W ] ≤ s2/8. Applying a standard Chernoff

bound [Motwani and Raghavan 95, Theorem 4.1] gives

Pr
[|Y − µ| ≥ εµ

] ≤ Pr
[
W ≥ s2

2

]
≤
(

e3

44

)s2/8

=
(

e3

44

) 1
2 lg(1/δ)

≤ δ ,

which completes the proof.

We use the following subroutine to compute a basic estimator X for the entropy
norm FH .

Algorithm 1. (Basic Estimator for the Entropy Norm.)
Input stream : A = 〈a1, a2, . . . , am〉, where each aj ∈ {1, . . . , n}.
Choose p uniformly at random from {1, . . . , m}.1

Compute r = |{q : aq = ap, p ≤ q ≤ m}|. Note that r ≥ 1.2

Output X = m
(
r lg r− (r− 1) lg(r− 1)

)
, with the convention that 0 lg 0 = 0.3

Our algorithm for estimating the entropy norm outputs a final estimator based
on the basic estimator described in Algorithm 1. This gives us the following
theorem.

Theorem 2.2. For any ∆ > 0, if FH ≥ m/∆, the above one-pass algorithm can
be implemented so that its output deviates from FH by no more than εFH with
probability at least 1 − δ, and so that it uses space

O

(
log(1/δ)

ε2
log m(log m + log n)∆

)
.

In particular, taking ∆ to be a constant, we have a polylogarithmic-space algo-
rithm that works on streams whose FH is not “too small.”
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Proof. We first check that the expected value of X is indeed the desired quantity:

E[X] =
m

m

n∑
i=1

mi∑
r=1

(
r lg r − (r − 1) lg(r − 1)

)
=

n∑
i=1

(mi lg mi − 0 lg 0) = FH .

The approximation guarantee of the algorithm now follows from Lemma 2.1.
To bound the space usage, we must bound the variance Var[X] and for this we
bound E[X2]. Let f(r) := r lg r, with f(0) := 0, so that X can be expressed as
X = m(f(r) − f(r − 1)). Then,

E[X2] = m

n∑
i=1

mi∑
r=1

(
f(r) − f(r − 1)

)2
≤ m · max

1≤r≤m

(
f(r) − f(r − 1)

) · n∑
i=1

mi∑
r=1

(
f(r) − f(r − 1)

)
≤ m · sup {f ′(x) : x ∈ (0,m]} · FH (2.1)

= (lg e + lg m)mFH (2.2)

≤ (lg e + lg m)∆F 2
H ,

where (2.1) follows from the Mean Value Theorem.
Thus, Var[X]/E[X]2 = O(∆ lg m). Moreover, the basic estimator can be

implemented using space O(log m + log n): O(log m) to count m and r, and
O(log n) to store the value of ap. Plugging these bounds into Lemma 2.1 yields
the claimed upper bound on the space of our algorithm.

Let F0 denote the number of distinct items in the input stream (this notation
deliberately coincides with that for frequency moments). Let f(x) := x lg x as
used in the proof of Theorem 2.2. Observe that f is convex on (0,∞), whence,
via Jensen’s inequality, we obtain

FH =
F0

F0

n∑
i=1

f(mi) ≥ F0f

(
1
F0

n∑
i=1

mi

)
= m lg

m

F0
. (2.3)

Thus, if the input stream satisfies m ≥ 2F0 (or the simpler, but stronger, condi-
tion m ≥ 2n), then we have FH ≥ m. As a direct corollary of Theorem 2.2 (for
∆ = 1), we obtain a (1 + ε)-approximation algorithm for the entropy norm in
space O((log(1/δ)/ε2) log m(log m + log n)). However, we can do slightly better.
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Theorem 2.3. If m ≥ 2F0, then the above one-pass, (1+ ε)-approximation algorithm
can be implemented in space

O

(
log(1/δ)

ε2
log m log n

)
without a priori knowledge of the stream length m.

Proof. We follow the proof of Theorem 2.2 up to the bound (2.2) to obtain
Var[X] ≤ (2 lg m)mFH , for m large enough. We now make the following claim:

lg m

lg(m/F0)
≤ 2max{lg F0, 1} . (2.4)

Assuming the truth of this claim and using (2.3), we obtain

Var[X] ≤ (2 lg m)mFH ≤ 2 lg m

lg(m/F0)
F 2

H ≤ 4max{lg F0, 1}F 2
H ≤ (4 lg n)F 2

H .

Plugging this into Lemma 2.1 and proceeding as before, we obtain the desired
space upper bound. Note that we no longer need to know m before starting
the algorithm, because the number of basic estimators used by the algorithm is
now independent of m. Although maintaining each basic estimator seems, at
first, to require prior knowledge of m because ap needs to be chosen uniformly
at random from the input stream, a careful implementation can avoid this, as
shown by Alon et al. [Alon et al. 96]. Specifically, as we read the stream, we
maintain a “current” choice for ap from the items already seen and, upon the
arrival of the jth item aj , replace our choice by aj with probability 1/j. It follows
easily by induction that after m items have been seen, our choice is uniformly
distributed over the m items.

We turn to proving our claim (2.4). We will need the assumption m ≥ 2F0. If
m ≤ F 2

0 , then

lg m ≤ 2 lg F0 = 2 lg F0 lg(2F0/F0) ≤ 2 lg F0 lg(m/F0)

and we are done. On the other hand, if m ≥ F 2
0 , then F0 ≤ m1/2 so that

lg(m/F0) ≥ lg m − (1/2) lg m = (1/2) lg m

and we are done as well.

Remark 2.4. Theorem 2.2 generalizes to estimating quantities of the form µ̂ =∑n
i=1 f̂(mi), for any monotone increasing (on integer values), differentiable func-

tion f̂ that satisfies f̂(0) = 0. Assuming µ̂ ≥ m/∆, it gives us a one-pass, (1+ε)-
approximation algorithm that uses Õ(f̂ ′(m)∆) space. For instance, this space
usage is polylogarithmic in m if f̂(x) = xpolylog(x).



70 Internet Mathematics

2.2. Lower Bound

The following lower bound shows that the algorithm of Theorem 2.2 is optimal,
up to factors polylogarithmic in m and n.

Theorem 2.5. Suppose that ∆ and c are integers with 4 ≤ ∆ ≤ o(m) and 0 ≤
c ≤ m/∆. On input streams of size at most m, a randomized algorithm able to
distinguish between FH ≤ 2c and FH ≥ c + 2m/∆ must use space at least Ω(∆).
In particular, the upper bound in Theorem 2.2 is tight in its dependence on ∆.

Proof. We present a reduction from the classic problem of (two-party) set disjoint-
ness in communication complexity. For more on communication complexity and
the set disjointness problem, we refer the reader to the textbook by Kushilevitz
and Nisan [Kushilevitz and Nisan 97].

Suppose that Alice has a subset X and Bob a subset Y of {1, 2, . . . ,∆ − 1},
such that X and Y either are disjoint or intersect at exactly one point. Let us
define the mapping

φ : x �−→
{

(m − 2c)x
∆

+ i : i ∈ Z, 0 ≤ i <
m − 2c

∆

}
.

Alice creates a stream A by listing all elements in
⋃

x∈X φ(x) and concatenating
the c special elements ∆ + 1, . . . ,∆ + c. Similarly, Bob creates a stream B by
listing all elements in

⋃
y∈Y φ(y) and concatenating the same c special elements

∆ + 1, . . . ,∆ + c. Now, Alice can process her stream (with the hypothetical
entropy norm estimation algorithm) and send over her memory contents to Bob,
who can then finish the processing. Note that the length of the combined stream
A ◦ B is at most

2c + |X ∪ Y | · ((m − 2c)/∆) ≤ m.

We now show that, based on the output of the algorithm, Alice and Bob can
tell whether or not X and Y intersect. Since the set disjointness problem has
communication complexity Ω(∆), even when |X ∩ Y | is known to be either 0 or
1, we get the desired space lower bound.

Suppose that X and Y are disjoint. Then, the items in A ◦ B are all distinct
except for the c special elements, which appear twice each. So FH(A ◦ B) =
c ·(2 lg 2) = 2c. Now, suppose that X∩Y = {z}. Then, the items in A◦B are all
distinct except for the (m − 2c)/∆ elements in φ(z) and the c special elements,
each of which appears twice. So

FH(A ◦ B) = 2(c + (m − 2c)/∆) ≥ c + 2m/∆,

since ∆ ≥ 4.
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Remark 2.6. Notice that Theorem 2.5 rules out even a polylogarithmic-space,
constant-factor approximation to FH that can work on streams with “small”
FH . This can be seen by setting ∆ = mγ for some constant γ > 0.

3. Estimating the Empirical Entropy

We now turn to the estimation of the empirical entropy H of a data stream,
defined as in Equation (1.1): H =

∑n
i=1(mi/m) lg(m/mi). Although H can be

computed exactly from FH , as shown in (1.1), a (1+ε)-approximation of FH can
yield a poor estimate of H when H is small (sublinear in its maximum value,
lg m). We therefore present a different sublinear-space, one-pass algorithm that
directly computes entropy.

Our data structure takes a user parameter α > 0 and consists of three compo-
nents. The first (A1) is a sketch in the manner of Section 2, with basic estimator

X = m

(
r

m
lg

m

r
− r − 1

m
lg

m

r − 1

)
, (3.1)

and a final estimator derived from this basic estimator using s1 = (8/ε2)m2α lg2 m

and s2 = 4 lg(1/δ). The second component (A2) is an array of m2α counters (each
counting from 1 to m) used to keep exact counts of the first m2α distinct items
seen in the input stream. The third component (A3) is a Count-Min Sketch, as
described by Cormode and Muthukrishnan [Cormode and Muthukrishnan 05],
which we use to estimate k, defined to be the number of items in the stream that
are different from the most frequent item; i.e.,

k := m − max{mi : 1 ≤ i ≤ n} . (3.2)

The Count-Min Sketch answers point queries, which we exploit to keep track
of the most frequent item, x, as follows: upon arrival of an item, i, in the
stream, we query mi and replace x by i if m̂i > m̂x, where m̂i and m̂x are the
approximations given by the Sketch for mi and mx, respectively. Our estimate
of k is then just k̂ = m − m̂x.

The algorithm itself works as follows. Recall that F0 denotes the number of
distinct items in the stream.



72 Internet Mathematics

Algorithm 2. (Estimation of Entropy.)
Input : data stream of length m
Output : an estimate of the empirical entropy of the stream

Maintain A1, A2, and A3 as described above. When queried (or at end of1

input):
if F0 ≤ m2α then return exact H from A2.2

else3

let k̂ = estimate of k from A3.4

if k̂ ≥ (1 − ε)m1−α then return final estimator, Y , of A1.5

else return (k̂ lg m)/m.6

end7

Theorem 3.1. Algorithm 2 uses

O

(
log(1/δ)

ε2
m2α log2 m(log m + log n)

)
space and outputs a random variable Z that satisfies the following properties:

1. If k ≤ m2α − 1, then Z = H.

2. If k ≥ m1−α, then Pr
[|Z − H| ≥ εH

] ≤ 2δ.

3. Otherwise (i.e., if m2α ≤ k < m1−α), Z is a (1/α)-approximation of H.

Remark 3.2. Under the assumption H ≥ 1, an algorithm that uses only the basic
estimator in A1 and sets s1 = (8/ε2) lg2 m suffices to give a (1+ε)-approximation
in Õ(1/ε2) space.

To prove this theorem, we need the following technical lemma.

Lemma 3.3. Given that the most frequent item in the input stream A has count
m − k, the minimum entropy Hmin is achieved when all the remaining k items
are identical, and the maximum Hmax is achieved when they are all distinct.
Therefore,

Hmin =
m − k

m
lg

m

m − k
+

k

m
lg

m

k
, and

Hmax =
m − k

m
lg

m

m − k
+

k

m
lg m.
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Proof. Consider a minimum-entropy stream Amin, and suppose that, apart from its
most frequent item, it has at least two other items with positive count. Without
loss of generality, let m1 = m− k and m2,m3 ≥ 1. Modify Amin to A′ by letting
m′

2 = m2 + m3 and m′
3 = 0 and keeping all other counts the same. Then,

H(A′) − H(Amin) =
(

lg m − FH(A′)
m

)
−
(

lg m − FH(Amin)
m

)
=

FH(Amin) − FH(A′)
m

= m2 lg m2 + m3 lg m3 − (m2 + m3) lg(m2 + m3)

< 0 ,

since x lg x is convex and monotone increasing (on integer values), giving us a
contradiction. The proof for the maximum-entropy distribution is similar.

Proof of Theorem 3.1. The space bound is clear from the specifications of A1, A2, and
A3 and Lemma 2.1. Note, in particular, that a Count-Min Sketch requires only
O(ε−1 log(m/δ)) space, which is easily absorbed into the bound of the theorem.
We now prove the three claimed properties of the output, Z.

Property 1. This follows directly from the fact that F0 ≤ k + 1.

Property 2. The Count-Min Sketch guarantees that k̂ ≤ k and, with probability
at least 1 − δ, k̂ ≥ (1 − ε)k. The condition in Property 2 therefore implies that
k̂ ≥ (1 − ε)m1−α, that is, Z = Y , with probability at least 1 − δ. It remains to
show that Y is a (1 + ε)-approximation of H with probability at least 1 − δ.

Consider Equation (3.1), and note that for any r, |X| ≤ lg m. Thus, if E[X] =
H ≥ 1, then Var[X]/E[X]2 ≤ E[X2] ≤ lg2 m and our choice of s1 is sufficiently
large to give us the desired (1+ε)-approximation, by Lemma 2.1.2 On the other
hand, if H < 1, then k < m/2, by a simple argument similar to the proof of
Lemma 3.3. Using the expression for Hmin from Lemma 3.3, we then have

Hmin = lg
m

m − k
+

k

m
lg

m − k

k
≥ − lg

(
1 − k

m

)
≥ k

m
≥ m−α ,

which gives us Var[X]/E[X]2 ≤ E[X2]/m−2α ≤ (lg2 m)m2α. Again, plug-
ging this and our choice of s1 into Lemma 2.1 gives us the desired (1 + ε)-
approximation.

Property 3. By assumption, m2α ≤ k < m1−α. We shall only need the upper
bound on k and not the lower bound. If k̂ ≥ (1 − ε)m1−α, then Z = Y and the

2This observation, that H ≥ 1 =⇒ Var[X] ≤ lg2 m, proves the statement in Remark 3.2.
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analysis proceeds as for Property 2. Otherwise, Z = (k̂ lg m)/m ≤ (k lg m)/m.
This time, again by Lemma 3.3, we have

Hmin ≥ k

m
lg

m

k
≥ k

m
lg (mα) =

αk

m
lg m

and

Hmax =
m − k

m
lg

m

m − k
+

k

m
lg m

= lg
m

m − k
+

k

m
lg(m − k)

≤ k

m
lg m + O

(
k

m

)
,

which, for large m, implies H − o(H) ≤ Z ≤ H/α and gives us Property 3.

Corollary 3.4. For α = 1/3, the third case (Property 3) never occurs, so we have a
Õ(m2/3)-space, (1 + ε)-approximation algorithm.

The ideas involved in the proof of Theorem 3.1 can be used to yield a very
efficient two-pass algorithm for estimating H, as follows. In the first pass, we use
an estimator as in Remark 3.2, which gives us a good estimate provided that the
stream does not have a majority item, i.e., k ≥ m/2 (whence H ≥ 1). During the
second pass we handle the case k < m/2 by maintaining a very similar estimator
but only working on the substream consisting of all items except the majority
item. To make this work, we need to dovetail our estimator computations with
a standard two-pass algorithm for finding a majority item, such as the one by
Boyer and Moore [Boyer and Moore 82].

Theorem 3.5. Algorithm 3 uses space O(ε−2 log(1/δ) log2 m), and its output differs
from H by more than εH with probability at most δ.

Proof. The space bound is immediate from Lemma 2.1. If the input stream has
no majority item, we must have H ≥ 1. The algorithm will output Z, which, as
mentioned in Remark 3.2, gives a (1 + ε)-approximation to H.
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Algorithm 3. (Estimation of Entropy Using Two Passes.)
Input : data stream A of length m, two passes allowed
Output : an estimate of the empirical entropy of the stream

Make one pass over A, computing two things:1

a majority candidate, x, for A as in Boyer and Moore [Boyer and2

Moore 82].
a final estimator Z from the basic estimator given by3

Equation (3.1), s1 = (8/ε2) lg2 m and s2 = 4 lg(1/δ).
Make a second pass over A, computing two things:4

the frequency mx of the majority candidate in A.5

a final estimator Y that is identical to Z except that it is6

produced by sampling from the substream A \ {x}.
if mx ≤ m/2 then return Z.7

else8

let k = m − mx.9

return
kY

m
+

m − k

m
lg

m

m − k
.

10

end11

We now consider the other case, i.e., k < m/2. Assume w.l.o.g. that item 1 is
the majority item in the input stream. Then,

E[Y ] =
m

k

n∑
i=2

mi

m
lg

m

mi

≥ m

k

(
k

m
lg

m

k

)
= lg(m/k)

≥ 1 ,

where the first inequality follows in a manner similar to the proof of Lemma 3.3,
using

∑n
i=2 mi = k.

Also, |Y | ≤ lg m, whence Var[Y ]/E[Y ]2 ≤ E[Y 2] ≤ lg2 m. By Lemma 2.1, Y

is ε-close to E[Y ] with probability at least 1 − δ. From the definition of H and
Y , we see that

H =
k

m
E[Y ] +

m − k

m
lg

m

m − k
,

whence H is ε-close to the output of the algorithm with probability at least
1 − δ.
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4. Conclusions

Entropy and entropy norms are natural measures with direct applications in IP
network traffic analysis for which one-pass, streaming algorithms are needed.
We have presented one-pass, sublinear-space algorithms for approximating the
entropy norms as well as the empirical entropy. We have also presented a two-
pass algorithm for empirical entropy that has a stronger approximation guarantee
and space bound. We believe that our algorithms will be of interest in the
practice of data stream systems. It will be of interest to study these problems
on streams in the presence of inserts and deletes.

Very recently, we have learned of a work in progress [Indyk 05] that may lead
to a one-pass, polylogarithmic-space algorithm for approximating H to within a
(1 + ε)-factor.
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