SECONDARY MULTIPLICATION IN TATE COHOMOLOGY OF GENERALIZED QUATERNION GROUPS

MARTIN LANGER

(communicated by J. P. C. Greenlees)

Abstract

Let k be a field, and let G be a finite group. By a theorem of D. Benson, H. Krause, and S. Schwede, there is a canonical element in the Hochschild cohomology of the Tate cohomology $\gamma_{G} \in H H^{3,-1} \hat{H}^{*}(G)$ with the following property: Given any graded $\hat{H}^{*}(G)$-module X, the image of γ_{G} in $\operatorname{Ext}_{\hat{H}^{*}(G)}^{3,-1}(X, X)$ is zero if and only if X is isomorphic to a direct summand of $\hat{H}^{*}(G, M)$ for some $k G$-module M. In particular, if $\gamma_{G}=0$ then every module is a direct summand of a realizable $\hat{H}^{*}(G)$ module.

We prove that the converse of that last statement is not true by studying in detail the case of generalized quaternion groups. Suppose that k is a field of characteristic 2 and G is generalized quaternion of order 2^{n} with $n \geqslant 3$. We show that γ_{G} is nontrivial for all n, but there is an $\hat{H}^{*}(G)$-module detecting this non-triviality if and only if $n=3$.

1. Introduction

Let k be a field, G a finite group, and let $\hat{H}^{*}(G)$ denote the graded Tate cohomology algebra of G over k. The starting point of this paper is the following theorem of D. Benson, H. Krause, and S. Schwede:

Theorem 1.1. [2] There exists a canonical element in Hochschild cohomology of $\hat{H}^{*}(G)$

$$
\gamma_{G} \in H H^{3,-1} \hat{H}^{*}(G),
$$

such that for any graded $\hat{H}^{*}(G)$-module X, the following are equivalent:
(i) The image of γ_{G} in $\operatorname{Ext}_{\hat{H}^{*}(G)}^{3,-1}(X, X)$ is zero.
(ii) There exists a $k G$-module M such that X is a direct summand of the graded $\hat{H}^{*}(G)$-module $\hat{H}^{*}(G, M)$.

[^0]Let us call an $\hat{H}^{*}(G)$-module realizable if it is isomorphic to a module of the form $\hat{H}^{*}(G, M)$ for some $k G$-module M. As an immediate consequence we get the following.
Corollary 1.2. If $\gamma_{G}=0$, then every $\hat{H}^{*}(G)$-module is a direct summand of a realizable module.

At this point it is natural to ask for the converse of that statement. That is, given the fact that $\gamma_{G} \neq 0$, is there some $\hat{H}^{*}(G)$-module detecting the non-triviality of γ_{G} ? Theorem 1.1 works more generally in the situation of differential graded algebras, and in that setup the converse of the corresponding corollary is known to the false: Benson, Krause, and Schwede provide an example of a dg algebra A such that the canonical class $\gamma_{A} \in H H^{3,-1}\left(H^{*} A\right)$ is non-trivial, but every $H^{*} A$-module is realizable (see [2, Proposition 5.16]). Nevertheless, the author believes that the question whether there is such an example coming from Tate cohomology of groups is still open.

In this paper we will compute γ_{G} explicitly for the generalized quaternion groups G. In what follows, let $t \geqslant 2$ be a power of 2 , and let $G=Q_{4 t}$ be the group of generalized quaternions

$$
Q_{4 t}=\left\langle g, h \mid g^{t}=h^{2}, g h g=h\right\rangle
$$

Let k be a field of characteristic 2, and denote by $L=k G$ the group algebra of G over k. Then the Tate cohomology ring $\hat{H}^{*}(G)$ is well known; it is given by

$$
\hat{H}^{*}\left(Q_{4 t}\right)=\widehat{\operatorname{Ext}}_{L}^{*}(k, k) \cong \begin{cases}k\left[x, y, s^{ \pm 1}\right] /\left(x^{2}+y^{2}=x y, y^{3}=0\right) & \text { if } t=2 \\ k\left[x, y, s^{ \pm 1}\right] /\left(x^{2}=x y, y^{3}=0\right) & \text { if } t \geqslant 4\end{cases}
$$

with degrees $|x|=|y|=1,|s|=4$ (see, e.g., [4, Chapter XII §11] and [1, IV Lemma 2.10]). Our main goal is to prove the following theorem.

Theorem 1.3. The element $\gamma_{Q_{8}} \in H H^{3,-1} \hat{H}^{*}\left(Q_{8}\right)$ is non-trivial, and the cokernel of the map

$$
\hat{H}^{*}\left(Q_{8}\right)[-1] \oplus \hat{H}^{*}\left(Q_{8}\right)[-1] \xrightarrow{\left(\begin{array}{cc}
y & x+y \\
x & y
\end{array}\right)} \hat{H}^{*}\left(Q_{8}\right) \oplus \hat{H}^{*}\left(Q_{8}\right)
$$

is a graded $\hat{H}^{*}\left(Q_{8}\right)$-module which is not a direct summand of a realizable one. For $t \geqslant 4$ the element $\gamma_{Q_{4 t}} \in H H^{3,-1} \hat{H}^{*}\left(Q_{4 t}\right)$ is non-trivial, but every graded $\hat{H}^{*}\left(Q_{4 t}\right)$ module is a direct summand of a realizable one.

The plan is as follows: In the first section we will briefly recall the definitions needed in Theorem 1.1; most of this part is taken from [2], and the reader interested in details should consult that source. In the second section we turn to the computation of a Hochschild cocycle m representing the canonical class γ_{G}. In the third section we prove the statements about realizability of modules. Theorem 1.3 will then follow from Theorems 3.6, 3.8, 4.3, and Propositions 4.7 and 4.8.

Acknowledgments

Part of this paper is part of a Diploma thesis written at the Mathematical Institute, University of Bonn. I would like to thank my advisor, Stefan Schwede, for suggesting the subject and all his helpful comments on the project. I would also like to thank the referee of an earlier version of this paper for some helpful remarks.

2. Prerequisites

2.1. Notation and conventions

All occurring modules will be right modules. We shall often work over a fixed ground field k; then \otimes means tensor product over k. Whenever convenient, we write $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ instead of $a_{1} \otimes a_{2} \otimes \cdots \otimes a_{n}$. If G is a group, then k is often considered as a trivial $k G$-module.

Let R be a ring with unit, and let M be a \mathbb{Z}-graded R-module. The degree of every (homogeneous) element $m \in M$ will be denoted by $|m|$. For every integer n the module $M[n]$ is defined by $M[n]^{j}=M^{n+j}$ for all j. Given two such modules M and L, a morphism $f: L \longrightarrow M$ is a family $f^{j}: L^{j} \longrightarrow M^{j}$ of R-module homomorphisms. The group of all these morphisms is denoted by $\operatorname{Hom}_{R}(L, M)$. Furthermore, we have $\operatorname{Hom}_{R}^{m}(L, M)=\operatorname{Hom}_{R}(L, M[m])$, the morphisms of degree m. The graded module $L \otimes M$ is given by $(L \otimes M)^{m}=\bigoplus_{i+j=m} L^{i} \otimes M^{j}$. If M is a differential graded R module with differential d, then the differential of $M[n]$ is given by $(-1)^{n} d$.

2.2. Tate Cohomology

Let us recall briefly the definition and basic properties of Tate cohomology. Let k be a field, and let G be a finite group. Then $L=k G$ is a self-injective algebra (i.e., the classes of projective and injective right- L-modules coincide). For any L-module N we get a complete projective resolution P_{*} of N by splicing together a projective and an injective resolution of N :

Given another L-module M, we can apply the functor $\operatorname{Hom}_{L}(-, M)$ to P_{*}; then Tate cohomology is defined to be the cohomology groups of the resulting complex:

$$
\widehat{\operatorname{Ext}}_{L}^{n}(N, M)=H^{n}\left(\operatorname{Hom}_{L}\left(P_{*}, M\right)\right) \quad \text { for all } n \in \mathbb{Z}
$$

For arbitrary L-modules X, Y, and Z, we have a cup product

$$
\widehat{\operatorname{Ext}}_{L}^{m}(Y, Z) \otimes \widehat{\operatorname{Ext}}_{L}^{n}(X, Y) \longrightarrow \widehat{\operatorname{Ext}}_{L}^{m+n}(X, Z)
$$

see, e.g., $[3, \S 6]$. Therefore, $\hat{H}^{*}(G)=\hat{H}^{*}(G, k)=\widehat{\operatorname{Ext}}_{k G}^{*}(k, k)$ is a graded algebra, and $\hat{H}^{*}(G, M)=\widehat{\operatorname{Ext}}_{k G}^{*}(k, M)$ is a graded $\hat{H}^{*}(G)$-module for every $k G$-module M. We call a graded $\hat{H}^{*}(G)$-module X realizable if it is isomorphic to $\hat{H}^{*}(G, M)$ for some $k G$-module M.

There is another way of describing the product of $\hat{H}^{*}(G)$, in terms of P_{*}. Consider the differential graded algebra $\mathcal{A}=\operatorname{Hom}_{L}^{*}\left(P_{*}, P_{*}\right.$), which (in degree n) is given by

$$
\mathcal{A}^{n}=\prod_{j \in \mathbb{Z}} \operatorname{Hom}_{L}\left(P_{j+n}, P_{j}\right)
$$

and the differential $d: \mathcal{A}^{n} \longrightarrow \mathcal{A}^{n+1}$ is defined to be

$$
(d f)_{j}=\partial \circ f_{j+1}-(-1)^{n} f_{j} \circ \partial
$$

Here ∂ denotes the differential of $P_{*} . \mathcal{A}$ is called the endomorphism dga of P. With this definition, the cocycles of \mathcal{A} (of degree n) are exactly the chain transformations
$P[n] \rightarrow P$, and two cocycles differ by a coboundary if and only if they are chain homotopic. Using standard arguments from homological algebra, one shows that the following map is an isomorphism of k-vector spaces:

$$
\begin{gather*}
H^{n} \mathcal{A} \xrightarrow{\cong} \widehat{\operatorname{Ext}}_{L}^{n}(k, k), \tag{1}\\
{[f] \mapsto\left[\epsilon \circ f_{0}\right] .}
\end{gather*}
$$

Here $\epsilon: P_{0} \longrightarrow k$ is the augmentation. This isomorphism is compatible with the multiplicative structures. We will often write \bar{a} for elements of the endomorphism dga; if \bar{a} is a cocycle, then a denotes the corresponding cohomology class.

2.3. Hochschild Cohomology

We now give a short review of Hochschild cohomology. Let Λ be a graded algebra over the field k, and let M be a graded Λ - Λ-bimodule, the elements of k acting symmetrically. Define a cochain complex $C^{\bullet, *}(\Lambda, M)$ by

$$
C^{n, m}(\Lambda, M)=\operatorname{Hom}_{k}^{m}\left(\Lambda^{\otimes n}, M\right)
$$

with a differential δ of bidegree $(1,0)$ given by

$$
\begin{aligned}
& (\delta \varphi)\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)=(-1)^{m\left|\lambda_{1}\right|} \lambda_{1} \varphi\left(\lambda_{2}, \ldots, \lambda_{n+1}\right) \\
& \quad+\sum_{i=1}^{n}(-1)^{i} \varphi\left(\lambda_{1}, \ldots, \lambda_{i} \lambda_{i+1}, \ldots, \lambda_{n+1}\right)+(-1)^{n+1} \varphi\left(\lambda_{1}, \ldots, \lambda_{n}\right) \lambda_{n+1}
\end{aligned}
$$

The Hochschild cohomology groups $H H^{*, *}(\Lambda, M)$ are defined as the cohomology groups of that complex:

$$
H H^{s, t}(\Lambda, M)=H^{s}\left(C^{*, t}(\Lambda, M)\right)
$$

In particular, we can regard $M=\Lambda$ as a bimodule over itself; we will then write $H H^{s, t}(\Lambda)=H H^{s, t}(\Lambda, \Lambda)$. For example, an element of $H H^{3,-1}(\Lambda)$ is represented by a family of k-linear maps

$$
m=\left\{m_{i, j, l}: \Lambda^{i} \otimes \Lambda^{j} \otimes \Lambda^{l} \longrightarrow \Lambda^{i+j+l-1}\right\}_{i, j, l \in \mathbb{Z}}
$$

satisfying the cocycle relation

$$
(-1)^{|a|} a \cdot m(b, c, d)-m(a b, c, d)+m(a, b c, d)-m(a, b, c d)+m(a, b, c) \cdot d=0
$$

for all $a, b, c, d \in \Lambda$.
Whenever X and Y are Λ - Λ-bimodules, one has a cup product pairing

$$
\cup: \operatorname{Hom}_{\Lambda}(X, Y) \otimes H H^{*, *} \Lambda \longrightarrow \operatorname{Ext}_{\Lambda}^{*, *}(X, Y)
$$

Here $\operatorname{Ext}_{\Lambda}^{s, t}(X, Y)$ is defined to be $\operatorname{Ext}_{\Lambda}^{s}(X, Y[t])$. In particular, we have the map

$$
\begin{aligned}
H H^{3,-1} \hat{H}^{*}(G) & \longrightarrow \operatorname{Ext}_{\hat{H}^{*}(G)}^{3,-1}(X, X) \\
\phi & \mapsto \operatorname{id}_{X} \cup \phi
\end{aligned}
$$

for every $\hat{H}^{*}(G)$-module X. This is the map occurring in Theorem 1.1.

2.4. The canonical element γ

We are now going to describe the construction of the element γ mentioned in Theorem 1.1. More generally, we will construct an element $\gamma_{\mathcal{A}} \in H H^{3,-1} H^{*} \mathcal{A}$ for
every differential graded algebra \mathcal{A} over k; then we can take \mathcal{A} to be the endomorphism algebra of a complete projective resolution of k as a trivial $k G$-module to get $\gamma_{G} \in$ $H H^{3,-1} \hat{H}^{*}(G)$.

For a dg-algebra \mathcal{A}, consider $H^{*} \mathcal{A}$ as a differential graded k-module with trivial differential. Then choose a morphism of dg-k-modules $f_{1}: H^{*} \mathcal{A} \longrightarrow \mathcal{A}$ of degree 0 which induces the identity in cohomology. This is the same as choosing a representative in \mathcal{A} for every class in $H^{*} \mathcal{A}$ in a k-linear way. For every two elements $x, y \in H^{*} \mathcal{A}$, $f_{1}(x y)-f_{1}(x) f_{1}(y)$ is null-homotopic; therefore, we can choose a morphism of graded modules

$$
f_{2}: H^{*} \mathcal{A} \otimes H^{*} \mathcal{A} \longrightarrow \mathcal{A}
$$

of degree -1 such that for all $x, y \in H^{*} \mathcal{A}$, we have

$$
d f_{2}(x, y)=f_{1}(x y)-f_{1}(x) f_{1}(y)
$$

Then for all $a, b, c \in H^{*} \mathcal{A}$,

$$
f_{2}(a, b) f_{1}(c)-f_{2}(a, b c)+f_{2}(a b, c)-(-1)^{|a|} f_{1}(a) f_{2}(b, c)
$$

is a cocycle in \mathcal{A}, the cohomology class of which will be denoted by $m(a, b, c)$. This defines a map $m:\left(H^{*} \mathcal{A}\right)^{\otimes 3} \longrightarrow H^{*} \mathcal{A}$ of degree -1 . An explicit computation shows that m is a Hochschild cocycle, thereby representing a class $\gamma_{A} \in H H^{3,-1} H^{*} \mathcal{A}$. This class is independent of the choices made.

3. Computation of the canonical element

From now on, let k be a field of characteristic 2 . Let $t \geqslant 2$ be a power of 2 , and let $G=Q_{4 t}$ be the group of generalized quaternions

$$
Q_{4 t}=\left\langle g, h \mid g^{t}=h^{2}, g h g=h\right\rangle .
$$

We denote by $k G$ the group algebra of G over k, and $F=k G$ denotes the free module of rank 1 over that algebra. In this section, we are going to explicitly compute a Hochschild cochain m representing the canonical class γ_{G}.

3.1. The class of a map

We begin with an observation that will reduce the subsequent computations somewhat. Let us recall the construction of a representative of γ_{G}. First of all, we have to construct a projective resolution P, and we will actually find a minimal projective resolution. Then we have to choose a cycle selection homomorphism $f_{1}: \hat{H}^{*}(G) \rightarrow$ $\operatorname{Hom}_{k G}^{*}(P, P)$ such that any class a is mapped to a representative $f_{1}(a)$. We can find a k-linear map $f_{2}: \hat{H}^{*}(G) \otimes \hat{H}^{*}(G) \rightarrow \operatorname{Hom}_{k G}^{*}(P, P)$ of degree -1 satisfying $d f_{2}(a, b)=f_{1}(a) f_{1}(b)-f_{1}(a b)$ for all a, b. Finally, we are interested in terms of the form

$$
\begin{equation*}
f_{2}(a, b) f_{1}(c)+f_{2}(a, b c)+f_{2}(a b, c)+f_{1}(a) f_{2}(b, c) ; \tag{2}
\end{equation*}
$$

this is a cocycle in $\operatorname{Hom}_{k G}^{*}(P, P)$. In order to determine the class of this cocycle, it is enough to know the degree 0 map of it (cf. (1)). This observation leads to the following definition.

Definition 3.1. For every $f \in \operatorname{Hom}_{k G}^{n}(P, P)$, i.e., a family of maps $f_{j}: P_{j+n} \rightarrow P_{j}$ $(j \in \mathbb{Z})$, not necessarily commuting with the differential, we denote by $\mathcal{C}(f)$ the class of the map $\epsilon \circ f_{0}: P_{n} \rightarrow k$ in $H^{n} \operatorname{Hom}_{k G}\left(P_{*}, k\right)=\hat{H}^{n}(G)$.

Note that the complex $\operatorname{Hom}_{k G}\left(P_{*}, k\right)$ has trivial differential; thus, every element in $\operatorname{Hom}_{k G}\left(P_{*}, k\right)$ and in particular $\epsilon \circ f_{0}$ is a cocycle. The definition above gives a map

$$
\begin{aligned}
\mathcal{C}: \operatorname{Hom}_{k G}^{n}(P, P) & \longrightarrow \hat{H}^{n}(G) \\
f & \mapsto\left[\epsilon \circ f_{0}\right] .
\end{aligned}
$$

Proposition 3.2. The map \mathcal{C} has the following properties:
(i) If $f \in \operatorname{Hom}_{k G}^{n}(P, P)$ is a cocycle, then $\mathcal{C}(f)$ is the cohomology class of f; in particular, $\mathcal{C} \circ f_{1}=\mathrm{id}$.
(ii) The map \mathcal{C} is k-linear.
(iii) If $\mathcal{C}\left(f_{1}\right)=\mathcal{C}\left(f_{2}\right)$ for some $f_{1}, f_{2} \in \operatorname{Hom}_{k G}^{n}(P, P)$, then $\mathcal{C}\left(f_{1} g\right)=\mathcal{C}\left(f_{2} g\right)$ for all $g \in \operatorname{Hom}_{k G}^{m}(P, P)$.
(iv) If $a \in \operatorname{Hom}_{k G}^{m}(P, P)$ is a cocycle and $f \in \operatorname{Hom}_{k G}^{n}(P, P)$ is an arbitrary element, then $\mathcal{C}(f a)=\mathcal{C}(f) \mathcal{C}(a)$.

Proof. (i) follows from (1). (ii) holds by definition. (iii): If $\mathcal{C}\left(f_{i}\right)=0$, then $\epsilon \circ f_{i}=0$. This implies $\epsilon \circ f_{i} \circ g=0$; hence $\mathcal{C}\left(f_{i} g\right)=0$. For general f_{1}, f_{2}, note $\mathcal{C}\left(f_{1}-f_{2}\right)=0$; by what we just proved, $\mathcal{C}\left(\left(f_{1}-f_{2}\right) g\right)=0$ and therefore $\mathcal{C}\left(f_{1} g\right)=\mathcal{C}\left(f_{2} g\right)$. (iv): Choose a cocycle $h \in \operatorname{Hom}_{k G}^{n}(P, P)$ satisfying $\mathcal{C}(h)=\mathcal{C}(f)$. Then by (iii)

$$
\mathcal{C}(f a)=\mathcal{C}(h a)=\mathcal{C}(h) \mathcal{C}(a)=\mathcal{C}(f) \mathcal{C}(a)
$$

The following corollary will simplify computations later on.
Proposition 3.3. The map f_{2} can be chosen in such a way that $\mathcal{C} \circ f_{2}=0$.
Proof. Choose any \tilde{f}_{2} (satisfying $\left.d \tilde{f}_{2}(a, b)=f_{1}(a) f_{1}(b)-f_{1}(a b)\right)$. Put $f_{2}=\tilde{f}_{2}-f_{1} \circ$ $\mathcal{C} \circ \tilde{f}_{2}$. Since $d f_{1}=0$, we get

$$
d f_{2}(a, b)=d \tilde{f}_{2}(a, b)=f_{1}(a) f_{1}(b)-f_{1}(a b)
$$

and from $\mathcal{C} \circ f_{1}=\mathrm{id}$, it follows that

$$
\mathcal{C} \circ f_{2}=\mathcal{C} \circ \tilde{f}_{2}-\mathcal{C} \circ f_{1} \circ \mathcal{C} \circ \tilde{f}_{2}=0
$$

Consider (2) with this simplified version of f_{2}. By applying \mathcal{C}, we get the term

$$
\mathcal{C}\left(f_{2}(a, b) f_{1}(c)\right)+\mathcal{C}\left(f_{2}(a, b c)\right)+\mathcal{C}\left(f_{2}(a b, c)\right)+\mathcal{C}\left(f_{1}(a) f_{2}(b, c)\right)
$$

This is the cohomology class of (2). Note that the individual terms $f_{2}(a, b) f_{1}(c)$, $f_{2}(a, b c) \ldots$ will not be cocycles in general, but the map \mathcal{C} assigns cohomology classes to them in such a way that the sum will be the class we are looking for.

By our choice of f_{2} (such that $\mathcal{C} \circ f_{2}=0$), the first three terms in the sum vanish (note that $\mathcal{C}\left(f_{2}(a, b) f_{1}(c)\right)=\mathcal{C}\left(f_{2}(a, b)\right) c$ by Proposition 3.2.(iv)). Thus we are interested in terms of the form $\mathcal{C}\left(f_{1}(a) f_{2}(b, c)\right)$, where a, b, c run through all elements of a k-basis of $\hat{H}^{*}(G)$.

3.2. Generating cocycles and homotopies

Now we start the actual computation of γ. We begin with the construction of a minimal projective resolution P and some cocycles in the endomorphism dga of P. Let us define some elements of the group algebra $k G$ as follows. Put $a=g+1$, $b=h+1$ and $c=h g+1$. Furthermore, we write $N=\sum_{j \in G} j$ for the norm element. Here are some formulae we will frequently use:

$$
\begin{aligned}
a^{t} & =b^{2}=c^{2}, & a^{2 t} & =b^{4}=0, \\
b a & =a c=a+b+c, & N & =a^{2 t-1} b, \\
c & =a+b g, & g c & =a+b, \\
N & =c a^{2 t-2} b=c a^{2 t-1}, & N & =a^{2 t-1}+a^{2 t-2} b+c a^{2 t-2}, \\
c a^{t-1} b & =c a^{t-1}+a^{t-1} b . & &
\end{aligned}
$$

Also note that $a^{2 t-1}, a^{2 t-2}$, and $a^{2 t-4}$ lie in the center of $k Q_{4 t}$. Now a 4-periodic complete projective resolution of the trivial $k G$-module k is given as follows (see [4, Chapter XII §7]):

$$
\cdots{ }^{N} P_{0}=F \stackrel{(a b)}{\longleftarrow} P_{1}=F^{2} \stackrel{\left(\begin{array}{cc}
a^{t-1} & c \\
\longleftarrow & a
\end{array}\right)}{\longleftarrow} P_{2}=F^{2} \stackrel{\binom{a}{c}}{\longleftarrow} P_{3}=F \stackrel{N}{\longleftarrow} P_{4}=F \longleftarrow \cdots
$$

Since the resolution is minimal, the differential of the complex $\operatorname{Hom}_{k G}\left(P_{*}, k\right)$ vanishes; therefore, we immediately get the well-known additive structure of $\hat{H}^{*}(G)$:

$$
\hat{H}^{4 n}(G) \cong \hat{H}^{4 n+3}(G) \cong k, \quad \hat{H}^{4 n+1}(G) \cong \hat{H}^{4 n+2}(G) \cong k^{2}
$$

Let us write $\bar{s}: P \rightarrow P[4]$ for the shift map, given by the identity map in every degree. This is an invertible cocycle; thus, multiplication by a suitable power of s yields an isomorphism $\hat{H}^{4 n+u}(G) \cong \hat{H}^{u}(G)$ for $u=0,1,2,3$ and $n \in \mathbb{Z}$. Now we are heading for explicit generators x, y of $\hat{H}^{1}(G) \cong H^{1} \operatorname{Hom}_{k G}^{*}(P, P)$, which are represented by chain $\operatorname{maps} \bar{x}, \bar{y}: P[1] \rightarrow P$. By construction, we have $P_{1}=F^{2}$ and $P_{0}=F$. We extend the two projections $P_{1} \rightarrow P_{0}$ to chain transformations $P[1] \rightarrow P$ as follows: For $\bar{x}: P \rightarrow$ $P[1]$ we take

and extend this 4-periodically. The 4-periodic chain map $\bar{y}: P \rightarrow P[1]$ is defined as follows:

Since these cocycles are 4-periodic, they commute with \bar{s}. Let us determine the pairwise products of these maps. We start with $\bar{x} \bar{y}$:

The product $\bar{y} \bar{x}$ is given as follows:

Next, we compute \bar{x}^{2} :

And now \bar{y}^{2} :

In each of these cocycles, the map $P_{2} \rightarrow P_{0}$ determines the cohomology class by the isomorphism (1); in k^{2}, they correspond to (01), (01), ($\epsilon\left(a^{t-2}\right) 1$), and (10), respectively. Hence, $\hat{H}^{2}(G)$ is generated by x^{2} and y^{2}, and we have $x y=y x$. Furthermore, we also see from this description that

$$
x y= \begin{cases}x^{2}+y^{2} & \text { if } t=2 \\ x^{2} & \text { otherwise }\end{cases}
$$

But we will need explicit chain homotopies for all these relations later on, so let us start with the commutator relation $x y=y x$. Let \bar{p} be the 4 -periodic null-homotopy
for $\bar{x} \bar{y}+\bar{y} \bar{x}$ defined as follows:

Now let us compute \bar{y}^{3} :

Then we find a null-homotopy for that map in two steps: First, consider the 4-periodic extension of the map

and call it \bar{w}^{\prime}. Note that this will not quite be a homotopy for \bar{y}^{3}, because it yields the wrong result in degrees $P_{4 n+2} \rightarrow P_{4 n-1}$ for all $n \in \mathbb{Z}$. But if we put

$$
P_{8 n+j+3} \rightarrow P_{8 n+j}: \bar{w}_{8 n+j}= \begin{cases}\bar{w}_{8 n+j}^{\prime} & \text { if } j=0,1,2,3 \\ \left(\bar{w}^{\prime}+\bar{y}^{2}\right)_{8 n+j} & \text { if } j=4,5,6,7\end{cases}
$$

then we get an 8-periodic null-homotopy for \bar{y}^{3} which will be called \bar{w} and satisfies $\bar{s} \bar{w}+\bar{w} \bar{s}=\bar{y}^{2} \bar{s}$.

3.3. Computation for the quaternion group

Due to the different multiplicative relation in $\hat{H}^{*}(G)$, we need to consider the cases $t=2$ and $t \geqslant 4$ separately. We start with $t=2$. In this case, the map

can be extended (as we did with \bar{w} above) to an 8-periodic null-homotopy \bar{r} for $\bar{x}^{2}+\bar{x} \bar{y}+\bar{y}^{2}$ satisfying $\bar{s} \bar{r}+\bar{r} \bar{s}=(\bar{x}+\bar{y}) \bar{s}$. Notice that $\bar{x} \bar{y}^{2}: P_{3} \rightarrow P_{0}$ is the identity
map, which implies that $x y^{2} \neq 0 \in \hat{H}^{3}(G)$. Gathering the results we obtained so far, we recover the known fact that

$$
\hat{H}^{*}(G) \cong k\left[x, y, s^{ \pm 1}\right] /\left(x^{2}+y^{2}=x y, y^{3}=0\right)
$$

Let us remark here that all monomials in x and y of degree bigger than 3 vanish in this ring.

Proposition 3.4. Let α, β, γ be monomials in the (non-commutative) variables \bar{x}, \bar{y}, and assume that the degree $|\beta| \geqslant 3$. Then we have the following formulae:

$$
\begin{aligned}
\mathcal{C}(\bar{p} \alpha) & =0, & \mathcal{C}(\bar{r} \alpha)=0, & \mathcal{C}(\bar{w} \alpha)=0, \\
\mathcal{C}(\bar{x} \bar{p} \alpha) & =x y \mathcal{C}(\alpha), & \mathcal{C}(\gamma \bar{r} \alpha)=0, & \mathcal{C}(\gamma \bar{w} \alpha)=0, \\
\mathcal{C}(\bar{y} \bar{p} \alpha) & =0, & & \\
\mathcal{C}\left(\bar{x}^{2} \bar{p} \alpha\right) & =x^{2} y \mathcal{C}(\alpha), & & \\
\mathcal{C}\left(\bar{y}^{2} \bar{p} \alpha\right) & =0, & & \\
\mathcal{C}(\beta \bar{p} \alpha) & =0 . & &
\end{aligned}
$$

Proof. By Proposition 3.2.(iii) we can assume that the degree of β is at most 3 . Furthermore, we can assume $\alpha=1$ by Proposition 3.2.(iv). In order to determine $\mathcal{C}(\bar{a} \bar{w})$ for any given cocycle \bar{a} of degree n, we consider the composition

$$
P_{n+2} \xrightarrow{\bar{w}_{n}} P_{n} \xrightarrow{\bar{a}_{0}} P_{0} \xrightarrow{\epsilon} k
$$

as an element of $H^{n+2} \operatorname{Hom}_{k G}\left(P_{*}, k\right)$. Notice $\operatorname{im}\left(\bar{w}_{n}\right) \subset \operatorname{ker}(\epsilon) \cdot P_{n}$. Therefore, $\operatorname{im}\left(\bar{a}_{0} \circ\right.$ $\left.\bar{w}_{n}\right) \subset \operatorname{ker}(\epsilon) \cdot P_{0}=\operatorname{ker}(\epsilon)$, and hence $\epsilon \circ \bar{a}_{0} \circ \bar{w}_{n}=0$. The same proof works for \bar{r} instead of \bar{w}, so we are left with \bar{p}. For $\mathcal{C}(\bar{x} \bar{p})$, consider $\bar{x} \bar{p}$ in degree 0 ; i.e.,

$$
P_{2} \xrightarrow[\left(\begin{array}{ll}
0 \\
0 & 1
\end{array}\right)]{\xrightarrow{\bar{p}_{1}}} \quad P_{1} \xrightarrow[\left(\begin{array}{ll}
1 & 0 \tag{array}
\end{array}\right)]{\xrightarrow{\bar{x}_{0}}} \quad P_{0} .
$$

This equals (0 1) : $P_{2} \longrightarrow P_{0}$, which corresponds to $x y$. The remaining cases can be shown analogously.

Remark 3.5. Using \mathcal{C}, we can prove that there is no 4 -periodic null-homotopy for $\bar{x}^{2}+\bar{x} \bar{y}+\bar{y}^{2}$ as follows: Suppose there is a 4 -periodic null-homotopy; call it \hat{r}. Since $d(\hat{r}-\bar{r})=0, \bar{q}=\hat{r}-\bar{r}$ is a cocycle, representing some class q. By construction, $\bar{s} \bar{r}=$ $(\bar{r}+\bar{x}+\bar{y}) \bar{s}$. Since \hat{r} is 4-periodic, we have $\mathcal{C}(\bar{s} \bar{q})=\mathcal{C}(\bar{q} \bar{s})-\mathcal{C}((\bar{x}+\bar{y}) \bar{s})=q s-(x+$ $y) s$ by Proposition 3.2. On the other hand, $\mathcal{C}(\bar{s} \bar{q})=s q$, and hence $(x+y) s=0$, a contradiction. In a similar way, one shows that there is no 4-periodic null-homotopy for \bar{x}^{3}.

As a next step, we are going to define the functions f_{1} and f_{2}. A k-basis of $\hat{H}^{*}(G)$ is given by $\mathfrak{C}=\left\{s^{i}, x s^{i}, y s^{i}, x^{2} s^{i}, y^{2} s^{i}, x^{2} y s^{i} \mid i \in \mathbb{Z}\right\}$. Define the k-linear map f_{1} on the basis \mathfrak{C} by

$$
\begin{aligned}
f_{1}: \hat{H}^{*}(G) & \rightarrow \operatorname{Hom}_{k G}^{*}(P, P) \\
x^{\varepsilon} y^{\delta} s^{i} & \mapsto \bar{x}^{\varepsilon} \bar{y}^{\delta} \bar{s}^{i}
\end{aligned}
$$

for all $i, \varepsilon, \delta \in \mathbb{Z}$ for which the expression on the left-hand side lies in \mathfrak{C}. Let us define the set $\mathcal{B}=\left\{1, x, y, x^{2}, y^{2}, x^{2} y\right\}$. For all $b, c \in \mathcal{B}$ and $i, j \in \mathbb{Z}$, we have $f_{1}\left(b s^{i} c s^{j}\right)=$
$f_{1}(b c) \bar{s}^{i+j}$ and $f_{1}\left(b s^{i}\right) f_{1}\left(c s^{i}\right)=f_{1}(b) f_{1}(c) \bar{s}^{i+j}$, since \bar{s} commutes with both \bar{x} and \bar{y}. This implies that we can define f_{2} on $\mathcal{B} \times \mathcal{B}$ and then extend it to $\mathfrak{C} \times \mathfrak{C}$ via $f_{2}\left(b s^{i}, c s^{j}\right)=f_{2}(b, c) \bar{s}^{i+j}$. Now define f_{2} on $\mathcal{B} \times \mathcal{B}$ as follows:

$f_{2}(b, c)$	c		
	1	x	y
1	0	0	0
x	0	0	\bar{r}
b y	0	$\bar{p}+\bar{r}$	0
b x^{2}	0	$\bar{x} \bar{r}+\bar{r} \bar{y}+\bar{w}$	0
y^{2}	0	$\bar{y} \bar{p}+\bar{y} \bar{r}+\bar{w}+\bar{p} \bar{x}+\bar{x} \bar{p}+\bar{x} \bar{y}$	\bar{w}
$x^{2} y$	0	$\bar{x}^{2} \bar{p}+\bar{x} \bar{r} \bar{y}+\bar{r} \bar{y}^{2}+\bar{w} \bar{y}+\bar{x}^{2} \bar{y}$	$\bar{r} \bar{y}^{2}+\bar{x} \bar{w}+\bar{y} \bar{w}$

	x^{2}	y^{2}	$x^{2} y$
1	0	0	0
x	$\bar{x} \bar{r}+\bar{r} y+\bar{w}$	$\bar{r} \bar{y}+\bar{w}$	$\bar{x} \bar{r} \bar{y}+\bar{r} \bar{y}^{2}+\bar{w} \bar{y}$
b	$\bar{p} \bar{x}+\bar{x} \bar{p}+\bar{x} \bar{y}$	\bar{w}	$\bar{y} \bar{r} \bar{y}+\bar{p} \bar{y}^{2}+\bar{x} \bar{w}+\bar{y} \bar{w}$
x^{2}	$\bar{x} \bar{x}+\bar{x} \bar{y} \bar{x}+\bar{w} \bar{x}$	$\bar{r} \bar{y}^{2}+\bar{x} \bar{w}+\bar{y} \bar{w}$	$*$
y^{2}	$\bar{y}^{2} \bar{r}+\bar{y}^{2} \bar{p}+\bar{w} \bar{x}+\bar{w} \bar{y}$	$\bar{w} \bar{y}$	$*$
$x^{2} y$	$*$	$*$	$*$

Direct verification shows that $d f_{2}(b, c)=f_{1}(b c)-f_{1}(b) f_{1}(c)$ for all b, c for which f_{2} is defined. Each $*$ can be replaced by a suitable polynomial expression in $\bar{x}, \bar{y}, \bar{p}, \bar{r}, \bar{w}$ such that $d f_{2}(b, c)=f_{1}(b c)-f_{1}(b) f_{1}(c)$ holds for all b, c; as we will see, it does not matter which choice we make here. Our f_{2} will then already be simplified in the sense of Proposition 3.3, which is why some apparently unnecessary terms occur (e.g., the $\bar{x} \bar{y}$ in $\left.f_{2}\left(y, x^{2}\right)\right)$. Indeed, $\mathcal{C} \circ f_{2}=0$, as one can check using Proposition 3.4.

As a final step, we need to investigate the term

$$
m(a, b, c)=\mathcal{C}\left(f_{1}(a) f_{2}(b, c)\right)
$$

for all $a, b, c \in \mathfrak{C}$. Since $f_{2}(b, c)$ is 8 -periodic, we have

$$
m\left(a s^{2 h}, b s^{i}, c s^{j}\right)=m(a, b, c) s^{2 h+i+j}
$$

for all integers h, i, j and $a, b, c \in \mathfrak{C}$. Therefore, it is enough to consider all triples $(a, b, c) \in(\mathcal{B} \cup \mathcal{B} s) \times \mathcal{B} \times \mathcal{B}$.

Consider the case $a \in \mathcal{B}$. If $a=1$, then $\mathcal{C}\left(f_{1}(a) f_{2}(b, c)\right)=\mathcal{C}\left(f_{2}(b, c)\right)=0$. If $a \in$ $\left\{y^{2}, x^{2} y\right\}$, then $f_{1}(a) f_{2}(b, c)$ is a sum of terms $\beta \bar{p} \alpha, \beta \bar{r} \alpha, \beta \bar{w} \alpha$, and $\beta \bar{x} \bar{y} \alpha$, where α and β are monomials in \bar{x} and \bar{y}, the degree of β is at least 2 , and $\beta \neq \bar{x}^{2}$. Hence, $\mathcal{C}\left(f_{1}(a) f_{2}(b, c)\right)=0$ by Proposition 3.4.

Next, consider $a=x$. By Proposition 3.4 we get $\mathcal{C}\left(\bar{x} f_{2}(b, c)\right)$ from $f_{2}(b, c)$ by the following rule: Put an \bar{x} in front of all monomials in \bar{x} and \bar{y}. Then remove all summands containing \bar{p}, \bar{r}, or \bar{w}, except those beginning with $\bar{p}, \bar{x} \bar{p}$, or $\bar{y} \bar{p}$, where we replace the \bar{p} by $x y$, and $\bar{x} \bar{p}$ and $\bar{y} \bar{p}$ by $x^{2} y$. Finally, replace all \bar{x} and \bar{y} by x and y, respectively. Using this procedure, we get the following table for $\mathcal{C}\left(\bar{x} f_{2}(b, c)\right)$:

$\mathcal{C}\left(\bar{x} f_{2}(b, c)\right)$	1	x	y	x^{2}	y^{2}	$x^{2} y$
1	0	0	0	0	0	0
b	0	0	0	0	0	0
b	0	$x y$	0	$x y x+x^{2} y+x^{2} y$	0	$*$
x^{2}	0	0	0	$*$	$*$	$*$
y^{2}	0	$x^{2} y+x y x+x^{2} y+x^{2} y$	0	$*$	$*$	$*$
$x^{2} y$	0	$*$	$*$	$*$	$*$	$*$

Here each $*$ stands for some homogeneous polynomial in x, y of degree at least 4 . Almost all these expressions vanish, and the only remaining terms are

$$
\begin{aligned}
m(x, y, x) & =x y \\
m\left(x, y, x^{2}\right) & =x^{2} y
\end{aligned}
$$

For the case $a=y$ we use a similar method resulting from Proposition 3.4, and we end up with $m(y, b, c)=0$ for all $b, c \in \mathcal{B}$. Finally, for $a=x^{2}$ we find that the only non-zero term is $m\left(x^{2}, y, x\right)=x^{2} y$.

The case $a \in \mathcal{B} s$ is slightly more difficult. Consider the map

$$
h(b, c)=\bar{s} f_{2}(b, c) \bar{s}^{-1}-f_{2}(b, c)
$$

measuring how far away f_{2} is from 4-periodicity. From the equations

$$
\begin{aligned}
\bar{s} \bar{p} \bar{s}^{-1} & =\bar{p}, \\
\bar{s} \bar{r} \bar{s}^{-1} & =\bar{r}+\bar{x}+\bar{y} \\
\bar{s} \bar{w} \bar{s}^{-1} & =\bar{w}+\bar{y}^{2}
\end{aligned}
$$

we get the following table for h :

$h(b, c)$	1	x	c y	x^{2}	y^{2}	$x^{2} y$
1	0	0	0	0	0	0
x	0	0	$\bar{x}+\bar{y}$	\bar{x}^{2}	$\bar{x} \bar{y}$	$\bar{x}^{2} \bar{y}$
$b \quad y$	0	$\bar{x}+\bar{y}$	0	0	\bar{y}^{2}	$\bar{y} \bar{x} \bar{y}+\bar{x} \bar{y}^{2}$
$b x^{2}$	0	\bar{x}^{2}	0	\bar{x}^{3}	0	*
y^{2}	0	$\bar{y} \bar{x}$	\bar{y}^{2}	0	\bar{y}^{3}	*
$x^{2} y$	0	$\bar{x}^{2} \bar{y}$	0	*	*	*

where * denotes certain homogeneous polynomials in \bar{x} and \bar{y} of degree at least 4 . Applying \mathcal{C} to this table and using relations in $\hat{H}^{*}(G)$, we get

\mathcal{C}						
$\mathcal{C}(h(b, c))$	1	x	y	x^{2}	y^{2}	$x^{2} y$
1	0	0	0	0	0	0
6	x	0	0	$x+y$	x^{2}	$x^{2}+y^{2}$
b	y	0	$x+y$	0	0	$x^{2} y$
x^{2}	0	x^{2}	0	0	0	0
y^{2}	0	$x^{2}+y^{2}$	y^{2}	0	0	0
$x^{2} y$	0	$x^{2} y$	0	0	0	0

By definition of h, we have $h(b, c) \bar{s}=\bar{s} f_{2}(b, c)-f_{2}(b, c) \bar{s}$; hence

$$
\mathcal{C}(h(b, c)) s=\mathcal{C}\left(\bar{s} f_{2}(b, c)\right)-\underbrace{\mathcal{C}\left(f_{2}(b, c)\right)}_{0} s=m(s, b, c) .
$$

Therefore, this table shows the values $m(s, b, c)$ with $b, c \in \mathcal{B}$. On the other hand, we know that m is a Hochschild-cocycle; in particular, for all $a, b, c \in \mathcal{B}$,

$$
a m(s, b, c)+m(a s, b, c)+m(a, s b, c)+m(a, s, b c)+m(a, s, b) c=0
$$

Using $m(a, s, b) c=m(a, 1, b) s c=0, m(a, s, b c)=m(a, 1, b c) s=0$, and $m(a, s b, c)=$ $m(a, b, c) s$, we get

$$
\begin{equation*}
m(a s, b, c)=a m(s, b, c)+m(a, b, c) s . \tag{4}
\end{equation*}
$$

We know the right-hand side for all $a, b, c \in \mathcal{B}$. Gathering all results, we get the following theorem.

Theorem 3.6. The canonical element γ_{G} is represented by the Hochschild cocycle m which is given by the formulae

$$
\begin{array}{rlrl}
m(x, y, x) & =x y \\
m\left(x, y, x^{2}\right) & =x^{2} y & & \\
m\left(x^{2}, y, x\right) & =x^{2} y, & & \\
m(a, b, c) & =0 & & \text { for all other } a, b, c \in \mathcal{B}, \\
m(s a, b, c) & =\operatorname{sm}(a, b, c)+s a \mathcal{C}(h(b, c)), & & \text { where } \mathcal{C}(h(b, c)) \text { is given by }(3), \\
m\left(s^{2 i} a, s^{j} b, s^{l} c\right) & =s^{2 i+j+l} m(a, b, c) . & &
\end{array}
$$

The element $\gamma \in H H^{3,-1} \hat{H}^{*}(G)$ represented by m is non-trivial.
Proof. It remains to prove the non-triviality of γ. Assume $m=\delta g$ for some Hochschild $(2,-1)$-cochain g. Then,

$$
m(a, b, c)=(\delta g)(a, b, c)=a g(b, c)+g(a b, c)+g(a, b c)+g(a, b) c
$$

for all a, b, c. In particular,

$$
\begin{aligned}
& 0=m(y, x, y)=y g(x, y)+g(y x, y)+g(y, x y)+g(y, x) y, \\
& 0=m(x, y, y)=x g(y, y)+g(x y, y)+g\left(x, y^{2}\right)+g(x, y) y, \\
& 0=m(y, y, x)=y g(y, x)+g\left(y^{2}, x\right)+g(y, y x)+g(y, y) x, \\
& 0=m(x, x, x)=x g(x, x)+g\left(x^{2}, x\right)+g\left(x, x^{2}\right)+g(x, x) x \text {, } \\
& x y=m(x, y, x)=x g(y, x)+g(x y, x)+g(x, y x)+g(x, y) x .
\end{aligned}
$$

Adding up these equations, we get (using $\left.x^{2}+y^{2}=x y\right)$

$$
x y=x \cdot(g(x, y)+g(y, x)) .
$$

This implies $g(x, y)+g(y, x)=y$. On the other hand, interchanging the roles of x and y we get $g(x, y)+g(y, x)=x$, a contradiction.

3.4. Computation for the generalized quaternion group

From now on, we assume that $t \geqslant 4$. Then there is an 8-periodic null-homotopy \bar{v} for $\bar{x}^{2}+\bar{x} \bar{y}$, partially given by

satisfying $\bar{s} \bar{v}+\bar{v} \bar{s}=\bar{x}$. Here we write $u=c a^{2 t-2}+b a^{2 t-3}$ and need to prove

$$
\begin{array}{ll}
a u=a^{2 t-2} b+a^{2 t-1}, & c u=a^{2 t-2} b+a^{2 t-1} \\
u a=a^{2 t-2} b+N, & u b=a^{2 t-2} b .
\end{array}
$$

For instance, to prove the first formula, note that

$$
a u+a c a^{2 t-2}=a b a^{2 t-3}=a^{2 t-3} b a=a^{2 t-3} a c=c a^{2 t-2}=(a+b+a c) a^{2 t-2}
$$

The other formulae can be proved similarly.
Again one verifies that $x^{2} y \neq 0$, so that we recover the well-known structure of $\hat{H}^{*}(G)$ to be

$$
\hat{H}^{*}(G) \cong k\left[x, y, s^{ \pm 1}\right] /\left(y^{3}, x^{2}+x y\right)
$$

Using the variable $z=x+y$, we obtain the isomorphism

$$
\hat{H}^{*}(G) \cong k\left[x, z, s^{ \pm 1}\right] /\left(x z, x^{3}+z^{3}\right)
$$

In the following, we will frequently switch between these two descriptions.

Proposition 3.7. We have the following formulae:

$$
\begin{aligned}
\mathcal{C}(\bar{p} \alpha) & =0, & \mathcal{C}(\bar{v} \alpha)=0, & \mathcal{C}(\bar{w} \alpha)=0, \\
\mathcal{C}(\bar{x} \bar{p} \alpha) & =x^{2} \mathcal{C}(\alpha), & \mathcal{C}(\gamma \bar{v} \alpha)=0, & \mathcal{C}(\gamma \bar{w} \alpha)=0, \\
\mathcal{C}(\bar{y} \bar{p} \alpha) & =0, & & \\
\mathcal{C}\left(\bar{x}^{2} \bar{p} \alpha\right) & =x^{2} y \mathcal{C}(\alpha), & & \\
\mathcal{C}\left(\bar{y}^{2} \bar{p} \alpha\right) & =0, & & \\
\mathcal{C}(\beta \bar{p} \alpha) & =0, & &
\end{aligned}
$$

for any α, β, γ monomials in \bar{x}, \bar{y} with $|\beta| \geqslant 3$.
We omit the straightforward proof and turn to the definition of the maps f_{1} and f_{2}. As before, let $\mathcal{B}=\left\{1, x, y, x^{2}, y^{2}, x^{2} y\right\}$; we define f_{1} as

$$
f_{1}\left(s^{i} x^{a} y^{b}\right)=\bar{s}^{i} \bar{x}^{a} \bar{y}^{b}
$$

for all $a, b, i \in \mathbb{Z}$ for which $x^{a} y^{b}$ lies in \mathcal{B}. Now we define f_{2} on $\mathcal{B} \times \mathcal{B}$ as follows:

$f_{2}(b, c)$	c		
	1	x	y
1	0	0	0
x	0	0	\bar{v}
b y	0	$\bar{p}+\bar{v}$	0
$b x^{2}$	0	$\bar{x} \bar{v}$	0
y^{2}	0	$\bar{y} \bar{p}+\bar{p} \bar{y}+\bar{v} \bar{y}$	\bar{w}
$x^{2} y$	0	$\bar{x}^{2} \bar{p}+\bar{x} \bar{v} \bar{y}+\bar{v} \bar{y}^{2}+\bar{x} \bar{w}+\bar{x}^{2} \bar{y}$	$\bar{v} \bar{y}^{2}+\bar{x} \bar{w}$

Also put $f_{2}\left(s^{i} a, s^{j} b\right)=f_{2}(a, b) \bar{s}^{i+j}$ for all $i, j \in \mathbb{Z}$ and $a, b \in \mathcal{B}$. This function is chosen in such a way that $\mathcal{C}\left(f_{2}(a, b)\right)=0$ for all $a, b \in \mathcal{B}$. One verifies that

$$
\begin{aligned}
m(x, y, x) & =x^{2} \\
m\left(x^{2}, y, x\right) & =x^{2} y \\
m\left(x, y, x^{2}\right) & =x^{2} y
\end{aligned}
$$

and m vanishes on all other triples $(a, b, c) \in \mathcal{B}^{\times 3}$. Let us define m^{\prime} as follows:

$$
\begin{equation*}
m^{\prime}\left(s^{i} a, s^{j} b, s^{k} c\right)=s^{i+j+k} m(a, b, c) \quad \text { for all } a, b, c \in \mathcal{B} \tag{5}
\end{equation*}
$$

and define $h(a, b)=\bar{s} f_{2}(a, b) \bar{s}^{-1}-f_{2}(a, b)$. Then $\mathcal{C}(h(b, c))$ is given by the following table:

$\mathcal{C}(h(b, c))$						
	1	x	y	x^{2}	y^{2}	$x^{2} y$
1	0	0	0	0	0	0
6	x	0	0	x	x^{2}	x^{2}
$x^{2} y$						
y	0	x	0	0	y^{2}	0
x^{2}	0	x^{2}	0	0	0	0
y^{2}	0	x^{2}	y^{2}	0	0	0
$x^{2} y$	0	$x^{2} y$	0	0	0	0

So we get the following explicit description of m :

Theorem 3.8. The canonical element γ_{G} is represented by the Hochschild cocycle m
which is given by the formulae:

$$
\begin{array}{rlrl}
m(x, y, x) & =x^{2} \\
m\left(x^{2}, y, x\right) & =x^{2} y, & & \\
m\left(x, y, x^{2}\right) & =x^{2} y, & & \\
m(a, b, c) & =0 & & \text { for all other } a, b, c \in \mathcal{B}, \\
m(s a, b, c) & =\operatorname{sm}(a, b, c)+s a \mathcal{C}(h(b, c)), & & \text { where } \mathcal{C}(h(b, c)) \text { is given by }(6), \\
m\left(s^{2 i} a, s^{j} b, s^{l} c\right) & =s^{2 i+j+l} m(a, b, c) . & &
\end{array}
$$

The element $\gamma \in H H^{3,-1} \hat{H}^{*}(G)$ represented by m is non-trivial.
Proof. It remains to prove the non-triviality of γ. Suppose that m is a Hochschild coboundary; then $m=\delta g$ for some $g: \Lambda^{\otimes 2} \rightarrow \Lambda[-1]$. Adding up the equations

$$
\begin{aligned}
& x^{3}=m\left(x, z, x^{2}\right) \\
&=x g\left(z, x^{2}\right)+g(x, z) x^{2} \\
& 0=m\left(x^{2}, x, z\right)=x^{2} g(x, z)+g\left(x^{3}, z\right)+g\left(x^{2}, x\right) z \\
& 0=m\left(z, x^{2}, x\right)=z g\left(x^{2}, x\right)+g\left(z, x^{3}\right)+g\left(z, x^{2}\right) x \\
& 0=m\left(z, z^{2}, z\right)=z g\left(z^{2}, z\right)+g\left(z^{3}, z\right)+g\left(z, z^{3}\right)+g\left(z, z^{2}\right) z \\
& 0=z m(z, z, z)=z^{2} g(z, z)+z g\left(z^{2}, z\right)+z g\left(z, z^{2}\right)+z g(z, z) z
\end{aligned}
$$

and simplifying, we get the contradiction $x^{3}=0$.

4. Realizability of modules

4.1. Massey products

There is a strong connection between the canonical class γ and triple Massey products over $\hat{H}^{*}(G)$. This has already been noted in [2, Lemma 5.14], and we will generalize this fact to Massey products of matrices (as introduced by May [5]). We start with some notation. Let Λ be a graded k-algebra, and suppose that I is a graded set; i.e., a set together with a function $|\cdot|: I \rightarrow \mathbb{Z}$. For every such set, we define $I[n]$ to be the shifted graded set given by the same set with new grading $|i|_{[n]}=|i|+n$ for all $i \in I$. We denote by Λ^{I} the shifted free Λ-module

$$
\Lambda^{I}=\bigoplus_{i \in I} \Lambda[|i|]
$$

Then $\Lambda^{I}[n]=\Lambda^{I[n]}$. If J is another graded set, we can consider morphisms $f: \Lambda^{J} \rightarrow$ Λ^{I}. Every such map can be represented by a (possibly infinite) matrix $\left(f_{i, j}\right)_{i \in I, j \in J}$ with $\left|f_{i, j}\right|=|i|-|j|$. Such a matrix is column-finite; i.e., for every j there are only finitely many non-zero $f_{i, j}$'s. Let us denote by $\Lambda^{I, J}$ the set of such matrices. Every such yields a map $f: \Lambda^{J} \rightarrow \Lambda^{I}$.

A triple of matrices (A, B, C) will be called composable if there are graded sets I, J, K, L with $A \in \Lambda^{I, J}, B \in \Lambda^{J, K}, C \in \Lambda^{K, L}$. Every morphism $m: \Lambda^{\otimes 3} \rightarrow \Lambda[-1]$ can be extended to the module of all composable triples by putting

$$
m(A, B, C) \in \Lambda^{I[-1], L}: \quad m(A, B, C)_{i[-1], l}=\sum_{j \in J} \sum_{k \in K} m\left(a_{i j}, b_{j k}, c_{k l}\right) .
$$

From now on we assume $\Lambda=H^{*} \mathcal{A} \cong \hat{H}^{*}(G)$, where \mathcal{A} is the endomorphism- $\operatorname{dg} \mathrm{A}$ of some projective resolution of the trivial $k G$-module k. Also, let $m: \Lambda^{\otimes 3} \rightarrow \Lambda[-1]$ be some Hochschild cocycle representing the canonical element $\gamma \in H H^{3,-1} \hat{H}^{*}(G)$. Recall that (see, e.g., [5]) for every composable triple of matrices (A, B, C) with $A B=0$ and $B C=0$ the triple matric Massey product $\langle A, B, C\rangle$ is defined and a coset of $A \cdot \Lambda^{J[-1], L}+\Lambda^{I[-1], K} \cdot C$. Notice that there is no obstruction to generalizing May's definition to infinite matrices.
Proposition 4.1. For every composable triple (A, B, C) with $A B=0$ and $B C=0$, we have that $m(A, B, C) \in\langle A, B, C\rangle$.
Proof. We have

$$
\begin{aligned}
m(A, B, C) & =f_{1}(A) f_{2}(B, C)+f_{2}(A B, C)+f_{2}(A, B C)+f_{2}(A, B) f_{1}(C) \\
& =f_{1}(A) f_{2}(B, C)+f_{2}(A, B) f_{1}(C)
\end{aligned}
$$

and the last term represents one element of the Massey product.
A triple (A, B, C) will be called exact if it is composable and the sequence

$$
\Lambda^{I} \stackrel{A}{\leftarrow} \Lambda^{J} \stackrel{B}{\leftarrow} \Lambda^{K} \stackrel{C}{\leftarrow} \Lambda^{L}
$$

is exact.
Proposition 4.2. Let $A \in \Lambda^{I, J}$ be any matrix, and define $M=\operatorname{coker} A$. Then the following are equivalent:
(i) The module M is a direct summand of a realizable module.
(ii) For every composable triple (A, B, C) with $A B=0$ and $B C=0$, we have that $0 \in\langle A, B, C\rangle$.
(iii) For some exact triple (A, B, C), we have $0 \in\langle A, B, C\rangle$.

Proof. For (i) \Rightarrow (ii), let M be a direct summand of $H^{*} N$, where N is some dg- \mathcal{A} module. Then there are maps $M \xrightarrow{i} H^{*} N \xrightarrow{r} M$ with $r i=\operatorname{id}_{M}$. Let $\pi: \Lambda^{I} \rightarrow M$ be the projection map, and put $W=i \pi$. Then $W A=0$, so that $\langle W, A, B\rangle$ is defined, and the juggling formula (see [5, Corollary 3.2.(iii)]) yields $W\langle A, B, C\rangle=\langle W, A, B\rangle C$ as cosets of $W \Lambda^{I[-1], K} C$. Let $E: \Lambda^{K} \rightarrow H^{*} N[-1]$ be some element in $\langle W, A, B\rangle$. Since Λ^{K} is free, we know that the composition $r \circ E$ lifts as $\Lambda^{K} \xrightarrow{S} \Lambda^{I[-1]} \xrightarrow{\pi} M[-1]$ for some matrix S. But then

$$
\pi S C=r E C \in r\langle W, A, B\rangle C=r W\langle A, B, C\rangle=\pi\langle A, B, C\rangle
$$

This means that there is some matrix T such that $A T+S C \in\langle A, B, C\rangle$, which implies $0 \in\langle A, B, C\rangle$.

The implication (ii) \Rightarrow (iii) is obvious. For (iii) \Rightarrow (i), note that

$$
M \leftarrow \Lambda^{I} \stackrel{A}{\leftarrow} \Lambda^{J} \stackrel{B}{\leftarrow} \Lambda^{K} \stackrel{C}{\leftarrow} \Lambda^{L}
$$

is the beginning of a (shifted) free resolution of M. We have $m(A, B, C) \in \Lambda^{I[-1], L}$, and a representative of $\gamma \cup \operatorname{id}_{M} \in \widehat{\operatorname{Ext}}_{\Lambda}^{3,-1}(M, M)$ is given by the composition

$$
g: \Lambda^{L} \xrightarrow{m(A, B, C)} \Lambda^{I[-1]} \rightarrow(\text { coker } A)[-1]=M[-1] .
$$

By assumption and Proposition 4.1, $m(A, B, C)=A X+Y C$ for some matrices X
and Y, so that this composition equals

$$
\Lambda^{L} \xrightarrow{C} \Lambda^{K} \xrightarrow{Y} \Lambda^{I[-1]} \rightarrow M[-1],
$$

which in turn says that g is the coboundary of $\Lambda^{K} \xrightarrow{Y} \Lambda^{I[-1]} \rightarrow M[-1]$; hence $\gamma \cup$ $\operatorname{id}_{M}=0$. By Theorem 1.1 of [2], M is a direct summand of some realizable module.

4.2. The group of quaternions

Let $G=Q_{8}$. We shall make use of one of the implications of Proposition 4.2 to prove the existence of a $\hat{H}^{*} G$-module which detects the non-triviality of γ_{G} :

Theorem 4.3. The cokernel of the map

$$
\Lambda[-1] \oplus \Lambda[-1] \xrightarrow{\left(\begin{array}{cc}
y & x+y \\
x & y
\end{array}\right)} \Lambda \oplus \Lambda
$$

is not a direct summand of a realizable $\hat{H}^{*} G$-module.
Proof. Let $A=\left(\begin{array}{cc}y & x+y \\ x & y\end{array}\right)$; then $A^{2}=0$ and therefore the Massey product $\langle A, A, A\rangle$ is defined. We claim that it does not contain 0 . An explicit calculation using the description of m given in Theorem 3.6 yields

$$
m(A, A, A)=\left(\begin{array}{cc}
x^{2} & 0 \\
x^{2} & x^{2}
\end{array}\right)
$$

Let us denote the latter matrix by B; then by Proposition 4.2 we need to prove that B is not of the form $B=A Q+R A$ for some 2×2-matrices Q and R. To do so, define $D=\left(\begin{array}{cc}x & y \\ x+y & x\end{array}\right)$; then $A D=D A=0$. If we denote by tr the trace of a matrix, then we have

$$
\operatorname{tr}(B D)=\operatorname{tr}(A Q D)+\operatorname{tr}(R A D)=\operatorname{tr}(Q D A)+\operatorname{tr}(R A D)=0
$$

(note that these computations take place in a commutative ring). But

$$
\operatorname{tr}(B D)=\operatorname{tr}\left(\begin{array}{cc}
0 & * \\
* & x^{2} y
\end{array}\right)=x^{2} y \neq 0
$$

a contradiction.
Remark 4.4. The triple (A, A, A) is actually exact, but we do not need this.
In order to construct a module which is not a direct summand of a realizable one, it is often enough to consider "ordinary" Massey products, i.e., the case of 1×1 matrices; this is true for example in the cases $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ ([2, Example 7.7]) and $G=\mathbb{Z} / 3 \mathbb{Z}$ (characteristic 3, [2, Example 7.6]). In our present case, it is not that easy:

Proposition 4.5. Let $k=\mathbb{F}_{2}$ be the field with 2 elements. For all $a, b, c \in \hat{H}^{*}\left(Q_{8}\right)$ satisfying $a b=0$ and $b c=0$, we have $0 \in\langle a, b, c\rangle$.

Proof. By [2, Lemma 5.14], the class $m(a, b, c)$ is contained in the Massey product $\langle a, b, c\rangle$. Therefore, it is enough to show that $m(a, b, c)$ is an element of the indeterminacy

$$
a \cdot \hat{H}^{|b|+|c|-1}(G)+\hat{H}^{|a|+|b|-1}(G) \cdot c
$$

for all a, b, c. By construction of m it is enough to do so for those triples (a, b, c) and $(s a, b, c)$ with $a, b, c \in\left\{1, x, y, x+y, x^{2}, y^{2}, x^{2}+y^{2}, x^{2} y\right\}$ which satisfy $a b=0$ and $b c=0$.

If $|a|,|b| \leqslant 1$, then $a b=0$ implies $a=0$ or $b=0$ (here we use that $k=\mathbb{F}_{2}$). If $|b| \geqslant 2$, then $m(a, b, c)=0$ unless $b \in\left\{y^{2}, y^{2}+x^{2}\right\}$ and $a, c \in\{x, x+y\}$, in which case $m(a, b, c)=x^{2} y$ is divisible by a. So we can assume that $|b|=1$ and therefore $|a| \geqslant 2$ and $|c| \geqslant 2$, which implies $m(a, b, c)=0$ by Theorem 3.6.

For $m(s a, b, c)$, we have by (4)

$$
m(s a, b, c)=a m(s, b, c)+m(a, b, c) s
$$

We have already seen that the second summand lies in the indeterminacy; the first summand is contained in

$$
a \cdot \hat{H}^{|s|+|b|+|c|-1}(G)=s a \cdot \hat{H}^{|b|+|c|-1}(G)
$$

and therefore in the indeterminacy.
Remark 4.6. Note that the proposition is not true for arbitrary fields of characteristic 2: If the field k contains an element $\alpha \in k$ satisfying $\alpha^{2}+\alpha+1=0$, then the Massey product

$$
\left\langle\alpha x+y, \alpha^{2} x+y, \alpha x+y\right\rangle
$$

is defined and does not contain 0 .

4.3. Generalized quaternions

The picture changes as soon as we consider generalized quaternion groups $G=Q_{4 t}$ with $t \geqslant 4$. It turns out that there is no module detecting the non-triviality of the canonical element γ_{G}.

Let m be as in Theorem 3.8, and write $m=m^{\prime}+m^{\prime \prime}$, where m^{\prime} is defined in (5). Notice that m^{\prime} is a Hochschild cocycle, because it is defined to be s-periodic, so it is enough to check the cocycle condition on elements in \mathcal{B}. But on these elements, m^{\prime} agrees with m. Hence, m^{\prime} is a cocycle, and so is $m^{\prime \prime}$. Let γ^{\prime} and $\gamma^{\prime \prime}$ be the corresponding elements in $H H^{3,-1} \hat{H}^{*}(G)$. In the next two propositions we will show that, for every module $M, \gamma^{\prime} \cup \mathrm{id}_{M}=0$ and $\gamma^{\prime \prime} \cup \mathrm{id}_{M}=0$ in $\operatorname{Ext}^{3,-1}(M, M)$, respectively. It will then follow that M is a direct summand of a realizable module.
Proposition 4.7. For every Λ-module M we have $\gamma^{\prime} \cup \mathrm{id}_{M}=0$.
Proof. Notice that every matrix $A \in \Lambda^{I, J}$ can be uniquely written as a sum

$$
A=A_{1}+A_{x} x+A_{y} y+A_{x^{2}} x^{2}+A_{y^{2}} y^{2}+A_{x^{2} y} x^{2} y
$$

where the six matrices on the right-hand side lie in $k\left[s^{ \pm 1}\right]^{I, J[?]}$. The first step in our proof will be to find a suitable free resolution

$$
M \leftarrow \Lambda^{I} \stackrel{A}{\leftarrow} \Lambda^{J} \stackrel{B}{\leftarrow} \Lambda^{K} \stackrel{C}{\leftarrow} \Lambda^{L}
$$

of M. We begin with the definition of A. Let I be a minimal set of generators of the
right Λ-module M; i.e., I generates M but any proper subset of I does not generate M (in the case where M is not finitely generated, one has to use Zorn's lemma to prove the existence of $I)$. The inclusion $I \subseteq M$ induces a surjection $\Lambda^{I} \rightarrow M$. Let J be a minimal set of generators for the kernel of that map; then we obtain an exact sequence $\Lambda^{J} \xrightarrow{A} \Lambda^{I} \rightarrow M$. Taking K to be a minimal set of generators for the kernel of A, we get a map $\Lambda^{K} \xrightarrow{B} \Lambda^{J}$ onto that kernel, and finally we let L be a minimal set of generators for the kernel of B to obtain an exact sequence

$$
M \leftarrow \Lambda^{I} \stackrel{A}{\leftarrow} \Lambda^{J} \stackrel{B}{\leftarrow} \Lambda^{K} \stackrel{C}{\leftarrow} \Lambda^{L} .
$$

We claim that $A_{1}=0$. Assume the contrary and let $i \in I, j \in J$ be such that $\left(A_{1}\right)_{i, j} \neq$ 0 . Then $I-\{i\}$ generates M, which contradicts the choice of I. Similarly one shows that $B_{1}=0$ and $C_{1}=0$, and therefore $B_{y} C_{y}=(B C)_{y^{2}}=0$.

Now define $W=A_{x} B_{y} x+A_{x^{2}} B_{y} x^{2}$ and $V=B_{y} C_{y^{2}} y^{2}$. Then

$$
\begin{aligned}
A V= & A_{x} B_{y} C_{y^{2}} x^{3} \\
W C= & A_{x} B_{y} C_{x} x^{2}+A_{x} \underbrace{B_{y} C_{y}}_{0} x^{2}+A_{x} B_{y} C_{x^{2}} x^{3}+A_{x} B_{y} C_{y^{2}} x^{3} \\
& +A_{x^{2}} B_{y} C_{x} x^{3}+A_{x^{2}} \underbrace{B_{y} C_{y}}_{0} x^{3} .
\end{aligned}
$$

Therefore, $m^{\prime}(A, B, C)=A V+W C$, and by Proposition 4.2 we get $\gamma^{\prime} \cup \operatorname{id}_{M}=0$.

Proposition 4.8. For every Λ-module M, we have $\gamma^{\prime \prime} \cup \mathrm{id}_{M}=0$.

Proof. We start with a slight modification of the representative $m^{\prime \prime}$. Let us put $\mathcal{B}=$ $\left\{1, x, z, x^{2}, z^{2}, x^{3}\right\}$, and define the function g as follows: For all integers i, put

$$
\begin{aligned}
& g\left(s^{-1} x^{2}, s^{i} x\right)=s^{i-1} z^{2} \\
& g\left(s^{-1} x^{2}, s^{i} z\right)=s^{i-1} x^{2}
\end{aligned}
$$

and $g(a, b)=0$ on all other elements a, b in $\left\{s^{i} c \mid c \in \mathcal{B}\right\}$. Then $\tilde{m}=m^{\prime \prime}+\partial g$ defines a new representative for the element $\gamma^{\prime \prime}$. For all $a, b, c \in \mathcal{B}$ and $i, j \geqslant 1$, we have

$$
\begin{aligned}
& \tilde{m}\left(a, s^{i} b, s^{j} c\right)=m^{\prime \prime}\left(a, s^{i} b, s^{j} c\right)+a g\left(s^{i} b, s^{j} c\right)+g\left(s^{i} a b, s^{j} c\right) \\
&+g\left(a, s^{i+j} b c\right)+g\left(a, s^{i} b\right) s^{j} c
\end{aligned}
$$

and by definition of $m^{\prime \prime}$ and g each summand on the right-hand side vanishes. We also have that

$$
\begin{aligned}
\tilde{m}\left(s^{-1} a, s^{i} b, s^{j} c\right)= & m^{\prime \prime}\left(s^{-1} a, s^{i} b, s^{j} c\right)+s^{-1} a \underbrace{g\left(s^{i} b, s^{j} c\right)}_{0}+\underbrace{g\left(s^{i-1} a b, s^{j} c\right)}_{0} \\
& +g\left(s^{-1} a, s^{i+j} b c\right)+g\left(s^{-1} a, s^{i} b\right) s^{j} c .
\end{aligned}
$$

We claim that this is zero if $|a| \geqslant 2,|b| \geqslant 1$, and $|c| \geqslant 1$. In that case, we have $|b c| \geqslant 2$ and therefore $g\left(s^{-1} a, s^{i+j} b c\right)=0$, so that it remains to show $m^{\prime \prime}\left(s^{-1} a, s^{i} b, s^{j} c\right)=$
$g\left(s^{-1} a, s^{i} b\right) s^{j} c$, or equivalently,

$$
m^{\prime \prime}\left(s^{-1} a, b, c\right)=g\left(s^{-1} a, b\right) c
$$

To see this, we consider the several cases for a separately. If $a=x^{3}$, then

$$
m^{\prime \prime}\left(s^{-1} a, b, c\right)=s^{-1} x^{3} \mathcal{C}(h(b, c)),
$$

where h is as in Theorem 3.8. But $|h(b, c)| \geqslant 1$, so the last expression vanishes, as does $g\left(s^{-1} a, b\right) c$. For $a=z^{2}$ we get

$$
m^{\prime \prime}\left(s^{-1} a, b, c\right)=s^{-1} z^{2} \mathcal{C}(h(b, c))
$$

but $|h(b, c)| \geqslant 2$ or $\mathcal{C}(h(b, c))$ is divisible by x, and therefore again the right-hand side vanishes. The last case is $a=x^{2}$, where we need to show

$$
s^{-1} x^{2} \mathcal{C}(h(b, c))=g\left(s^{-1} x^{2}, b\right) c
$$

Both sides vanish for degree reasons unless $|b|=|c|=1$, and in that case both sides will equal $s^{-1} x^{3}$ if $b \neq c$, and 0 otherwise.

The rest is easy. We start with a free resolution of M as in the proof of Proposition 4.7. We can (and do) assume that the degree $|i|$ of every element $i \in I$ lies in $\{0,1,2,3\}$. Also, we assume that the degree of every element of J lies in $\{-1,0,1,2\}$, the degree of every element of K belongs to $\{-8,-7,-6,-5\}$, and the degree of every element of L is in $\{-15,-14,-13,-12\}$. Then we know that every non-zero entry of B and C is a linear combination of terms of the form $s^{i} b$ with $i \geqslant 1$ and $b \in \mathcal{B}$, $|b| \geqslant 1$. Furthermore, every non-zero entry of A is a linear combination of elements in $\mathcal{B} \cup\left\{s^{-1} x^{2}, s^{-1} z^{2}, s^{-1} x^{3}\right\}$. By what we have shown above, $\tilde{m}(A, B, C)=0$, and we are done.

References

[1] A. Adem and R.J. Milgram, Cohomology of finite groups, second edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, SpringerVerlag, Berlin, 2004.
[2] D. Benson, H. Krause, and S. Schwede, Realizability of modules over Tate cohomology, Trans. Amer. Math. Soc. 356 (2004), no. 9, 3621-3668.
[3] J.F. Carlson, Modules and group algebras, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.
[4] H. Cartan and S. Eilenberg, Homological algebra, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1999.
[5] J.P. May, Matric Massey products, J. Algebra 12 (1969), 533-568.

Martin Langer martinlanger@yahoo.com

Westfälische Wilhelms-Universität Münster, Institut für Mathematik, Einsteinstr. 62, 48149 Münster, Germany

[^0]: Received November 23, 2009, revised January 26, 2010; published on February 18, 2014
 2010 Mathematics Subject Classification: 20J06, 55S35.
 Key words and phrases: Tate cohomology, higher multiplication.
 Article available at http://dx.doi.org/10.4310/HHA.2014.v16.n1.a2
 Copyright © 2014, International Press. Permission to copy for private use granted.

