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ON CONNECTIVE K-THEORY OF ELEMENTARY
ABELIAN 2-GROUPS AND LOCAL DUALITY

GEOFFREY M.L. POWELL

(communicated by Nicholas J. Kuhn)

Abstract
The connective ku-(co)homology of elementary abelian 2-

groups is determined as a functor of the elementary abelian
2-group, using the action of the Milnor operations Q0, Q1 on
mod 2 group cohomology, the Atiyah–Segal theorem for KU -
cohomology, together with an analysis of the functorial struc-
ture of the integral group ring; the functorial structure then
reduces calculations to the rank 1 case.

These results are used to analyse the local cohomology spec-
tral sequence calculating ku-homology, via a functorial version
of local duality for Koszul complexes, giving a conceptual expla-
nation of results of Bruner and Greenlees.

1. Introduction

The calculation of the ku-(co)homology of finite groups is interesting and highly
non-trivial. The case of elementary abelian p-groups illustrates important features;
these groups were first calculated by Ossa [Oss89] and were studied further by Bruner
and Greenlees [BG03], exhibiting a form of duality via local cohomology.

This paper shows how studying these as functors of the elementary abelian p-
group V gives a new and conceptual approach. The methods apply to any prime; 2 is
privileged here since this requires an additional filtration argument when studying the
local cohomology and also this is the case of interest when passing to ko-(co)homology
(cf. [BG10] and [Pow12]). The first part of the paper gives complete descriptions
of the functors V 7→ ku∗(BV+) and V 7→ ku∗(BV+) (see Theorems 5.13 and 5.16) as
functors to graded Z[v]-modules.

For ku-cohomology, the calculation relies on an analysis of the action of the Milnor
operations Q0, Q1 on group cohomology HF∗2(BV+) with F2 coefficients, together
with the identification of the functor V 7→ KU0(BV+) for periodic complex K-theory,
provided by the Atiyah–Segal completion theorem. Whereas these are the ingredients
to the classical approach using the Adams spectral sequence, a key step of the proof
is simplified by using the functorial structure to reduce calculation to the rank 1 case,
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ku∗(BZ/2+). This is a leitmotif throughout: functoriality sheds considerable light on
the results.

To give a full functorial description, the integral group ring functor V 7→ Z[V ] is
analysed, extending the results of Passi and others [PV77]. Of independent inter-
est is the observation that the quotients which arise from studying the filtration of
Z[V ] by powers of the augmentation ideal are self-dual under Pontrjagin duality (see
Theorems 3.13 and 3.11).

The second part of the paper applies these results to give an analysis of the local
cohomology spectral sequence relating ku∗(BV+) to ku∗(BV+); this gives insight into
the description given by Bruner and Greenlees [BG03], notably on the origins of
the differentials in the local cohomology spectral sequence. This is summarized in
Theorem 8.23.

2. Background

2.1. Definitions and notation
Fix a prime p, and let F denote the prime field Fp, V f the full subcategory of

finite-dimensional spaces in the category V of F-vector spaces and (−)] : V op → V
vector space duality.

Notation 2.1. 1. The category of functors from V f to abelian groups is denoted
FA , with F the full subcategory of functors with values in V .

2. For F in FA , F denotes the complementary constant-free summand so that F
splits canonically as F (0)⊕ F , since V f is pointed by 0.

The categories FA ,F are tensor abelian, with structure induced from A b. (For
basic properties of F , see [Kuh94a, Kuh94b, Kuh95].) The Pontrjagin duality
functor generalizes the duality for F introduced in [Kuh94a]:

Definition 2.2. Let D : FA op → FA be the functor

DF (V ) := HomA b(F (V ]),Z/p∞).

Recall that the socle of an object is its largest semi-simple sub-object and the head
its largest semi-simple quotient.

Example 2.3. The symmetric powers, divided powers, and exterior powers are fun-
damental examples of (polynomial) functors in F . For n ∈ N, the nth symmetric
power functor Sn is defined by Sn(V ) := (V ⊗n)/Sn, the nth divided power func-
tor by Γn(V ) := (V ⊗n)Sn , and the nth exterior power functor identifies as Λn(V ) ∼=
(V ⊗n ⊗ sign)Sn . By convention, these functors are zero for negative integers n. There
is a duality relation Sn ∼= DΓn, whereas the functor Λn is self-dual; for p = 2, the
functor Λn is the head of Sn and the socle of Γn.

These functors are examples of graded exponential functors; for example, the expo-

nential structure induces natural coproducts Sn ∆→ Si ⊗ Sj and products Si ⊗ Sj µ→
Sn, for integers i+ j = n.

Example 2.4. Yoneda’s lemma provides the standard injective and projective objects
of F . The projective PF is the functor V 7→ F[V ], which corepresents evaluation at



CONNECTIVE K-THEORY 217

F; the injective IF is given by V 7→ FV ]

, representing F 7→ DF (F). Duality gives IF ∼=
DPF, which relates the canonical decompositions IF ∼= F⊕ IF and PF ∼= F⊕ P F, where
F is the constant functor and IF (respectively P F) is the complementary constant-free
summand (see Notation 2.1).

The functor IF is ungraded exponential and has associated diagonal ∆: IF → IF ⊗
IF and multiplication µ : IF ⊗ IF → IF; these are induced by applying the functor IF
to the sum V ⊕ V → V and diagonal V → V ⊕ V , respectively, by using the natural
isomorphism FU⊕W ∼= FU ⊗ FW for finite-dimensional spaces U,W .

By restriction and projection, these induce IF
∆→ IF ⊗ IF and IF ⊗ IF

µ→ IF, respec-
tively; for p = 2, these are the unique non-trivial morphisms of the given form. Dually,
there is a product µ : P F ⊗ P F → P F and coproduct ∆: P F → P F ⊗ P F.

Notation 2.5. For 0 < n ∈ Z, let Pn

F be the image of the iterated product µ(n−1) : P
⊗n
F

−→ P F, and let qn−1P F denote its cokernel, so that there is a short exact sequence

0 → P
n

F → P F → qn−1P F → 0;

dually, let pn−1IF denote the kernel of the iterated diagonal IF
∆

(n−1)

−→ I
⊗n
F .

Lemma 2.6 ([Kuh94b]). Let p = 2. For n ∈ N:
1. IF is the injective envelope of Λ1, is uniserial, IF ∼= colim→ptIF, and there are

short exact sequences 0 → pnIF → pn+1IF → Λn+1 → 0;

2. P F is the projective cover of Λ1, is uniserial, P F ∼= lim← qtP F, and there are
short exact sequences 0 → Λn+1 → qn+1P F → qnP F → 0;

3. qnP F is the dual of pnIF.

The fact that pnIF has a simple socle (for n > 0) implies that it is easy to detect
non-triviality of a sub-object by evaluating on F, since Λi(F) = F for i = 1 and is zero
for i > 1:

Lemma 2.7. Let p = 2. For 0 < n ∈ N:
1. if G ⊂ pnIF, then G = 0 if and only if G(F) = 0;

2. if H ⊂ qnP F, then H = qnP F if and only if H(F) 6= 0.

3. The integral group ring functor

Throughout this section, the prime p is taken to be 2.

3.1. The functors PZ, PZ2

Notation 3.1. 1. Let PZ denote the integral group ring functor V 7→ Z[V ], and let
PZ denote the augmentation ideal, so that there is a direct sum decomposition
PZ ∼= Z⊕ PZ in FA .

2. Let PZ2 denote the functor Z2 ⊗ PZ and PZ2 the functor Z2 ⊗ PZ, where Z2

denotes the 2-adic integers.

By Yoneda, PZ is projective in FA , corepresenting evaluation on F. The ring
structure of Z[V ] gives a morphism µ : PZ ⊗ PZ → PZ, which induces µ : PZ ⊗ PZ →
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PZ. There is a reduced diagonal ∆: PZ → PZ ⊗ PZ; by Yoneda, the composition
with the projection PZ � PZ is determined by the element ([1]− [0])⊗ ([1]− [0]) ∈
(PZ ⊗ PZ)(F).

Definition 3.2. For n ∈ N, let P
n

Z be the image of the iterated product µ(n−1) :

P
⊗n
Z → PZ (respectively P

n

Z2
⊂ PZ2).

The filtration · · · ⊂ P
n+1

Z (V ) ⊂ P
n

Z(V ) ⊂ · · · ⊂ P
1

Z(V ) = PZ(V ), for a fixed V , has
received much attention (see [PV77, BV00], for instance). However, these references
do not exploit functoriality.

Lemma 3.3.

1. Reduction modulo 2 induces (PZ2)/2
∼= P F.

2. For n ∈ N, the surjection PZ2 � P F induces a commutative diagram in FA :

P
n

Z2

� � //

����

PZ2

����
P

n

F
� � // P F.

3. The head of PZ2 is the functor Λ1.

Proof. The commutative diagram follows from the morphism of group rings Z[V ] →
F[V ]; the remaining statements are clear.

Lemma 3.4. The composite PZ
∆→ PZ ⊗ PZ

µ→ PZ is the morphism PZ
−2→ PZ. Hence,

for n ∈ N, there are inclusions of sub-objects of PZ: 2P
n

Z ⊂ P
n+1

Z and 2nPZ ⊂ P
n+1

Z .

Proof. The first statement is straightforward (cf. [BV00, Lemma 3.2]); namely, calcu-
lating on generators ∆([v]− [0]) = ([v]− [0])⊗ ([v]− [0]) and µ

(
[v]− [0])⊗ ([w]− [0])

)
= [v + w]− [v]− [w] + [0], so that µ∆([v]− [0]) = [2v]− 2[v] + [0] = −2([v]− [0]).

This gives the natural inclusion 2P
n

Z ⊂ P
n+1

Z . The final statement follows by induc-
tion.

Lemma 3.5. For n ∈ N, there is a unique non-trivial morphism P
n

Z → IF in FA , and

this induces a surjection P
n

Z/P
n+1

Z � pnIF.

Proof. A morphism P
n

Z → IF factors naturally across (P
n

Z)/2. It is straightforward
to see that

(
(P

n

Z)/2
)
(F) = F and

(
(P

n

Z)/2
)
(0) = 0; this implies that there is a unique

non-trivial morphism (P
n

Z)/2 → IF, by Yoneda.

The composite P
⊗n
Z � P

n

Z → IF factorizes across the projection P
⊗n
Z � P

⊗n
F .

Again, there is a unique non-trivial morphism from P
⊗n
F to IF; for n = 1, this is

the composite P F � Λ1 ↪→ IF, and, for n > 1, P
⊗n
F → I

⊗n
F

µ(n−1)

−→ IF, where the first
morphism is the iterated tensor product of the morphism P F → IF. An elementary
analysis shows that the composite has image pnIF. Hence the morphism P

n

Z → IF has
image pnIF, by Lemma 3.3.

Finally, the fact that P
2

F is the kernel of P F � Λ1 implies that the composite

P
n+1

Z ↪→ P
n

Z → IF is trivial, giving the stated factorization.
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A non-functorial version of the following is contained in [PV77] and [BG10, Sec-
tion 9.5]; since the functorial version is required here, a direct proof is given.

Proposition 3.6. For 0 < n ∈ Z, the following statements hold:

1. There is a short exact sequence 0 → 2P
n

Z → P
n+1

Z → P
n+1

F → 0.

2. The morphism P
n

Z/P
n+1

Z → pnIF of Lemma 3.5 is an isomorphism.

Proof. The statements are proved in parallel, by induction upon n. For n = 1, con-
sider the morphism of short exact sequences

0 // 2PZ
// P

2

Z� _

��

// P
2

Z/2PZ� _

��

// 0

0 // 2PZ
� � // PZ

// // P F
// 0.

The image of P
2

Z in P F is P
2

F, by Lemma 3.3, which proves the first statement; the
second follows by studying the cokernels of the monomorphisms.

For the inductive step, suppose the result true for n < N . Lemma 3.4 provides a

natural inclusion 2iPZ ⊂ P
i+1

Z , for all i ∈ N; for current purposes, it is sufficient to

work with the inclusion 2i+1PZ ⊂ P
i+1

Z . The proof proceeds by providing upper and

lower bounds for P
N+1

Z /2N+1PZ. It is sufficient to do this in the Grothendieck group
of FA , since the functors considered below have only finitely many composition
factors of a given isomorphism type, which allows comparison arguments. (Evaluation
on finite-dimensional vector spaces would allow reduction to finite objects.)

The element of the Grothendieck group associated to an object F is denoted [F ];
for the functors considered here, this lies in the submonoid

∏
λ N indexed by the

isomorphism classes of simple objects Sλ of FA . There is a natural partial order:
for two objects M = ΣMλ[Sλ] and N = ΣNλ[Sλ], write M 6 N if Mλ 6 Nλ ∀λ.

The inductive hypothesis implies that
[
P

N

Z /2NPZ
]
=

∑N
i=1

[
P

i

F
]
in the Grothen-

dieck group.

The inclusion 2P
N

Z ↪→ P
N+1

Z induces a monomorphism

(P
N

Z /2NPZ) ∼= 2P
N

Z /2N+1PZ ↪→ P
N+1

Z /2N+1PZ;

the composite with the projection P
N+1

Z /2N+1PZ � P
N+1

F is clearly trivial, and

hence this gives a lower bound for P
N+1

Z /2N+1PZ:

N+1∑
i=1

[
P

i

F
]
6

[
P

N+1

Z /2N+1PZ
]
,

with equality if and only if the first statement holds.

Consider the inclusion P
N+1

Z ↪→ P
N

Z , which induces the monomorphism

P
N+1

Z /2N+1PZ ↪→ P
N

Z /2N+1PZ

with cokernel that surjects to pNIF, by Lemma 3.5; this gives the inequality[
P

N

Z /2N+1PZ
]
>

[
P

N+1

Z /2N+1PZ
]
+

[
pNIF

]
, (1)
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with equality if and only if the second statement holds.
The short exact sequence

0 → P F ∼= (2NPZ/2
N+1PZ) → P

N

Z /2N+1PZ → P
N

Z /2NPZ → 0

and the inductive hypothesis give

[
P

N

Z /2N+1PZ
]
= [P F] +

N∑
i=1

[
P

i

F
]
.

Now
[
P F

]
=

[
P

N+1

F
]
+
[
pNIF

]
by definition of qNP F (since

[
pNIF

]
=

[
qNP F

]
); hence

(1) implies that
N+1∑
i=1

[
P

i

F
]
>

[
P

N+1

Z /2N+1PZ
]
,

with equality if and only if the second statement holds. Hence both inequalities are
equalities and the inductive step is established.

Corollary 3.7. For V ∈ ObV f , the topologies on the abelian group PZ(V ) induced

by the 2-adic filtration 2iPZ and by the filtration P
i

Z are equivalent.

Proof. By Lemma 3.4, 2nPZ ⊂ P
n+1

Z ; conversely, using Proposition 3.6, it is straight-

forward to show that P
n+k

Z (Fn) ⊂ 2kPZ(Fn), for k ∈ N.

3.2. The structure of the quotients PZ/P
n+1

Z
Notation 3.8. For n ∈ N, let Rn

Z denote the quotient PZ/P
n+1

Z .

Lemma 3.9. For 0 < n ∈ N:
1. 2n+1Rn

Z = 0 and Rn
Z(F) ∼= Z/2n;

2. there are short exact sequences:

0 → pnIF → Rn
Z → Rn−1

Z → 0,

0 → Rn−1
Z → Rn

Z → qnP F → 0; and

3. the largest subfunctor 2R
n
Z of Rn

Z annihilated by 2 is isomorphic to pnIF.

Proof. The first statement is clear, and the first short exact sequence is provided
by Proposition 3.6. The second short exact sequence is induced by the inclusion

2PZ ↪→ PZ, since Proposition 3.6 implies that 2PZ ∩ P
n+1

Z is isomorphic to P
n

Z under
the isomorphism PZ ∼= 2PZ.

The proof that the largest subfunctor of Rn
Z annihilated by 2 is pnIF is by induction

on n; for n = 1, R1
Z
∼= Λ1 and the result is immediate. For the inductive step, the short

exact sequence

0 → pnIF → Rn
Z → Rn−1

Z → 0

implies that there is an exact sequence 0 → pnIF → 2R
n
Z → pn−1IF, where the right-

hand term is given by the inductive hypothesis. It suffices to show that the image of

2R
n
Z in pn−1IF is trivial; hence, by Lemma 2.7, it suffices to show this after evaluation

on F. This follows from the fact that Rn
Z(F) ∼= Z/2n.
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Lemma 3.10. For 0 < n ∈ N, the functor Rn
Z has simple head Λ1 and simple socle Λ1.

Proof. The functor Rn
Z is a non-trivial quotient of PZ2 , which has simple head Λ1 by

Lemma 3.3, and hence Rn
Z has simple head Λ1.

The proof that the socle is Λ1 is by induction on n, starting from the case n =
1, which is clear, since R1

Z
∼= Λ1 is simple. The exact sequence 0 → pnIF → Rn

Z →
Rn−1

Z → 0 shows that the socle of Rn
Z is either Λ1 or Λ1 ⊕ Λ1. The latter possibility

is excluded since Rn
Z(F) = Z/2n, by Lemma 3.9.

Theorem 3.11. For 0 < n ∈ N, the functor Rn
Z is self-dual. More precisely, any surjec-

tion PZ2 � DRn
Z factors canonically across an isomorphism Rn

Z
∼=→ DRn

Z .

Proof. The proof is by induction upon n, starting from the case n = 1, when Rn
Z is

the simple functor Λ1, which is self-dual. The factorization statement follows from
the fact that PZ2 has simple head.

For the inductive step, Rn
Z has simple socle Λ1, hence DRn

Z has simple head Λ1

and there exists a surjection PZ2 � DRn
Z (by projectivity of PZ). This gives rise to

a morphism of short exact sequences

0 // PZ2

2 //

����

PZ2

����

// P F

����

// 0

0 // DRn−1
Z

// DRn
Z

// qnP F
// 0,

where the lower exact sequence is the dual of the first exact sequence of Lemma 3.9,
the commutativity of the right-hand square follows from the fact that there is a unique
non-trivial morphism PZ2 → qnP F, and the surjectivity of the left-hand vertical mor-
phism is seen by evaluating on F, since DRn−1

Z has simple head.
By the inductive hypothesis, the left-hand vertical morphism factorizes across an

isomorphism Rn−1
Z

∼=→ DRn−1
Z . In particular, this implies that P

n+1

Z2
lies in the kernel

of PZ2 � DRn
Z ; hence this induces a surjection Rn

Z � DRn
Z , which is an isomorphism,

since the objects have finite composition series with isomorphic associated graded
functors.

Definition 3.12. Let R∞Z be the direct limit lim→Rn
Z of the diagram of monomor-

phisms provided by Lemma 3.9.

Theorem 3.13. There are Pontrjagin duality isomorphisms: R∞Z
∼= DPZ2 and PZ2

∼=
DR∞Z .

Proof. The functor R∞Z takes values in torsion 2-groups. By construction and Corol-

lary 3.7, the functor PZ2 is isomorphic to lim←Rn
Z . Applying the Pontrjagin duality

functor and using the fact that each Rn
Z is self dual gives a direct system that is

isomorphic to that defining R∞Z (cf. proof of Theorem 3.11). The result follows from
Pontrjagin duality for abelian groups.

4. Milnor derivations

Throughout this section, p = 2.
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4.1. Milnor derivations on symmetric powers
Notation 4.1. For i ∈ N, let Qi : S

1 → S2i+1

denote both the iterated Frobenius x 7→
x2i+1

and its extension Sn Qi→ Sn+2i+1−1 to a derivation of S∗.

The following is standard:

Lemma 4.2. For i, j ∈ N, Qi ◦Qi = 0 and the derivations Qi, Qj commute.

Notation 4.3. For 0 < j ∈ N, let S∗/〈x2j 〉 denote the truncated symmetric power
functor.

In the following statement, the degree is inherited from S∗.

Proposition 4.4. For i ∈ N, the homologyH(S∗, Qi) is the truncated symmetric power

functor S∗/〈x2i〉, concentrated in even degrees. Explicitly, the degree-doubling Frobe-
nius induces the isomorphism:

H(S∗, Qi)
k ∼=

{
0 k odd

Sd/〈x2i〉 k = 2d.

Proof. Non-functorially, the result follows from the calculation of the homology of
the differential graded algebra (F[x], dx = x2i+1

), which is the truncated polynomial

algebra F[y]/y2i , where y = x2, using the Künneth theorem to extend to tensor prod-
ucts.

It remains to show that this corresponds to the stated functorial isomorphism. By
the above, the homology is concentrated in even degrees; moreover, in degree k = 2d,
the Frobenius Sd ↪→ S2d maps to the cycles in degree k and induces a surjection onto
the homology. The identification of the kernel is straightforward.

Remark 4.5. For i = 0, the homology is F concentrated in degree 0; in particular, the
operations Q0 induce an exact complex 0 → S1 → S2 → S3 → · · · .

4.2. The Q0-kernel complex
Notation 4.6. For n ∈ N, let Kn denote the kernel of Q0 : S

n → Sn+1.

Lemma 4.7. The derivation Q1 on S∗ induces a differential Q1 : Kn → Kn+3 and
there is a short exact sequence of complexes

0 → (Ki+3•, Q1) → (Si+3•, Q1) → (Ki+1+3•, Q1) → 0,

where 0 6 i < 3 and • > 0.

Proof. A consequence of the exactness of the Q0-complex in positive dimensions and
the commutation of Q0, Q1 (Lemma 4.2).

Notation 4.8. For n ∈ N, let Ln denote the image of Q1 : Kn−3 → Kn, and let L̃n

denote the kernel of Q1 : Kn → Kn+3.

Proposition 4.9. The homology of the complexes (Ki+3•, Q1) is

L̃n/Ln
∼=


F n = 0
0 n odd
pdIF n = 2d > 0.
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Proof. The proof is by induction upon n; the case n = 0 is clear. It is also straightfor-
ward to show that the odd degree homology is trivial (independently of the calculation
of the even degree homology).

For the inductive step, the homology long exact sequence arising from the short
exact sequence of complexes of Lemma 4.7 is used. This shows that, for n = 2d > 0,
the homology H of Kn−3 → Kn → Kn+3 lies in a short exact sequence 0 → pd−1IF →
H → Λd → 0, by the inductive hypothesis for the left-hand term and Proposition 4.4
for the exterior power, using the vanishing of homology in odd degrees. It suffices to
show that pdIF is a subquotient of H, by Lemma 2.6.

The Frobenius Φ: Sd ↪→ S2d maps to K2d, and the image lies in the kernel L̃2d of
K2d → K2d+3. There is a unique non-trivial morphism Sd → IF, and this has image
pdIF; since IF is injective, this extends to a morphism L̃2d → IF, and the restriction
K2d−3 → IF is trivial, since K2d−3(F) = 0. It follows that pdIF is a subquotient of the
homology H, as required.

5. Connective complex K-cohomology and homology

5.1. Recollections

The Postnikov towers of ku and KU provide morphisms ku → HZ and ku → KU
of commutative ring spectra, relating connective (resp. periodic) complex K-theory
ku (resp. KU) and the integral Eilenberg-MacLane spectrum HZ. There are cofibre

sequences Σ2ku
v→ ku → HZ, HZ 2→ HZ ρ→ HF, where v is multiplication by the

Bott element (ku∗ ∼= Z[v], with |v| = 2).

Notation 5.1. Let Q denote the first k-invariant of ku, given by the composite HZ →
Σ3ku → Σ3HZ.

The Milnor derivation Q0 of Section 4 identifies with the Bockstein β = Sq1 and
the Milnor derivation Q1 with the commutator [Sq2, Sq1].

Lemma 5.2. (cf. [Ada74, proof of III.16.6]) There is a commutative diagram

HZ
Q //

ρ

��

Σ3HZ
ρ

��
HF

Q1

// Σ3HF.

Lemma 5.3. For Y a spectrum, the following conditions are equivalent:

1. HZ∗Y ρ→ HF∗Y is a monomorphism.

2. The Bockstein complex (HF∗Y, β) is exact.

3. HZ∗Y
ρ→ HF∗Y is a monomorphism.

4. The Bockstein complex (HF∗Y, β) is exact.

When these conditions are satisfied, the respective morphisms Q are determined by
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the commutative diagrams

HZ∗Y
Q //

� _

ρ

��

HZ∗+3Y� _

ρ

��

HZ∗Y
Q //

� _

ρ

��

HZ∗−3Y� _

ρ

��
HF∗Y

Q1

// HF∗+3Y HF∗Y
Q1

// HF∗−3Y.

Proof. Straightforward, applying Lemma 5.2 for the commutative diagrams.

Example 5.4. The hypotheses of Lemma 5.3 are satisfied for Y = Σ∞BV , where
V is an elementary abelian 2-group. In particular, the action of Q on HZ∗(BV ) is
determined by the action of Λ(Q0, Q1) on HF∗(BV ).

5.2. On v-torsion and cotorsion
There is a hereditary torsion theory on the category of graded Z[v]-modules (tak-

ing |v| = 2) given by the categories of v-power torsion modules and of v-cotorsion
modules. This has associated torsion functor torsv and cotorsion functor cotorsv
so that, for a Z[v]-module, there is a natural short exact sequence of Z[v]-modules
0 → torsvM → M → cotorsvM → 0. The submodule of M annihilated by v is writ-
ten annvM .

Lemma 5.5. For a Z[v]-module M , torsvM ∩ vM ∼= vtorsvM ; hence torsvM ↪→ M
induces a monomorphism (torsvM)/v ↪→ M/v. Moreover, there is a short exact
sequence of Z[v]-modules

0 → cotorsvM
v→ cotorsvM → (M/v)/

(
(torsvM)/v

)
→ 0.

Proof. Straightforward.

The following algebraic result is required in the proof of Proposition 5.9.

Lemma 5.6. For M a graded Z[v]-module, the following conditions are equivalent:

1. annvM = torsvM and

2. annvM → (torsvM)/v is injective,

and they imply

3. annvM → (torsvM)/v is surjective.

If ∀d ∈ Z ∃N(d) ∈ N such that (vN(d)M ∩ torsvM)d = 0, then the conditions are all
equivalent.

Proof. If annvM = torsvM , then torsvM ∼= (torsvM)/v, and hence condition (1)
implies both (2) and (3).

Suppose (2) holds, and consider x ∈ torsvM , so that there exists t ∈ N such that
vtx 6= 0 and vt+1x = 0. Hence vtx ∈ annvM ; the hypothesis implies that vtx is not
in vM ; hence t = 0 and x ∈ annvM , as required.

Suppose (3) holds together with the additional hypothesis. Consider x ∈ torsvM ;
by surjectivity of annvM � (torsvM)/v, x = a+ vy, for some a ∈ annvM and y ∈
torsvM . An induction then shows that, for 0 < n ∈ N, x = a+ vnyn, for some yn ∈
torsvM ; it suffices to show that vnyn = 0 for n � 0. By construction vnyn ∈ (vnM ∩
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torsvM)|x|, and hence the hypothesis implies that the element is zero for n > N(|x|).

The following allows the cotorsion to be related to periodic K-theory.

Lemma 5.7. [BG03, Chapter 1] If Z is a connective spectrum, there is a natural
isomorphism KU∗(Z) ∼= ku∗(Z)[ 1v ].

Lemma 5.8. For X a spectrum, there are natural short exact sequences

0 → ku∗(X)/v → HZ∗(X) → annvku∗−3(X) → 0,

0 → ku∗(X)/v → HZ∗(X) → annvku
∗+3(X) → 0.

Moreover, there are natural inclusions

ImQ ⊂
(
torsvku∗(X)

)
/v ⊂ ku∗(X)/v ⊂ KerQ,

ImQ ⊂
(
torsvku

∗(X)
)
/v ⊂ ku∗(X)/v ⊂ KerQ.

Proof. The proofs for homology and cohomology are formally the same; hence con-
sider ku-homology. The short exact sequence is induced by the cofibre sequence
Σ2ku → ku → HZ. The inclusion (torsvku∗(X))/v ⊂ ku∗(X)/v is provided by
Lemma 5.5; the outer inclusions are clear, from the definition of Q.

Proposition 5.9. Let Z be a connective spectrum.

1. The following conditions are equivalent:

(a) annvku∗(Z) = torsvku∗(Z).
(b)

(
torsvku∗(Z)

)
/v ∼= ImQ.

(c) ku∗(Z)/v ∼= KerQ.

If these conditions are satisfied, then (ku∗(Z)/v)/
(
(torsvku∗(Z))/v

) ∼=
KerQ/ImQ and there is a short exact sequence of Z[v]-modules

0 → cotorsvku∗−2(Z)
v→ cotorsvku∗(Z) → KerQ/ImQ → 0

and a pullback of short exact sequences

0 // torsvku∗(Z) //

∼=
��

ku∗(Z) //

��

cotorsvku∗(Z)

����

// 0

0 // ImQ // KerQ // KerQ/ImQ // 0.

2. Suppose that, for each degree d ∈ Z, there exists an integer N(d) such that
(vN(d)ku∗(Z) ∩ torsvku

∗(Z))d = 0; then the following conditions are equiva-
lent:

(a) annvku
∗(Z) = torsvku

∗(Z).
(b)

(
torsvku

∗(Z)
)
/v ∼= ImQ.

(c) ku∗(Z)/v ∼= KerQ.
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If these conditions are satisfied, then (ku∗(Z)/v)/
(
(torsvku

∗(Z))/v
) ∼=

KerQ/ImQ and there is a short exact sequence of Z[v]-modules

0 → cotorsvku
∗+2(Z)

v→ cotorsvku
∗(Z) → KerQ/ImQ → 0

and a pullback of short exact sequences

0 // torsvku∗(Z) //

∼=
��

ku∗(Z) //

��

cotorsvku
∗(Z)

����

// 0

0 // ImQ // KerQ // KerQ/ImQ // 0.

Proof. The hypotheses imply that, for M ∈ {ku∗(Z), ku∗(Z)}, the three conditions
of Lemma 5.6 are equivalent. The equivalence of conditions (a), (b), and (c) follows
from an analysis of the short exact sequences of Lemma 5.8. Consider ku-homology
(the argument for ku-cohomology is similar); there is a commutative diagram

KerQ� _

��
0 // ku∗(Z)/v //

) 	

66nnnnnnnnnnnn
HZ∗(Z)

����

// annvku∗−3(Z) //

wwwwoooooooooooo
0

(torsvku∗(Z))/v
?�

OO

ImQ,_?
oo

in which the middle row and column are short exact.
By the five-lemma, ImQ ∼= annvku∗−3(Z) if and only if KerQ ∼= ku∗(Z)/v. More-

over, Lemma 5.6 implies that the following three conditions are equivalent:

1. annvku∗(Z) = torsvku∗(Z).

2. ImQ ∼= (torsvku∗(Z))/v.

3. ImQ ∼= annvku∗−3(Z).

This shows that conditions (a), (b), and (c) are equivalent. The consequences follow,
using Lemma 5.5 to provide the short exact sequence for cotorsvku∗(Z)/v.

The nilpotency hypothesis of Proposition 5.9 is supplied by the following result,
which provides a uniform bound on nilpotency.

Lemma 5.10. [BG03, Lemma 1.5.8] Let Y be a space such that ku∗(Y+) is a Noethe-
rian Z[v]-algebra. Then ∃N ∈ N such that vNtorsvku

∗(Y+) = 0.

This applies to the classifying space of a finite group G, since ku∗(BG+) is a
Noetherian Z[v]-algebra (see, for example, [BG03, Section 1.1]).

5.3. The ku-cohomology of BV+

The above methods apply in considering the ku-cohomology ku∗(BV+) of an ele-
mentary abelian 2-group. By the Atiyah–Segal completion theorem, the periodic K-
theory KU∗(BV+) is trivial in odd degrees and isomorphic in even degrees to the
completion at the augmentation ideal of the complex representation ring.
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Proposition 5.11. There are natural isomorphisms

HZn(BV+) ∼=
{

Z n = 0
Kn(V

]) n > 0

(ImQ)n ∼= Ln(V
])

(KerQ)n ∼=
{

Z n = 0

L̃n(V
]) n > 0.

Proof. The algebraHF∗(BV+) is naturally isomorphic to S∗(V ]) and integral reduced
cohomology HZ∗(BV ) embeds in HF∗(BV ) as the kernel of the Bockstein operator.
The result follows from Lemmas 5.2 and 5.3, using the definition of the functors Kn,
Ln and L̃n from Section 4.

Lemma 5.12. (cf. [BG03, Section 2.2]) There are identities torsvku
∗(B0+) = 0 =

torsvku
∗(BZ/2+).

Theorem 5.13. For V ∈ ObV f , there are natural isomorphisms

torsvku
n(BV+) ∼= annvku

n(BV+) ∼= (ImQ)n

kun(BV+)/v ∼= (KerQ)n;

torsvku
n(BV+) → kun(BV+)/v is an isomorphism for n odd, and, for n = 2d > 0,

there is a natural short exact sequence

0 → torsvku
2d(BV ) → ku2d(BV )/v → pdIF(V

]) → 0.

There is a pullback of short exact sequences:

0 // torsvku∗(BV+) // ku∗(BV+) //

��

cotorsvku
∗(BV+)

����

// 0

0 // ImQ // KerQ // (cotorsvku∗(BV+))/v // 0,

where, for n ∈ N, cotorsvkun(BV+) ∼=

{
Z⊕ P

d

Z2
(V ]) n = 2d

0 otherwise.

Proof. The first part of the Theorem follows from Proposition 5.9, since Lemma 2.7
implies that the cohomological hypothesis is satisfied. To apply the proposition, it is
sufficient to show that ImQ ∼=

(
torsvku

∗(BV+)
)
/v.

By Proposition 5.11 and Proposition 4.9,

(KerQ/ImQ)n ∼=


Z n = 0
0 n odd
pdIF(V

]) n = 2d, d > 0.

In odd degrees, ImQ = KerQ, and the result follows from the inclusions given in
Lemma 5.8.

It remains to show that the inclusion (ImQ)2d ↪→ torsvku
2d(BV+)/v is an isomor-

phism for d ∈ N. For d = 0, both terms are zero; for d > 0, the cokernel is a subfunctor
of V 7→ pdIF(V

]) by the inclusions given in Lemma 5.8 and the above identification
of KerQ/ImQ; hence it suffices to show that the cokernel is trivial when evaluated
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on V = F, by Lemma 2.7. This follows from the fact that torsvku
∗(BZ/2+) = 0, by

Lemma 5.12.
Finally, consider cotorsvku

∗(BV+). For d = 0, the result is the Atiyah–Segal com-
pletion theorem; the structure in higher degrees follows by induction on d from the
results of Section 3.1, in particular Proposition 3.6, using the identification of the
functors (cotorsvku

∗(BV+))/v ∼= KerQ/ImQ given above.

Remark 5.14. The above result determines the functor V 7→ ku∗(BV+) as a functor
to graded Z[v]-modules. Moreover, the multiplicative structure can be deduced from
the natural monomorphism ku∗(BV+) ↪→ HZ∗(BV+)

∏
KU∗(BV+) (cf. [BG03]).

5.4. The ku-homology of elementary abelian 2-groups
The ku-homology of elementary abelian 2-groups can be determined as for ku-

cohomology, by applying Proposition 5.9. The following is dual to Proposition 5.11.

Proposition 5.15. There are natural isomorphisms

HZn(BV+) ∼=
{

Z n = 0
DKn+1(V ) n > 0

(ImQ)n ∼= DLn+4

(KerQ)n ∼=
{

Z n = 0
D(Kn+1/Ln+1)(V ) n > 0.

Moreover

(KerQ/ImQ)n ∼=


Z n = 0
0 n ≡ 0 mod 2
qdP F(V ) n = 2d− 1 > 0.

Theorem 5.16. For V ∈ ObV f , there are natural isomorphisms

torsvkun(BV+) ∼= annvkun(BV+) ∼= (ImQ)n

kun(BV+)/v ∼= (KerQ)n;

the inclusion torsvku∗(BV+) ↪→ ku∗(BV+) induces a natural short exact sequence

0 → torsvku∗(BV+) → ku∗(BV+)/v → cotorsvku∗(BV+)/v → 0,

where

cotorsvkun(BV+)/v ∼=


Z n = 0
0 0 < n ≡ 0 mod 2
qdP F(V ) n = 2d− 1 > 0.

There is a pullback diagram of short exact sequences

0 // torsvku∗(BV+) //

∼=
��

ku∗(BV+) //

����

cotorsvku∗(BV+) //

����

0

0 // ImQ // KerQ // (cotorsvku∗(BV+))/v // 0,

where, for n ∈ N, cotorsvku(BV ) ∼=
{

Z n even
Rd

Z(V ) n = 2d− 1.
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Proof. There are natural monomorphisms ImQ(V ) ↪→ ku∗(BV+)/v ↪→ KerQ(V ). By
Proposition 5.15, in positive even degree, these are isomorphisms; in degree n = 2d−
1 > 0, the quotient (KerQ/ImQ)(V ) is qdP F(V ), and hence there is a natural inclusion(

(ku∗(BV+)/v)/ImQ(V )
)
2d−1 ↪→ qdP F(V ).

To prove the result, by Proposition 5.9, it suffices to show that this is an isomorphism;
hence, by Lemma 2.7, it suffices to show that the left-hand side is non-trivial when
evaluated on F, for all d > 0. It is straightforward to verify that ImQodd(F) = 0; thus
it suffices to show that ku∗(BZ/2+)/v is non-trivial in all odd degrees, which follows
from the structure of ku∗(BZ/2+) as a graded abelian group (see [BG03, Section
3.4], for example).

Finally, the identification of cotorsvku∗(BV+) follows from the results of Sec-
tion 3.2, in particular the short exact sequences of Lemma 3.9, the self-duality of
the functors Rn

Z (Theorem 3.11), and the Pontrjagin duality between R∞Z and PZ2

(Theorem 3.13).

Remark 5.17. By [BG03, Proposition 3.2.1], the universal coefficient spectral sequence
calculating ku∗(BV ) from ku∗(BV ) collapses to the short exact sequence

Ext2ku∗
(Σ2torsvku∗(BV ), ku∗) → ku∗(BV ) → Ext1ku∗

(Σ1cotorsvku∗(BV ), ku∗).

This is isomorphic to 0 → torsvku
∗(BV ) → ku∗(BV ) → cotorsvku

∗(BV ) → 0,
and explains the duality between ku-homology and ku-cohomology of BV . The anal-
ysis of [BG03, Section 4.12] can be made functorial to give the identification of
cotorsvku∗(BV+).

6. Filtering symmetric powers and Koszul complexes

To calculate the local cohomology of torsvku
∗(BV+) at the prime 2 by using a

form of local duality (see Section 7), it is necessary to filter and study the associated
Koszul complexes, refining the results of Section 4.

The symmetric power functors S∗ are considered as taking values in graded com-
mutative F-algebras.

6.1. Filtering the symmetric powers
Let ΦS∗ denote the image of the Frobenius x 7→ x2, so that ΦS∗ takes values

in graded commutative algebras and the canonical morphisms S∗
∼=→ ΦS∗ ↪→ S∗ are

morphisms of graded algebras.

Definition 6.1. For t ∈ N, let ftS∗ ⊂ S∗ denote the image of St ⊗ ΦS∗
µ→ S∗.

Lemma 6.2. For t ∈ N:
1. The functors ftS

∗ ⊂ S∗ define an increasing filtration of S∗

f0S
∗ = ΦS∗ ⊂ f1S

∗ ⊂ f2S
∗ ⊂ · · · ⊂ ftS

∗ ⊂ · · · ⊂ S∗

in ΦS∗-modules.

2. There is an isomorphism of S∗-modules ftS
∗/ft−1S

∗ ∼= Λt ⊗ S∗, where S∗ acts

on the left-hand side by restriction along S∗
Φ ∼=→ ΦS∗ and by multiplication on
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the right hand factor of Λt ⊗ S∗; for V ∈ ObV f , this restricts to an isomorphism
of S∗(V )-modules ⊕

t>0

(
ftS
∗/ft−1S

∗)(V ) ∼= S∗(V ),

where S∗(V ) acts on the right hand side via Φ.

3. For V ∈ ObV f , the inclusion ftS
∗(V ) ↪→ S∗(V ) is an isomorphism for t >

dimV .

Proof. Straightforward; to prove that S∗(V ) is isomorphic to
⊕

t>0

(
ftS
∗/ft−1S

∗)(V )
as S∗(V )-modules, it is sufficient to consider monomial bases.

For notational clarity, shifts in gradings are omitted from the following statement:

Proposition 6.3. For i, t ∈ N, the Milnor derivation Qi : S
∗ → S∗ is a morphism of

ΦS∗-modules and restricts to ftS
∗ ftQi→ ft−1S

∗; the induced morphism on the filtra-
tion quotients

Λt ⊗ S∗ ∼= ftS
∗/ft−1S

∗ → ft−1S
∗/ft−2S

∗ ∼= Λt−1 ⊗ S∗

is the Koszul differential τi.

Proof. Straightforward.

Remark 6.4. The differentials τ0 and τ1 define a bicomplex structure on Λ∗ ⊗ S∗.

6.2. Filtering the functors Kn

This section establishes the filtered version of Proposition 4.9; the starting point is
the functorial homology of the Koszul complexes, which is a standard result, related
to Proposition 4.4:

Proposition 6.5. For i ∈ N, the homology of (Λ∗ ⊗ S∗, τi) is S∗/〈x2i〉, concentrated
in homological degree 0.

The following are analogous to the functors Kn introduced in Notation 4.6:

Notation 6.6. For an integer a > 1 and b ∈ N, let Ka,b denote the image of τ0 : Λa ⊗
Sb → Λa−1 ⊗ Sb+1; by convention, K0,b is F for b = 0 and zero otherwise.

Lemma 6.7. For 0 < n ∈ N, the filtration f∗S
∗ induces a filtration of Kn with asso-

ciated graded grKn
∼=

⊕
a+2b+1=n Ka,b.

Proof. For n > 0, Kn is the image of Q0 : S
n−1 → Sn. Passing to the associated

graded, Q0 induces⊕
τ0 :

⊕
a+2b+1=n

Λa ⊗ Sb →
⊕

a+2b+1=n

Λa−1 ⊗ Sb+1,

by Proposition 6.3. Moreover, evaluated on V ∈ ObV f , as a morphism of vector
spaces, Q0 identifies with

⊕
τ0, using the splitting of the filtration in S∗(V )-modules,

given in Lemma 6.2.
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Lemma 6.8. The derivation τ1 induces a differential τ1 : Ka+1,b−2 → Ka,b. For a > 0
and b > 0, the short exact sequences from the Koszul complexes

0 → Ka,b → Λa−1 ⊗ Sb+1 → Ka−1,b+1 → 0

induce a short exact sequence of complexes

�� �� ��
0 // K3,b−4 //

τ1

��

Λ2 ⊗ Sb−3 //

τ1

��

K2,b−3

τ1

��

// 0

0 // K2,b−2 //

τ1

��

Λ1 ⊗ Sb−1 //

τ1

��

K1,b−1

τ1

��

// 0

0 // K1,b
// Sb+1 // 0 // 0.

Proof. The horizontal τ0-Koszul complexes are acyclic.

Proposition 6.9. For b ∈ N, the complex

· · · → Kn+1,b−2n
τ1→ Kn,b−2n+2 → · · · → K1,b

∼= Sb+1

has homology pb+1IF concentrated in homological degree 0.

Proof. The proof is by induction upon b, using the short exact sequence of complexes
provided by Lemma 6.8. The initial case b = 0 is by inspection; for the inductive step,
use the fact that the τ1 Koszul complex

· · · → Λn ⊗ Sb−2n+1 τ1→ Λn−1 ⊗ Sb−2n+3 → · · · → Sb+1

has homology Λb+1 concentrated in homological degree 0, by Proposition 6.5 (with i =
1). The proof is completed by the argument employed in the proof of Proposition 4.9.

6.3. Filtering the functors Ln and L̃n

Notation 6.10. For integers a > 0, b > 0, let La,b denote the cokernel of τ1 : Ka+1,b−2 →
Ka,b.

Proposition 6.9 implies the following identification:

Lemma 6.11.

1. If a > 1, La,b
∼= Ker{Ka,b

τ1→ Ka−1,b+2}.
2. L1,b

∼= pb+1IF.

Recall from Section 4.2 that Q1 induces a morphism Q1 : Kn−3 → Kn with image
Ln and kernel L̃n−3. It follows that the cokernel of Q1 occurs in an extension

0 → L̃n/Ln → CokerQ1 → Ln+3 → 0.
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Lemma 6.12. For n > 0 and CokerQ1 as above, the filtration f•S
∗ induces a finite

filtration of CokerQ1 with associated graded

grCokerQ1
∼=

⊕
a+2b+1=n,a>1

La,b,

where, for 2(b+ 1) = n, the sub-object L1,b is isomorphic to L̃2(b+1)/L2(b+1)
∼= pb+1IF

and there is an induced isomorphism grLn+3
∼=

⊕
a+2b+1=n,a>2 La,b.

Proof. The result follows as for the proof of Lemma 6.7.

Remark 6.13. For the calculations of local cohomology, it is important that the iso-
morphisms of Lemma 6.7 and of Lemma 6.12 upon evaluation on V ∈ ObV f corre-
spond to isomorphisms in the category of S∗(V )-modules (as in Lemma 6.2).

7. Local duality

An equivariant version of local duality (with respect to the action of the general
linear groups Aut(V )) is given as it arises in the current context, refining results of
[BG03, Section 4.7].

7.1. Categories of S∗-modules
Throughout this section, the prime p is arbitrary.

Definition 7.1.

1. Let S∗−modF denote the category of graded right S∗-modules in F and S∗-
module morphisms.

2. For V ∈ ObV f , let S∗(V )−modAut(V ) denote the category of graded right
S∗(V )-modules in Aut(V )-modules and S∗(V )-module morphisms.

Lemma 7.2. For V ∈ ObV f , the categories S∗−modF and S∗(V )−modAut(V ) are
abelian. Moreover:

1. the forgetful functor S∗−modF → F is exact and admits an exact left adjoint
−⊗ S∗ : F → S∗−modF ;

2. the forgetful functor S∗(V )−modAut(V ) → Aut(V )−mod is exact and admits
an exact left adjoint −⊗ S∗(V ) : Aut(V )−mod → S∗(V )−modAut(V );

3. evaluation at V , F → Aut(V )−mod, induces an exact functor S∗−modF →
S∗(V )−modAut(V ).

Proof. Clear.

Definition 7.3. For N ∈ ObS∗−modF , let HomV
S∗(−, N) be the functor

(S∗−modF )op → S∗(V )−modAut(V )

defined by

HomV
S∗(M,N) := HomS∗(V )(M(V ), N(V )),

where the right-hand side is equipped with the usual grading and Aut(V ) acts via
conjugation.
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Lemma 7.4. For F ∈ ObF and V ∈ ObV f , there is a natural isomorphism

HomV
S∗(F ⊗ S∗, S∗) ∼= F (V )] ⊗ S∗(V )

in Aut(V )−mod, where F (V )] is equipped with the contragredient action.

Proof. Straightforward.

In terms of the above identification, the following is straightforward:

Lemma 7.5. Let F,G ∈ ObF , V ∈ ObV f , and α : F ⊗ S∗ → G⊗ S∗ be a morphism
of S∗−modF , induced by α̃ : F → G⊗ S∗ in F .

Then HomV
S∗(α, S∗) identifies with the morphism G(V )] ⊗ S∗(V ) →

F (V )] ⊗ S∗(V ) of S∗(V )−modAut(V ) induced by γ : G(V )] → F (V )] ⊗ S∗(V ) in

Aut(V )−mod, which is adjoint to (α̃V )
] : G(V )] ⊗ S∗(V )] → F (V )] (in Aut(V )−

mod).

7.2. The dualizing functor
Self-duality of the exterior power functors gives:

Lemma 7.6. For n ∈ N, there is a natural isomorphism of contravariant functors of
V : Λn(V ]) ∼= Λn(V )].

This is combined with the following duality result, when restricting to the con-
sideration of the Aut(V )-action (henceforth Vr denotes an object of ObV f of rank
r).

Lemma 7.7. Let 0 6 j 6 r be integers. The composite

Λr(Vr)⊗ Λj(Vr)
] ∆⊗1→ Λr−j(Vr)⊗ Λj(Vr)⊗ Λj(Vr)

] → Λr−j(Vr),

where the second morphism is induced by evaluation Λj(Vr)⊗ Λj(Vr)
] → F, induces

an isomorphism Λr(Vr)⊗ Λj(Vr)
] ∼= Λr−j(Vr) in Aut(Vr)−mod, where Λj(Vr)

] is
equipped with the contragredient Aut(Vr)-module structure.

Proof. The result follows from the fact that the product Λr−j(Vr)⊗ Λj(Vr) →
Λr(Vr) ∼= F defines a perfect pairing and the equivariance of the evaluation map.

Lemma 7.8. Let 1 6 j 6 r be integers, and write µ : Λj−1(Vr)
] ⊗ Λ1(Vr)

] → Λj(Vr)
]

for the product morphism (dual to the the coproduct Λj(Vr) → Λj−1(Vr)⊗ Λ1(Vr)).
Then, under the isomorphism of Lemma 7.7, Λr(Vr)⊗ µ is Aut(Vr)-equivariantly

isomorphic to the morphism

Λr−j+1(Vr)⊗ Λ1(Vr)
] → Λr−j(Vr)

which is adjoint to the coproduct Λr−j+1(Vr) → Λr−j(Vr)⊗ Λ1(Vr).

Proof. A consequence of the coassociativity of the comultiplication on the exterior
power functors and the fact that the multiplication µ is dual to the coproduct Λj →
Λj−1 ⊗ Λ1.

Notation 7.9. For i ∈ N,
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1. let τi : Λ
1 → Spi

denote both the composite of the isomorphism Λ1 ∼= S1 with
the iterated Frobenius S1 ↪→ Spi

and the induced Koszul differential τi : Λ
j ⊗

S∗ → Λj−1 ⊗ S∗+pi

in the category S∗−modF ,

2. let Kzi denote the Koszul complex in S∗−modF :

· · · → Λj ⊗ S∗−jp
i τi→ Λj−1 ⊗ S∗−(j−1)p

i

→ · · · → S∗ → 0,

where τi is as above, and

3. let Kzi(Vr) denote the evaluated Koszul complex in S∗(Vr)−modAut(Vr).

Proposition 7.10. For integers 1 6 j 6 r and i ∈ N, under the isomorphism of Lemma
7.4, the morphism

HomVr

S∗(τi, S
∗) : HomVr

S∗(Λ
j−1 ⊗ S∗, S∗) → HomVr

S∗(Λ
j ⊗ S∗, S∗)

is induced by the morphism γ : Λj−1(Vr)
] → Λj(Vr)

] ⊗ Spi

(Vr) such that, under the
isomorphism of Lemma 7.7, Λr(Vr)⊗ γ is Aut(Vr)-equivariantly isomorphic to the

Koszul differential τi(Vr) : Λ
r−j+1(Vr) → Λr−j(Vr)⊗ Spi

(Vr).

Proof. Combine Lemma 7.5 with Lemma 7.8.

Corollary 7.11. For i ∈ N, there is a natural isomorphism of complexes

HomVr

S∗(Kzi,Λ
r ⊗ S∗) ∼= Kzi(Vr)

in S∗(Vr)−modAut(Vr).

Proof. After addition of the “twisting functor” Λr, the result is an immediate conse-
quence of Proposition 7.10.

Remark 7.12. Taking i = 0, so that Kz0 is the usual Koszul complex, this shows that
Λr ⊗ S∗ is the dualizing object, corresponding to the fact that S∗ is graded Gorenstein
(cf. [BH93, Section 3.7]).

7.3. Local cohomology in S∗(Vr)−modAut(Vr)

In this section, local cohomology is considered with respect to the augmentation
ideal I of S∗(Vr), so that I ∼=

⊕
t>0 S

t(Vr). The results of the previous section show
that the local duality isomorphism (cf. [BH93]) should be interpreted as stating that
the local cohomology of F (Vr)⊗ S∗(Vr), for F ∈ ObF , is concentrated in cohomo-
logical degree r, where it is isomorphic to HomV f

(
HomVr

S∗(F ⊗ S∗,Λr ⊗ S∗),F
)
.

Proposition 7.13. (cf. [BG03, Lemma 4.7.1]) Let G ∈ ObS∗−modF such that there
exists a complex

0 → Fr ⊗ S∗ → Fr−1 ⊗ S∗ → · · · → F0 ⊗ S∗ → G → 0

that induces an exact sequence in S∗(Vr)−modAut(Vr), by evaluation on Vr. Then
the local cohomology of G(Vr) ∈ ObS∗(Vr)−modAut(Vr) is

Hi
I(G(Vr)) ∼= Hr−i

(
HomV f (HomVr

S∗(Fi ⊗ S∗,Λr ⊗ S∗),F)
)
,

up to shift in grading.
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8. The local cohomology spectral sequence

The local cohomology theorem for ku implies that there is a spectral sequence

E2 := H∗,∗I (ku∗(BV+)) ⇒ ku∗(BV+),

where the E2-term is the local cohomology with respect to the augmentation ideal
(see [BG03] for generalities on the spectral sequence, for arbitrary finite groups).
Here V = Vr; the subscript is omitted for typographical reasons.

The aim of this section is to indicate how the spectral sequence can be understood
conceptually. It can be made Aut(V )-equivariant but is not functorial with respect to
arbitrary vector space morphisms (local cohomology is sensitive to Krull dimension);
however, the behaviour of the spectral sequence is largely determined by functorial
structure. There are two key ingredients: the functorial description of local duality
and of local cohomology given in Section 7 and the relationship between the local
cohomology of torsvku

∗(BV+) and that of cotorsvku
∗(BV+) explained in Section 4.

These results were inspired greatly by the work of Bruner and Greenlees [BG03],
who discovered the fundamental behaviour exhibited by the local cohomology of
torsvku

∗(BV+).

Remark 8.1. Throughout, the grading shifts resulting from working with graded mod-
ules are suppressed. The gradings are not essential for the presentation of the argu-
ments; the reader is, however, urged to calculate them.

8.1. The case of integral cohomology
The local cohomology spectral sequence for HZ∗(BV+) already illustrates some of

the salient features. It can be used in the analysis of the local cohomology spectral
sequence for ku∗(BV+) via the morphism induced by ku → HZ.

Let V ∈ ObV f have rank r, and consider the short exact sequence

0 → HZ∗(BV ) → HZ∗(BV+) → Z → 0

in the category of HZ∗(BV+)-modules, so that HZ∗(BV ) corresponds to the aug-
mentation ideal I. There is an induced exact sequence of local cohomology groups

0 → H0
I (HZ∗(BV )) → H0

I (HZ∗(BV+)) → (2)

→ Z → H1
I (HZ∗(BV )) → H1

I (HZ∗(BV+)) → 0

and, for j > 1, a natural isomorphism Hj
I (HZ∗(BV+)) ∼= Hj

I (HZ∗(BV )).
Hence, up to calculating the connecting morphism Z → H1

I (HZ∗(BV )), the local
cohomology of HZ∗(BV+) is determined by that of HZ∗(BV ). Moreover, since
HZ∗(BV ) is annihilated by 2, so is H1

I (HZ∗(BV )); hence it suffices to consider
behaviour after reducing mod 2.

Notation 8.2. For a ∈ N, let σ>aKz0 denote the brutal truncation of the Koszul com-
plex to the right

· · · → Λa+1 ⊗ S∗−1
τ0→ Λa ⊗ S∗

and σ6aKz0 the brutal truncation to the left

Λa ⊗ S∗
τ0→ Λa−1 ⊗ S∗+1 τ0→ · · · → S∗+a.
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Lemma 8.3. For a ∈ N,
1. σ>aKz0 is an S∗-free resolution of Ka,∗, and

2. for a > 1, the complex σ6aKz0 has homology F in homological degree 0 and
Ka+1,∗ in homological degree a.

Moreover, there are morphisms of complexes

Kz0 � σ>1Kz0 � σ>2Kz0 � · · ·
σ60Kz0 ∼= S∗ ↪→ σ61Kz0 ↪→ σ62Kz0 ↪→ · · · ⊂ Kz0.

Proof. Clear.

Corollary 7.11 gives the following:

Proposition 8.4. For integers 0 6 a 6 b 6 r, there is a natural isomorphism of com-
plexes

HomVr

S∗(σ>aKz0, S
∗ ⊗ Λr) ∼= σ6r−aKz0(Vr)

in S∗(Vr)−modAut(Vr), and, with respect to these isomorphisms, the surjection
σ>aKz0 � σ>bKz0 induces the inclusion σ6r−bKz0(Vr) ↪→ σ6r−aKz0(Vr).

In particular, the surjection Kz0 � σ>bKz0 induces σ6r−bKz0(Vr) ↪→ Kz0(Vr),
which gives an isomorphism in degree 0 homology if b < r.

Remark 8.5. It is useful to think of the surjection σ>aKz0 � σ>bKz0 as a morphism
Ka,∗[a] → Kb,∗[b] in an appropriate derived category, where [a], [b] correspond to the
shift in homological degree. In particular, for a = 0, this corresponds to F → Kb,∗[b].

The morphism σ>aKz0 � σ>bKz0 induces a morphism between local cohomol-
ogy groups, via the identification of local cohomology given in Proposition 7.13 and
Proposition 8.4.

Using the above observations, one deduces the following lemma:

Lemma 8.6. For V ∈ ObV f of rank r > 1, the connecting morphism H0
I (Z/2) ∼=

Z/2 → H1
I (HZ∗(BV )) induced by the short exact sequence of HZ∗(BV+)-modules

0 → HZ∗(BV ) → HZ∗(BV+)/2 → Z/2 → 0

is non-trivial.

Remark 8.7. The connecting morphism in the long exact sequence (2) for local coho-
mology is therefore non-trivial. For a conceptual presentation of the results, it is
useful to define an associated E1-page, so that this connecting morphism appears as
d1, as in [BG03].

The local cohomology (r > 1) is as follows, using Lemma 8.3:

Hj
I (HZ∗(BV+)) ∼=


Z j = 0
0 j = 1
F 2 6 j 6 r − 1
Hr

I (HZ∗(BV )) j = r.

Moreover, Hr
I (HZ∗(BV )) has a finite filtration such that

grHr
I (HZ∗(BV )) ∼= F⊕ grHZ∗(BV ),

up to shift in degree, where the filtration of HZ∗(BV ) is induced by ftS
∗.
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The analysis of the local cohomology spectral sequence is straightforward; the local
cohomology corresponds to the E2-page of the spectral sequence. The permanent
cycles in the zero column are given by the subgroup 2r−1Z; the differentials di, for
2 6 i 6 r are all non-trivial, starting from the zero column, and serve to eliminate
the extraneous factors of F that occur above.

Remark 8.8. Heuristically, the differential di is induced by the surjection of complexes
Kz0 � σ>iKz0, for i > 1.

8.2. Bicomplexes of S∗-modules
The purpose of this section is to explain the calculation of the local cohomology

of torsvku
∗(BV+); a fundamental point is that the method also calculates the local

cohomology of cotorsvku
∗(BV )/v and explains all the differentials in the local coho-

mology spectral sequence. This relies on the following result, in which grading shifts
have been suppressed and, for variance reasons, the cohomology of V ] is considered.

Proposition 8.9. (Cf. [BG03, Section 4.6].) For V ∈ ObV f of rank r, torsvku
∗(BV ]

+)
admits a finite natural filtration with associated graded

grtorsvku
∗(BV ]

+)
∼=

r⊕
i=2

Li,∗(V )

in S∗(V )−modAut(V ). Moreover, as a module over S∗(V ),

torsvku
∗(BV ]

+)
∼=

r⊕
i=2

Li,∗(V ).

Proof. The result follows from Lemma 6.12 and Theorem 5.13.

For the consideration of local duality, consider the S∗-action on the bicomplexes
introduced in Section 6.1 and the following truncations, which are analogues of the
truncated Koszul complexes of Notation 8.2.

Definition 8.10. (cf. [BG03, Section 4.6]) For i ∈ N,
1. let B(i) be the bicomplex in S∗−modF ,

B(i)s,t :=

{
0 t < i or s < 0
Λs+t ⊗ S∗ t > i

considered as a quotient bicomplex, where the term of lowest total degree is
Λi ⊗ S∗, in bidegree (0, i), and

2. let D(i) be the bicomplex in S∗−modF ,

D(i)s,t :=

{
0 t > i or s > 0
Λs+t ⊗ S∗ t 6 i

considered as a sub-bicomplex, where the term of greatest total degree is Λi ⊗
S∗, in bidegree (0, i).

Remark 8.11.

1. When evaluated on Vr, the only non-trivial terms are those with s+ t 6 r and
t > i. In particular, B(i)(Vr) is trivial if i > r.
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2. The grading on B(i) used in [BG03, Chapter 4] (respectively on D(i)) can
be recovered by considering the grading of the “generators” in the lowest (resp.
greatest) total degree, since the morphism τ0 raises the degree by 2 and τ1 raises
the degree by 4 (the grading is calculated relative to the S∗-grading, so that the
usual gradings of the odd degree generators do not contribute).

3. The homology of the bicomplexes is calculated pointwise, by first evaluating
on V ∈ ObV f ; for any i and V , the bicomplex B(i)(V ) has only finitely many
non-zero terms.

The following is clear from the definitions:

Lemma 8.12.

1. There are surjections of bicomplexes in S∗−modF

B(0) � B(1) � · · · � B(i) � B(i+ 1) � · · · ,

and the kernel of B(i) � B(i+ 1) is the truncated Koszul complex σ>iKz0,
concentrated in t-degree i.

2. There are inclusions of bicomplexes

D(0) = S∗ → D(1) ↪→ D(2) ↪→ · · · ↪→ D(j − 1) ↪→ D(j) ↪→ · · · ,

and the cokernel of D(j − 1) ↪→ D(j) is the truncated Koszul complex σ6jKz0
shifted so that the term of maximal total degree is in bidegree (0, j).

The following result follows from the definition of the objects Ka,b and La,b given
in Section 4.

Lemma 8.13. For 0 < a ∈ Z, Ka,∗ and La,∗ are objects of S∗−modF such that the
surjections Λa ⊗ S∗ � Ka,∗ � La,∗ are morphisms of S∗−modF .

Remark 8.14. For a > 2, La,b is a quotient of Λa ⊗ Sb and a sub-object of Λa−2 ⊗
Sb+3.

In the following, recall the indexing convention of B(i), which means that the term
of lowest total degree is in (s, t)-degree (0, i), and hence has total degree i.

Proposition 8.15. For 0 < i ∈ N, the homology of Tot(B(i)) is concentrated in degree
i and Hi(Tot(B(i))) ∼= Li,∗.

Proof. The result follows by filtering the bicomplex B(i) using Lemma 8.12 and
Proposition 6.9 (cf. [BG03, Proposition 4.6.3]).

Proposition 8.16. For i ∈ N, the homology of Tot(D(i)) is as follows:
For i = 0:

Hm(Tot(D(0))) ∼=
{

S∗ m = 0
0 otherwise.

For i > 0:

Hm(Tot(D(i))) ∼=


F⊕i+1 ⊕

⊕
d>1 pdIF m = 0

Li+2,∗ m = i
0 otherwise.

Moreover, for i > 1, the short exact sequence of bicomplexes 0 → D(i− 1) →
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D(i) → σ6iKz0 → 0 given by Lemma 8.12, induces the short exact sequences

H0(Tot(D(i− 1))) //

∼=
��

H0(Tot(D(i))) //

∼=
��

H0(σ6iKz0)

∼=

��
F⊕i ⊕

⊕
d>1 pdIF

// F⊕i+1 ⊕
⊕

d>1 pdIF
// F

and

Hi(Tot(D(i))) //

∼=
��

Hi(Tot(σ6iKz0)) //

∼=
��

Hi−1(Tot(D(i− 1)))

∼=
��

Li+2,∗ // Ki+1,∗ // Li+1,∗

in homology.

Proof. The calculation of the homology follows from Proposition 6.9, together with
the fact that each row of D(i), considered as a truncated Koszul complex, contributes
a factor F in homological degree 0.

For i > 1, the given short exact sequences follow immediately; the exactness of the
second sequence is again a consequence of Proposition 6.9.

Remark 8.17.

1. The factors F (resp. the different factors pdIF) lie in distinct gradings.

2. The degree r − 1 homology of D(r − 1) is the functor Lr+1,∗, which is a quotient
of Λr+1 ⊗ S∗. In particular, when evaluated on the rank r space V , this is trivial.
Thus the homology of D(r − 1) evaluated on V is concentrated in degree 0.

The following result is proved by using the identification of local cohomology given
by Proposition 7.13. Here D denotes the graded duality functor and the identification
DpdIF ∼= qdP F is used to give the duality statement DL1,∗ ∼=

⊕
d>0 qdP F; all functors

should be understood as being evaluated on V .

Corollary 8.18. (cf. [BG03, Theorem 4.7.3]) For V ∈ ObV f of rank r > 1, the local
cohomology of Li,∗:

1. for i = 1 is concentrated in cohomological degree 1 andH1
I (L1,∗) ∼= F⊕r ⊕DL1,∗;

2. for 2 6 i 6 r − 1,

Hm
I (Li,∗) ∼=

 F⊕r−i+1 ⊕DL1,∗ m = i
DLr−i+2,∗ m = r
0 otherwise;

3. for i = r is concentrated in cohomological degree r and Hr
I (Lr,∗) ∼= DS∗.

Moreover, the surjection of complexes B(1) � B(i), for 1 < i < r, induces a surjec-
tion: H1

I (L1,∗) � Hi
I(Li,∗) with kernel F⊕i−1.

Remark 8.19.

1. The restriction r > 1 on the rank is imposed so as to give a unified statement.
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2. The grading is again suppressed; the reader is encouraged to calculate the appro-
priate gradings and to verify that the above yields the Hilbert series specified
in [BG03, Section 4.7].

3. A notational sleight of hand has been used; the local cohomology introduces
a change of variance with respect to V ; Li,∗ on the left-hand side should be
considered as being contravariant in V , by precomposition with the duality
functor ].

8.3. The local cohomology of cotorsvku
∗(BV+)

Throughout this section, V ∈ ObV f has rank r > 1. To simplify notation, Q will
be written for the (contravariant) functor V 7→ cotorsvku

∗(BV+). Multiplication by
v induces a short exact sequence

0 → Q
v→ Q → Q/v → 0

(omitting the suspension associated with the grading). Moreover, the augmentation
Q → Z[v] induces a short exact sequence

0 → Q/v → Q/v → Z → 0.

Theorem 5.13 yields the natural isomorphism Q/v ∼= L1,∗(V
]); hence, by using the

change of rings isomorphism associated to ku∗(BV+) � HZ∗(BV+), Corollary 8.18
gives the local cohomology of Q/v. In particular, the ideal I refers here to the aug-
mentation ideal of ku∗(BV+).

Proposition 8.20. The local cohomology of Q/v is concentrated in cohomological
degrees 0 and 1:

H0
I (Q/v) ∼= 2Z

H1
I (Q/v) ∼= F⊕r−1 ⊕DL1,∗.

In particular, 2H1
I (Q/v) = 0.

Proof. The result follows from the exact sequence

0 → H0
I (Q/v) → Z → H1

I (Q/v) → H1
I (Q/v) → 0.

The connecting morphism is non-trivial (this can be seen by considering the behaviour
modulo 2), whence the result. (This also explains the notation 2Z).

The local cohomology of Q can now be analysed by using the exact sequence
associated to Q

v→ Q → Q/v, which has the form

0 → H0
I (Q)

v→ H0
I (Q) → H0

I (Q/v) ∼= 2Z → H1
I (Q)

v→ H1
I (Q) → H1

I (Q/v) → 0.

The calculation ofH0
I (Q) is straightforward (cf. [BG03, Section 4.4]), and this implies

that the image of the connecting morphism is Z/2r−1. This is sufficient to calculate
the local cohomology. A direct approach is taken in [BG03]; the above is preferred
here since it stresses the relationship between H1

I (Q/v) and the v-adic filtration of
H1

I (Q).
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Proposition 8.21. (cf. [BG03, Lemma 4.5.1]) The associated graded of the v-adic
filtration of H1

I (Q) is given by

viH1
I (Q)/vi+1H1

IQ
∼=


(
F⊕r−i−1 ⊕DL1,∗

) ∼= Hi+2
I (Li+2,∗) 0 6 i 6 r − 3

F⊕DL1,∗ i = r − 2
DL1,∗ i > r − 1.

Proof. To prove that the naturality with respect to V is correct, use the description
Q[ 1

y∗ ]/Q that is given in [BG03, Proposition 4.4.7].

Remark 8.22.

1. Grading shifts are suppressed.

2. [BG03, Lemma 4.5.1] is a statement about the 2-adic filtration; this coincides
with the v-adic filtration (cf. the final statement of Lemma 3.9).

3. The distinction between the cases i 6 r − 3 and i = r − 2 is simply to underline
the isomorphism with Hi+2

I (Li+2,∗); this is related to the surjection between
local cohomology groups given in Corollary 8.18.

8.4. The local cohomology spectral sequence for ku∗(BV+)

The local cohomology of ku∗(BV+) is determined by the short exact sequence

0 → torsvku
∗(BV+) → ku∗(BV+) → cotorsvku

∗(BV+) → 0

and the local cohomology of torsvku
∗(BV+) (cf. Section 8.2) and of cotorsvku

∗(BV+)
(cf. Section 8.3).

As in [BG03, Section 4.11], it is illuminating to consider an E1-page of the local
cohomology spectral sequence that serves to calculate the local cohomology at the
E2-page.

Theorem 8.23. (cf. [BG03, Section 4.11]) For V ∈ ObV f of rank r > 1, there is a
local cohomology spectral sequence converging to ku∗(BV+) with (up to shift in
grading)

E1
s,∗ =


Z[v] s = 0
H1

I (Q) s = −1
H−sI (L−s,∗) −2 > s > 1− r
Hr

I (ku
∗(BV+)) s = −r,

where Hr
I (ku

∗(BV+)) fits into an exact sequence

0 → F⊕DL1,∗ → Hr
I (ku

∗(BV+)) → Hr
I (HZ∗(BV+))

under the morphism induced by ku∗(BV+) → HZ∗(BV+).

The E∞-page is given by

E∞s,∗ =


Z[v] s = 0
vr−1H1

I (Q) s = −1
0 −2 > s > 1− r
Image{Hr

I (ku
∗(BV+)) → Hr

I (HZ∗(BV+))} s = −r.
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Moreover, the morphism H0
I (ku

∗(BV+))/v → H0
I (HZ∗(BV+)) is a bijection onto the

permanent cycles in the zero column of the local cohomology spectral sequence for
HZ∗(BV+).

Proof. The E1-page of the spectral sequence is determined by combining the results
of Corollary 8.18, for the contribution from the local cohomology of torsvku

∗(BV+),
and of Section 8.3, for the local cohomology of Q. The results of Section 8.2 provide
the exact sequence for Hr

I (ku
∗(BV+)).

The entire behaviour of the spectral sequence is determined by the fact that the
only non-trivial differentials originate on the s = −1 column, using Proposition 8.21
to relate this to the v-adic filtration of H1

I (Q).
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