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NORMAL AND CONORMAL MAPS IN HOMOTOPY THEORY

EMMANUEL D. FARJOUN and KATHRYN HESS

(communicated by Daniel Dugger)

Abstract
Let M be a monoidal category endowed with a distinguished

class of weak equivalences and with appropriately compati-
ble classifying bundles for monoids and comonoids. We define
and study homotopy-invariant notions of normality for maps of
monoids and of conormality for maps of comonoids in M. These
notions generalize both principal bundles and crossed modules
and are preserved by nice enough monoidal functors, such as
the normalized chain complex functor.

We provide several explicit classes of examples of homotopy-
normal and of homotopy-conormal maps, when M is the cate-
gory of simplicial sets or the category of chain complexes over
a commutative ring.

Introduction

In a recent article [3], it was observed that a crossed module of groups could be
viewed as an up-to-homotopy version of the inclusion of a normal subgroup. Motivated
by this observation, the authors of [3] formulated a definition of h-normal (homotopy
normal) maps of simplicial groups, noting in particular that the conjugation map
from a simplicial group into its simplicial automorphism group is h-normal.

The purpose of this paper is to provide a general, homotopical framework for the
results in [3]. In particular, given a monoidal category M that is also a homotopical
category [2], under reasonable compatability conditions between the two structures,
we define and study notions of h-normality for maps of monoids and of h-conormality
for maps of comonoids (Definition 2.4), observing that the two notions are dual in a
strong sense. Our work is complementary to that of Prezma in [12].

The motivating example

The following definition of homotopy normal maps of discrete groups or, more
generally, of loop spaces, inspired our Definition 2.4. A map n : N → G of loop spaces
was said in [3] to be homotopy normal if there exists a connected, pointed space
W and a map w : BG → W, its “normality structure,” such that the usual Nomura-
Puppe sequence obtained by taking the Borel construction EN ×N G, denoted G//N
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below, can be extended to the right to form a fibration sequence, all of whose terms
are obtained from the map w by repeatedly taking homotopy fibres:

N
n // G // G//N // BN // BG

w // W. (1)

Once we have formulated the definition of h-normality and h-conormality, we pro-
vide several interesting classes of examples. We first show that trivial extensions of
monoids are h-normal and that trivial extensions of comonoids are h-conormal, at
least under a reasonable extra condition on the category M (Proposition 2.10). Con-
sidering the category of simplicial sets in particular, we then establish the following
characterization (Propositions 2.14, 2.16 and 2.17), which shows that Definition 2.4
does in fact generalize the motivating example.

Theorem A. 1. A morphism f of simplicial groups is h-normal if and only if there
is a morphism of reduced simplicial sets g : X → Y such that f is weakly equiv-
alent to the (Kan) loops on hfib(g) → X, where hfib(g) denotes the homotopy
fiber of g.

2. Any morphism of simplicial sets is h-conormal.

Note that part 1 of the theorem above is analogous to the fact that the normal
subgroups of a group G are exactly the kernels of surjective homomorphisms with
domain G. In Remark 2.9 we discuss the possibility of generalizing this result to other
monoidal categories, pointing out some of the obvious difficulties and indicating how
they might be avoided.

Chain complexes
Motivated by the classical problem of determining the effect of applying various

generalized homology theories to (co)fibration sequences, we consider next the ques-
tion of whether the normalized chains functor preserves h-(co)normality. The study of
h-(co)normality in the category of chain complexes over a commutative ring is more
delicate than in the simplicial case, as the tensor product of chain complexes is not
the categorical product. It does turn out that, just as any subgroup of an abelian
group is normal, any morphism of commutative chain algebras is h-normal; the dual
result holds as well (Proposition 2.20). Moreover, the normalized chains functor C∗

from simplicial sets to chain complexes preserves both h-normality and h-conormality,
at least under mild connectivity conditions (Proposition 2.21 and Corollary 2.22).

Theorem B. 1. If f : G → G′ is an h-normal morphism of reduced simplicial
groups, then C∗f : C∗G → C∗G

′ is an h-normal morphism of chain algebras.

2. If g : X → Y is a simplicial morphism, where Y is 1-reduced and both X and Y
are of finite type, then C∗g : C∗X → C∗Y is an h-conormal morphism of chain
coalgebras.

Twisting structures
We formulate the concepts of h-normality and h-conormality within the frame-

work of twisted homotopical categories, i.e., categories endowed with both a monoidal
and a homotopical structure, where the compatability between the two structures
is mediated by a twisting structure (Definition B.12 and B.14) that satisfies certain
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additional axioms (Definition 1.5). The homotopical structure required is consider-
ably less rigid than that of a Quillen model category, and the compatibility between
the homotopical and monoidal structure is of a rather different nature from that of
a monoidal model category: we require little more than the capability to compute
certain certain equalizers and coequalizers in a homotopy-meaningful manner.

A twisting structure on a monoidal category is essentially a theory of principal
and coprincipal bundles in the monoidal category, based on a looping/delooping (or
cobar/bar) adjunction

Ω: comon ⇄ mon : B

between certain full subcategories of comonoids and of monoids in M. The required
compatibility with homotopical structure insures that the total object of the classi-
fying bundle of a monoid or of a comonoid is homotopically trivial.

If M is a twisted homotopical category, then every monoid map f : A → A′ induces
an associated Nomura-Puppe sequence (Definition B.17)

A
f
−→ A′ πf

−−→ A′//A
δf
−→ BA

Bf
−−→ BA′,

where A′//A is a model for the homotopy quotient of f built from the classifying
bundle of A. Similarly, every comonoid map g : C ′ → C induces an associated dual
Nomura-Puppe sequence

ΩC ′ Ωg
−−→ ΩC

∂g
−→ C\\C ′ ιg

−→ C ′ g
−→ C,

where C\\C ′ is a model for the homotopy kernel of g built from the classifying bun-
dle of C. Our definition of h-normality and h-conormality is formulated in terms
of these sequences (cf. Remark 2.5), whence the importance of the following result
(Lemma 1.10): for every monoid morphism f : A → A′ and for every comonoid mor-
phism g : C ′ → C, there are the following corresponding commuting diagrams:

ΩBA
ΩBf //

∼

��

ΩBA′

∼

��

∂Bf // BA′\\BA

∼

��

ιBf // BA

=

��

Bf //
BA′

=

��
A

f // A′
πf // A′//A

δf // BA
Bf //

BA′

and

ΩC ′

=

��

Ωg // ΩC

=

��

∂g // C\\C ′

∼

��

ιg // C ′

∼

��

g // C

∼

��
ΩC

Ωg // ΩC
πΩg// ΩC//ΩC ′

δΩg //
BΩC ′

BΩg // BΩC.

In other words, the Nomura-Puppe sequence of f is weakly equivalent to the dual
Nomura-Puppe sequence of Bf , and the dual Nomura-Puppe sequence of g is weakly
equivalent to the Nomura-Puppe sequence of Ωg.

We show in section 1.3 that both the category of reduced simplicial sets and the
category of chain complexes over a commutative ring that are degreewise finitely
generated projective are twisted homotopical categories.
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The last two sections of this paper consist of appendices, containing necessary
algebraic and homotopical preliminaries. We recall the notions of twisting functions
and twisting cochains in the first appendix. We encourage the reader with questions
about the terminology and notation concerning simplicial sets and chain complexes
used throughout this paper to consult this appendix. The second appendix consists
of a review and further elaboration of the theory of twisting structures as developed
in [4] and [8], of which twisting functions and twisting cochains provide the primary
examples.

Perspectives
The following possible extensions and applications of the theory of h-normality

and h-conormality should be interesting to study.

Functoriality Under what conditions does a homotopical functor between twisted
homotopical categories preserve h-normal and/or h-conormal morphisms? In
particular, is h-(co)normality invariant under localization, in the spirit of the
recent article [1] and Prezma’s results in [12]?

Bimonoids It should be possible to develop a rich theory of “homotopy exact”
sequences of bimonoids in a twisted homotopical category, since a morphism
of bimonoids can be h-normal or h-conormal. We expect that Segal structures
should prove very useful to this end, in describing “up to homotopy” multiplica-
tive and comultiplicative structures.

Other operads To what operads other than the associative operad can we extend
the theory of h-normality of algebra morphisms over operads? It seems likely
that in the chain complex case, an analogous theory makes sense at least for
any Koszul operad, built on the associated cobar/bar adjunction.

Other categories What other interesting categories admit a reasonable twisted
homotopical structure? For example, it was proved in [8] that the category of
symmetric sequences of complexes that are degreewise finitely generated projec-
tive, endowed with its composition monoidal structure, is a twistable category
admitting a twisting structure extending the usual cobar/bar adjunction, which
is almost certainly appropriately compatible with its homotopical structure. If
so, then the study of normal morphisms of operads should prove interesting.

Related work
In [12] Prezma studied h-normal maps of (topological) loop spaces. In particular,

he characterized h-normal loop maps Ωf : ΩX → ΩY as those for which there exists
a simplicial loop space Γ• such that Γ0 ∼ ΩY and the canonical actions of ΩY on
Γ• and on Bar•(ΩX,ΩY ) are equivalent. It follows from this characterization that if
L is an endofunctor of the category of topological spaces that preserves homotopy
equivalences and such that the natural map L(X × Y ) → L(X)× L(Y ) is a homotopy
equivalence for all X and Y , then L(Ωf) is h-normal whenever Ωf is h-normal.

Notation and conventions
• Let M be a small category, and let A,B ∈ ObM. In these notes, the set of

morphisms from A to B is denoted M(A,B). The identity morphism on an
object A is often denoted A as well.
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• If X is a simplicial set, the C∗X denotes the normalized chain complex on X,
endowed with its usual coalgebra structure.

• If k is a commutative ring, then Chk is the category of chain complexes of k-
modules, while dgProj

k
is the full subcategory determined by those complexes

that are degreewise k-projective and finitely generated.

• The symbols η and ε are always used to denote either the unit and augmentation
of a monoid or the coaugmentation and counit of a comonoid. The sense in which
they are used on each occasion should be clear from context.

1. Twisted homotopical categories

In this section we consider categories admitting twisting structures that are com-
patible in a reasonable way with a notion of weak equivalence. We refer the reader
to Appendix B for a detailed introduction to twisting structures, where we fix all of
the notation and terminology used in the remainder of the paper.

1.1. Homotopical categories
In [2], the authors developed and studied the following, minimalist framework for

doing homotopy theory.

Definition 1.1. A homotopical category consists of a category M together with a
distinguished class W of morphisms containing all identity maps and such that the
“two out of six” property holds, i.e., for any sequence of morphisms

W
r
−→ X

s
−→ Y

t
−→ Z

in M,

sr, ts ∈ W =⇒ r, s, t, tsr ∈ W.

The elements of W are called weak equivalences and denoted
∼
−→.

A functor between homotopical categories that preserves weak equivalences is also
called homotopical.

A homotopical category has just enough structure to allow for a homotopy theory
of its objects and morphisms, i.e., the following definition makes sense.

Definition 1.2. Let (M,W) be a homotopical category. Its homotopy category, deno-
ted HoM, is the localization of M at W.

One can construct HoM explicitly, setting ObHoM = ObM, while for all objects
X and Y , HoM(X,Y ) is the set of equivalence classes of zigzags of arrows in M
linking X to Y such that every backward arrow is a weak equivalence, under the
equivalence relation generated by omitting identity maps, replacing adjacent maps
with the same orientation by their composite, and omitting pairs of adjacent maps
with opposite orientation but the same label.

Examples 1.3. 1. The category of simplicial sets, endowed with its usual weak
equivalences, is a homotopical category
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2. The category of chain complexes over any ring is a homotopical category when
W is chosen to be the class of all quasi-isomorphisms, i.e., chain maps inducing
isomorphisms in homology.

3. LetD be a small category. If (M,W) is a homotopical category, then the diagram
category MD is as well, where the associated weak equivalences are the natural
transformations τ : F → G such that each component τd : F (d) → G(d) is a weak
equivalence, where d ∈ ObD.

We now specify the compatibility we require between homotopical structure and
twisting structure. Note that when we say that a morphism of structured objects in
M (i.e., of monoids, comonoids, modules, etc.) is a weak equivalence, we mean that
the underlying morphism in M is a weak equivalence.

Remark 1.4. Let (M,W) be a homotopical category, which is also endowed with a
monoidal structure. We can then define the structure of a homotopical category on
Bun by saying that a morphism

A

α

��

i // N

γ

��

p // C

β

��
A′ i′ // N ′

p′

// C ′

of mixed bundles is a weak equivalence if α, β, and γ are all weak equivalences.

1.2. Twisting structures and weak equivalences
We now formulate the main definition of this section, which consists of a sequence

of compatibility requirements between the given twisting structure and the class of
weak equivalences.

Definition 1.5. A twisted homotopical category is a homotopical category (M,W)
such M also admits a monoidal stucture (M,⊗, I) endowed with a twistable triple
(mon, comon,mix) and a twisting structure (Ω,B, ζ, ξ), which is compatible with
W in the following sense.

1. the unit and counit of the (Ω,B)-adjunction are natural weak equivalences;

2. Ω and B are both homotopical functors;

3. for all A ∈ Obmon, the composite

EA
qA
−−→ BA

εBA−−−→ I

is a weak equivalence;

4. for all C ∈ comon, the composite

I
ηΩC
−−→ ΩC

iC−→ PC

is a weak equivalence;

5. if f : A
∼
−→ A′ is weak equivalence in mon, and ζ = (A → N → C) is any clas-

sifiable biprincipal bundle, then the natural map ζ → f∗(ζ) (cf. Remark B.11)
is a weak equivalence of bundles; and
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6. if g : C ′ ∼
−→ C is weak equivalence in comon, and ζ = (A → N → C) is any clas-

sifiable biprincipal bundle, then the natural map g∗(ζ) → ζ (cf. Remark B.11)
is a weak equivalence of bundles.

Remark 1.6. To simplify the presentation henceforth, we denote twisted homotopical
categories simply as M and suppress explicit mention of the rest of the structure in
the notation.

Remark 1.7. Since qA : EA → BA and εBA : BA → I are both morphisms of right
A-modules (cf. Remark B.8), condition 3 says that EA is resolution of I as a right
A-module. Similarly, condition 4 implies that PC is a resolution of I as a left C-
comodule.

Remark 1.8. Condition 5 implies that a commutative diagram in mon

A

α∼

��

f // A′

α′∼

��
B

g // B′

,

in which the vertical arrows are weak equivalences, induces a weak equivalence of
Borel quotients

α′//α : A′//A
∼
−→ B′//B,

since (α, α′)∗ : f∗
(

ζ(A)
)

→ g∗
(

ζ(B)
)

can be identified with the composite

f∗
(

ζ(A)
) ∼
−→ α′

∗f∗
(

ζ(A)
)

∼= (Bα)∗(Bg)∗
(

ζ(B′)
) ∼
−→ (Bg)∗

(

ζ(B′)
)

.

The factorization above depends heavily on the twistability of (mon, comon,mix),
as well as on axiom 2 of Definition B.14, which together give rise to a sequence of
isomorphisms

α′

∗f∗
(

ζ(A)
)

∼= (α′f)∗
(

ζ(A)
)

= (gα)∗
(

ζ(A)
)

∼=
(

B(gα)
)

∗
(

ζ(B′)
)

∼= (Bα)∗(Bg)∗
(

ζ(B′)
)

.

We are therefore justified in regarding the Borel quotient of a monoid map in
a twisted homotopical category as its homotopy quotient, as the construction is an
invariant of weak equivalence, especially since condition 2 can be understood to mean
that EA is right A-module resolution of I, as in the previous remark.

Similarly, it follows from condition 6 that a commutative diagram in comon

C

β∼

��

f // C ′

β′∼

��
D

g // D′

,

in which the vertical arrows are weak equivalences, induces a weak equivalence of
Borel kernels

β\\β′ : C\\C ′ ∼
−→ D\\D′,

whence our vision of the Borel kernel as a homotopy kernel, when working in a twisted
homotopical category. Interpreting condition 3 to mean that PC is a left C-comodule
resolution of I, as in the previous remark, further substantiates this vision.
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Remark 1.9. If M is a twisted homotopical category, then so is the category MD of
D-shaped diagrams in M, for any small category D. All required structure is defined
objectwise in MD.

The lemma below, which relates the Nomura-Puppe and dual Nomura-Puppe
sequences, is amusing in its own right and proves very helpful in understanding the
relationship between normality and conormality up to homotopy in the next section.

Lemma 1.10. Let M be a twisted homotopical category.

1. For every morphism f : A → A′ in mon, there is a weak equivalence of biprin-
cipal bundles

ΩBA′

vA ∼

��

// BA′\\BA

∼

��

// BA

=

��
A′ // A′//A // BA.

2. For every morphism g : C ′ → C in comon, there is a weak equivalence of biprin-
cipal bundles

ΩC

=

��

// C\\C ′

∼

��

// C ′

uC ∼

��
ΩC // ΩC//ΩC ′ //

BΩC ′.

Proof. We prove 1 and leave the dual proof of 2 to the reader. There is a diagram of
morphisms of biprincipal bundles

BA′\\BA

''PPPPPPPPPPPPP

(Bf)∗
(

ξ(BA′)
)

∼

��

=
(

ΩBA′ //

vA ∼

��

66nnnnnnnnnnnn

BA�BA′PBA′ //

∼

��

BA
)

=

��
(vA)∗(Bf)∗

(

ξ(BA′)
)

∼=

��

=
(

A′ //

=

��

BA�BA′PBA′ ⊗ΩBA′ A′ //

=

��

BA
)

=

��
(Bf)∗

(

ζ(A′)
)

∼=

��

=
(

A′ //

=

��

BA�BA′EA′ //

∼=

��

BA
)

=

��
f∗
(

ζ(A)
)

=
(

A′ //

((PPPPPPPPPPPPPP EA⊗A A′ // BA
)

.

A′//A

77nnnnnnnnnnnnn

The topmost vertical arrow is a weak equivalence by axioms 1 and 5 of Defini-
tion 1.5. The second vertical arrow is the isomorphism obtained by applying (Bf)∗
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to the isomorphism guaranteed by axiom 1 of Definition B.14 and recalling that
(vA)∗(Bf)∗ = (Bf)∗(vA)∗ (Remark B.10). Finally, the third vertical arrow is exactly
the isomorphism guaranteed by the axiom 2 of Definition B.14.

1.3. Examples

1.3.1. Simplicial sets

It is well known that the unit and counit of the (G,W)-adjunction are natural weak
equivalences, that W and G are homotopical, and that WG×νG

G and X ×τX GX
are both acyclic [10]. Finally, we can apply the long exact homotopy sequence of a
twisted cartesian product to prove conditions 5 and 6 of Definition 1.5, as follows.

Let f : G → G′ be a weak equivalence of simplicial groups, and let

ζ = (G → X ×νGg G → X)

be a biprincipal bundle classified by a simplicial map g : X → WG. The natural mor-
phism of bundles from ζ to f∗(ζ) is then

G //

f ∼

��

X ×νGg G //

X×f

��

X

=

��
G′ // X ×fνGg G

′ // X.

Since biprincipal bundles are, in particular, twisted cartesian products, and two of
the three vertical maps are weak equivalences, the third must be as well, proving
condition 5. Condition 6 is proved similarly.

1.3.2. Chain complexes

The unit and counit of the (Ω,B)-adjunction are well known to be natural weak
equivalences, just as Ω and B are well known to be homotopical. Moreover, BA⊗tB

A
and C ⊗tΩ ΩC are, respectively, the acyclic bar and acyclic cobar constructions, which
are easily seen to be contractible. Finally, conditions 5 and 6 can be proved by a simple
argument using Zeeman’s comparison theorem, as follows.

Let f : A → A′ be a quasi-isomorphism of chain algebras, and let

ζ = (A → C ⊗tBg A → C)

be a biprincipal bundle classified by a chain coalgebra map g : C → BA. The natural
morphism of bundles from ζ to f∗(ζ) is then

A //

f ∼

��

C ⊗tBg A //

C⊗f

��

C

=

��
A′ // C ⊗ftBg A

′ // C.

Applying Zeeman’s comparison theorem to the obvious filtration on the total object
of each bundle, we see that since two of the three vertical maps are weak equivalences,
the third must be as well, proving condition 5. Condition 6 is proved similarly.
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2. H-normal and h-conormal maps

In this section we define homotopical notions of normality and conormality in a
twisted homotopical category, inspired by the example of the Nomura-Puppe sequence
for loop spaces and discrete groups (1). We study the elementary properties of these
notions and provide explicit examples of classes of such maps in the categories of
simplicial sets and of chain complexes.

Throughout this section we suppose thatM is a twisted homotopical category, with
respect to some fixed twistable triple (mon, comon,mix). All homotopy quotients
and homotopy kernels are defined in terms of the fixed twisting structure (Ω,B, ζ, ξ)
on M.

2.1. Definitions and elementary properties

Our definition of homotopy normality is motivated by the fact that a subgroup
N of a group G is normal if and only if the quotient set G/N of orbits of the N -
action on G admits a group structure such that the quotient map G → G/N is a
homomorphism. We must, however, replace quotients by homotopy quotients and
consider multiplicative structure up to homotopy, in some suffciently rigid sense.

We formulate h-normality in terms of the following sorts of sequences.

Definition 2.1. An extended bundle in M is a sequence

A
j
−→ M

d
−→ N

p
−→ C

of morphisms in M, where

• A ∈ Obmon;

• M is a right A-module, and j is a morphism of A-modules;

• C ∈ Ob comon; and

• N is a left C-comodule, and p is a morphism of C-comodules.

A morphism of extended bundles consists of a commuting diagram in M

A

α

��

j // M

µ

��

d // N

ν

��

p // C

β

��
A′

j′ // M ′ d′
// N ′

p′

// C ′

in which the rows are extended bundles, α is a monoid morphism, µ is a morphism
of A-modules, β is a comonoid morphism, and ν is a morphism of C ′-comodules.

A morphism (α, µ, ν, β) : τ → τ ′ of extended bundles is an elementary equivalence,
denoted τ

∼
−→ τ ′, if every component is a weak equivalence. An equivalence of extended

bundles is a zigzag of elementary equivalences.

Remark 2.2. Note that the morphism d in the definition of extended bundle is
assumed only to be a morphism in M.

The main examples of extended bundle sequences arise from the Nomura-Puppe
and dual Nomura-Puppe sequences (Definition B.17).
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Example 2.3. For any morphism f : A → A′ in mon, the extended bundle

τ(f) = (A′ πf
−−→ A′//A

δf
−→ BA

Bf
−−→ BA′)

is the truncated Nomura-Puppe sequence associated to f . Dually, for any morphism
g : C ′ → C in comon, the extended bundle

θ(g) = (ΩC ′ Ωg
−−→ ΩC

∂g
−→ C\\C ′ ιg

−→ C ′)

is the truncated dual Nomura-Puppe sequence associated to g.

We can now formulate our definition of homotopy normality and conormality.

Definition 2.4. Let f : A → A′ and g : C ′ → C be morphisms in mon and comon,
respectively. The pair (f, g) is normal if the extended bundles τ(f) and θ(g) are equiv-
alent.

If (f, g) is a normal pair, then f is h-normal with associated normality structure
g, while g is h-conormal with associated conormality structure f .

Remark 2.5. The definition above implies that if (f, g) is a normal pair, then the dual
Nomura-Puppe sequence of g and the Nomura-Puppe sequence of f (the second and
next-to-last columns below) fit into the following sort of commutative diagram.

A

f

��
ΩC ′

Ωg

��

ΩC ′

Ωg

��

=
oo •

��

∼
oo

∼
// · · · •

��

∼
oo

∼
// A′

πf

��

ΩBA′
∼

oo

∂Bf

��
ΩC

πΩg

��

ΩC

∂g

��

=
oo •

��

∼
oo

∼
// · · · •

��

∼
oo

∼
// A′//A

δf

��

BA′\\BA

ιBf

��

∼
oo

ΩC//ΩC ′

δΩg

��

C\\C ′

ιg

��

∼
oo •

��

∼
oo

∼
// · · · •

��

∼
oo

∼
// BA

Bf

��

BA=
oo

Bf

��
BΩC ′ C ′

g

��

∼
oo •∼

oo
∼

// · · · •∼
oo

∼
//
BA′ BA′

=
oo

C.

Note that we have applied Lemma 1.10 to obtain the first and last columns of equiv-
alences above.

Looking at the second and fifth columns (from the right) of this diagram, we
see that a monoid morphism f : A → A′ is h-normal if its associated Nomura-Puppe
sequence can be recovered, up to weak equivalence, from the dual Nomura-Puppe
sequence of a comonoid map. In particular, the Borel quotient A′//A of f is weakly
equivalent to a monoid.

Dually, a comonoid morphism g is h-conormal if its associated dual Nomura-Puppe
sequence can be recovered, up to homotopy, from the Nomura-Puppe sequence of a
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monoid map. In particular, the Borel kernel C\\C ′ of g is weakly equivalent to a
comonoid.

Remarks 2.6. 1. Though we do not provide a general treatment of functoriality
(namely, behavior under monoidal functors) of h-normality and h-conormality
in this paper, the relation between the simplicial and chain complex examples
treated later in this section gives an indication of the sort of results that can
be expected. In general, however, if (f, g) is a normal pair M and L : M → M′

is a monoidal, homotopical functor between twisted homotopical categories, it
may happen that the map Lf is normal, though its normality structure might
not be Lg.

2. It is an immediate consequence of Definition 2.4 that h-normality and h-conorm-
ality are strictly dual notions.

3. Remark 1.8 implies that h-normality and h-conormality are homotopy invariant
notions.

4. There may be many, nonequivalent (co)normality structures associated to a
given h-(co)normal map. For example, in the case of discrete groups, several
distinct crossed module structures may correspond to the same homomorphism
N → G.

We next prove a result giving a sufficient condition for h-normality, which clarifies
somewhat the relation between our definition of h-normality and that of normal
subgroups: if the homotopy quotient of a monoid morphism f itself admits a “nice
enough” monoid structure, then f is h-normal. Note that this implication is usually
not reversible, as the homotopy quotient of an h-normal map is supposed only to
be weakly equivalent as a module to a monoid. The existence of a such a “nice”
monoid structure on the homotopy quotient can thus be viewed as a strong variant
of h-normality.

Lemma 2.7. Let f : A → A′ be a morphism in mon. If A′//A admits a monoid struc-
ture with respect to which πf : A

′ → A′//A is a monoid morphism, and there is a weak

equivalence of left BA′-comodules π̃ : (A′//A)//A′ ∼
−→ BA such that

A′//A

=

��

ππf // (A′//A)//A′

∼ π̃

��

δπf //
BA′

=

��
A′//A

δf // BA
Bf //

BA′

commutes, then f is h-normal with normality structure Bπf : BA′ → B(A′//A).

Proof. Recall from Lemma 1.10 that there is a weak equivalence of BA′-comodules
B(A′//A)\\BA′ ∼

−→ (A′//A)//A′, fitting into a weak equivalence of biprincipal bun-
dles. There is therefore an equivalence of extended bundles
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ΩBA′
vA′

∼
//

ΩBπf

��

A′
=

//

πf

��

A′

πf

��
ΩB(A′//A)

∂Bπf

��

vA′//A

∼
// A′//A =

//

ππf

��

A′//A

δf

��
B(A′//A)\\BA′

ιBπf

��

∼
// (A′//A)//A′

∼
π̃ //

δπf

��

BA

Bf

��
BA′ = //

BA′ = // BA′,

implying that f is h-normal with normality structure Bπf : BA′ → B(A′//A).

The dual condition, which we prove holds in the simplicial case in Lemma 2.15, is
formulated as follows; we leave its strictly dual proof to the reader.

Lemma 2.8. Let g : C ′ → C be a morphism in comon. If C\\C ′ admits a comonoid
structure with respect to which ιg : C\\C ′ → C ′ is a morphism of comonoids, and
there is a weak equivalence of ΩC ′-modules ι̃ : ΩC → C ′\\(C\\C ′) such that

ΩC ′

=

��

Ωg // ΩC

∼ ι̃

��

∂g // C\\C ′

=

��
ΩC ′

∂ιg // C ′\\(C\\C ′)
ιιg // C\\C ′

commutes, then g is h-conormal with conormality structure Ωιg : Ω(C\\C ′) → ΩC ′.

Remark 2.9 (Normality of homotopy kernel maps). Continuing the comparison be-
tween the notions of normal subgroup and of h-normal monoid morphism, and moti-
vated by the characterization of normal subgroups as kernels, we can ask under what
conditions the homotopy kernel of a morphism of bimonoids is h-normal. Note that we
cannot even formulate such a question for a morphism of monoids, since the construc-
tion of the homotopy kernel requires comultiplicative structure. The comultiplicative
structure comes for free in the case of group homomorphisms, since the diagonal map
endows any group with the structure of a bimonoid in the category of sets.

It is not difficult to see that ifH is a bimonoid inM such that PH admits a monoid
structure with respect to which both its right ΩH-action and left H-coaction, as well
as the morphisms in the biprincipal bundle

ξ(H) = (ΩH
iH−−→ PH

pH
−−→ H),

are monoid morphisms, then for all bimonoid maps g : H ′ → H, the induced morphism

ιg : H\\H ′ → H ′

is a monoid morphism. In this case, it makes sense therefore to ask when ιg is h-
normal.
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Dually if H is a bimonoid in M such that EH admits a comonoid structure with
respect to which both its right H-action and left BH-coaction, as well as the mor-
phisms in the biprincipal bundle

ζ(H) = (H
jH
−−→ EH

qH
−−→ BH)

are comonoid morphisms, then for all bimonoid maps f : H → H ′, the induced mor-
phism

πf : H
′ → H ′//H

is a comonoid morphism. The question of when πf is h-conormal is thus meaningful
in this case.

It follows from Corollary 3.6 in [5] and its obvious dual that the conditions on PH
and EH formulated above hold when M = dgProj

k
and H is any connected chain

Hopf algebra. We intend to study h-normality of homotopy kernels and h-conormality
of homotopy quotients in dgProj

k
and similar categories in an upcoming paper.

2.2. Examples

We now present examples of h-normal and h-conormal maps. We begin with a class
of examples in a general twisted homotopical category, then consider the particular
cases of simplicial sets and of chain complexes.

2.2.1. A general class of examples

We show that “trivial extensions” of monoids are h-normal, while “trivial extensions”
of comonoids are h-conormal, at least under an additional hypothesis on M.

Proposition 2.10. Let M be a twisted homotopical category, with twisting structure
(Ω,B, ζ, ξ). If there are natural weak equivalences

Ω(−⊗−)
∼
=⇒ Ω(−)⊗ Ω(−) : Comon×2 → Mon

and

B(−)⊗ B(−)
∼
=⇒ B(−⊗−) : Mon×2 → Comon,

then

A⊗ η : A → A⊗B

is h-normal with normality structure ε⊗ BB : BA⊗ BB → BB, for any augmented
monoids A and B, while

ε⊗D : C ⊗D → D

is h-conormal with conormality structure ΩC ⊗ η : ΩC → ΩC ⊗ ΩD, for any coaug-
mented comonoids C and D.

Remark 2.11. It is well known that the necessary hypotheses on Ω and B hold when
M is either sSet or dgProj

k
.

Proof. We prove the h-conormality of ε⊗D and leave the other half of the proof,
which is strictly dual, to the reader.
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Observe that

D\\(C ⊗D) = (C ⊗D)�DPD ∼= C ⊗ PD

and

(ΩC ⊗ ΩD)//ΩC = EΩC ⊗ΩC (ΩC ⊗ ΩD) ∼= EΩC ⊗ ΩD

as left C-comodules and right ΩD-modules. There is therefore an equivalence of
extended bundles

Ω(C ⊗D) ∼
//

Ω(ε⊗D)

��

ΩC ⊗ ΩD =
//

��

ΩC ⊗ ΩD

πΩC⊗η

��
ΩD

∂ε⊗D

��

∼
// EΩC ⊗ ΩD ∼=

//

��

Ω(C ⊗D)//ΩC

δΩC⊗η

��
D\\(C ⊗D)

ιε⊗D

��

∼=
// C ⊗ PD ∼

//

��

BΩC

B(ΩC⊗η)

��
C ⊗D

= // C ⊗D
vC⊗D

∼
// BΩ(C ⊗D),

whence ε⊗D is h-conormal with conormality structure ΩC ⊗ η.

2.2.2. The simplicial case
The work described in this article originated with following example.

Example 2.12. Let n : N → G be a group homomorphism, seen as a morphism of
constant simplicial groups. It was proved in [3] that, if there is a crossed module
structure (cf. section 2.5 of [3]) on the homomorphism n, then n is h-normal, in the
sense defined here. In particular, if n is the inclusion of a normal subgroup, then it is
h-normal.

In fact, the authors of [3] proved an equivalence between the existence of a crossed
module structure structure on n and the existence of what they called a normal
simplicial group structure on the simplicial bar model of G//N , in which the simplicial
set is a free G-set in each level.

Example 2.13. Let e denote the trivial simplicial group, and let G be any simplicial
group. The unique simplicial homomorphism G → e is h-normal if and only if there
is a simplicial set X such that WG ∼ GX as simplicial sets. For example, if there is
some 1-reduced simplicial set Y such that G = G

2Y , then G → e is h-normal. Since
double loop spaces are in some sense the generic homotopy commutative monoids,
we see that h-normality of G → e is strongly related to homotopy commutativity of
G.

More generally, homotopy fibers of simplicial maps give rise to h-normal maps of
simplicial groups, as we show below. The present example is a reformulation of a well-
known theorem about the classical dual Nomura-Puppe sequence of a continuous map,
which uses the A∞-structure of based loop spaces. Our proof here is quite simple and
requires neither a full model category structure, nor higher homotopies: the twisting
structure suffices.
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Proposition 2.14. Let g : X → Y be a simplicial map, where X and Y are reduced.
If ιg : Y \\X → X is the natural map from the homotopy fiber of g to X, then the
induced map of simplicial groups

Gιg : G(Y \\X) → GX

is h-normal.

The main step in proving this proposition is to show that the hypothesis of
Lemma 2.8 holds for all simplicial morphisms. Since we apply this result elsewhere
in this article as well, we state it as a separate lemma.

Lemma 2.15. If g : X → Y is any simplicial morphism, where X and Y are reduced,
then there is a weak equivalence of GX-modules ι̃ : GY → X\\(Y \\X) such that

GX

=

��

Gg // GY

∼ ι̃

��

∂g // Y \\X

=

��
GX

∂ιg // X\\(Y \\X)
ιιg // Y \\X

commutes.

Proof. Observe that

X\\(Y \\X) = (Y \\X)×τX ιg GX = (X ×τY g GY )×τX ιg GX.

An easy calculation shows that, since ιg : X ×τY g GY → X is simply projection onto
X, the map

(X ×τY g GY )×τX ιg GX → (X ×τX GX)× GY : (x, v, w) 7→ (x,w,G(g)(w)−1 · v)

is a simplicial isomorphism. Moreover, the inclusion of GY into (X ×τX GX)× GY is
a weak equivalence, since X ×τX GX is contractible. We can therefore set ι̃ equal to
the composite

GY
∼
→֒ (X ×τX ×GX)× GY ∼= X\\(Y \\X).

Proof of Proposition 2.14. There is an equivalence of extended bundles

GWGX

GWGg

��

vGX

∼
// GX

Gg

��

GX
=oo

Gg

��

= // GX

∂ιg

��

= // GX

πGιg

��
GWGY

∂
WGg

��

vGY

∼
// GY

πGg

��

GY
=oo

∂g

��

ι̃

∼
// X\\(Y \\X)

ιιg

��

∼
// GX//G(Y \\X)

δGιg

��
WGY \\WGX

ι
WGg

��

∼
// GY//GX

δGg

��

Y \\X∼
oo

ιg

��

= // Y \\X

ιg

��

uY \\X

∼
// WG(Y \\X)

WGιg

��
WGX

= //
WGX X

uX

∼
oo = // X

uX

∼
// WGX,

where the elementary equivalence of the first column follows from Lemma 1.10.1
applied to Gg, that of the second column from Lemma 1.10.2 applied to g, that of the
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third column from Lemma 2.15 and that of the fourth column from Lemma 1.10.2
applied to ιg. We can therefore conclude that Gιg is h-normal, with associated nor-
mality structure WGg : WGX → WGY .

Not only do we obtain an h-normal morphism upon looping homotopy fiber inclu-
sions, but every h-normal morphism of reduced simplicial groups is weakly equivalent
to a morphism of this type. This is analogous to the fact that the normal subgroups
of a fixed group G are exactly the kernels of surjective homomorphisms with domain
G.

Proposition 2.16. If f : G → G′ is an h-normal morphism of simplicial groups,
then there is a simplicial map g : X → Y such that f is weakly equivalent to Gιg :
G(Y \\X) → GX.

Proof. Let g : WG′ → Y be the normality structure associated to f , i.e., there is a
commuting diagram of simplicial morphisms

GX

Gg

��

•

��

∼
oo

∼
// · · · •

��

∼
oo

∼
// G′

πf

��
GY

∂g

��

•

��

∼
oo

∼
// · · · •

��

∼
oo

∼
// G′//G

δf

��
Y \\X

ιg

��

•

��

∼
oo

∼
// · · · •

��

∼
oo

∼
//
WG

Wf

��
X •∼

oo
∼

// · · · •∼
oo

∼
//
WG′.

Applying G to the lower two rows of the diagram, we see that Gιg is equivalent to
GWf , which is in turn equivalent to f .

H-conormality is banal in the simplicial context.

Proposition 2.17. All simplicial maps are h-conormal.

Proof. Let g : X → Y be any simplicial map. Lemmas 2.8 and 2.15 together imply
that g is h-conormal.

Remark 2.18. Our analysis of h-normality and h-conormality in the simplicial setting
is highly dependent on the fact that the monoidal product of simplicial sets is exactly
the categorical product, so that every morphism of simplicial sets can be viewed as a
morphism of comonoids. In particular, every simplicial homomorphism of simplicial
groups underlies a morphism of bimonoids.

We expect that results similar to Propositions 2.14 and 2.16 hold in a more general
monoidal category as well, if we restrict to morphisms of bimonoids. In the next
section, we study h-normality in a monoidal category where the monoidal product is
not the categorical product.
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2.2.3. The chain complex case
As before, let Alg

k
denote the category of connected, augmented chain algebras, and

let Coalg
k
denote the category of 1-connected, coaugmented chain coalgebras over

a commutative ring k, whose underlying chain complexes are degreewise projective
and finitely generated. We begin by considering the most “extreme” possible cases of
h-normal and h-conormal morphisms in this framework.

Example 2.19. 1. Let A ∈ ObAlg
k
. Its unit map η : k → A is always h-normal,

with associated normality structure equal to the coaugmentation k → BA. The
identity map A

=
−→ A is also h-normal, with associated normality structure equal

to the counit BA → k.
On the other hand, the augmentation A → k is h-normal if and only if there is a
coalgebra C such that ΩC ∼ BA, as chain complexes. In particular, for any 1-
reduced simplicial set X, the augmentation map C∗G

2X → k is h-normal, since
ΩC∗X ∼ C∗GX ∼ BC∗G

2X (cf. e.g., [7]).

2. Let C ∈ Coalg
k
. Arguments dual to those above show that its counit and iden-

tity map are h-conormal, while the coaugmentation map is h-conormal if there
is an algebra A such that BA ∼ ΩC, as chain complexes. In particular, for any
1-reduced simplicial set X, the coaugmentation map k → C∗X is h-conormal,
since BC∗G

2X ∼ ΩC∗(X), as above.

We next consider a purely algebraic class of examples, which can be thought of as
the homotopical, chain analogue of the fact that every subgroup of an abelian group
is normal.

Proposition 2.20. If A and A′ are connected, commutative chain algebras, then
any algebra morphism f : A → A′ is h-normal. Dually, if C and C ′ are 1-connected,
cocommutative chain coalgebras, then any coalgebra morphism g : C ′ → C is h-co-
normal.

Proof. It is a classical result that if A is commutative, then BA admits a commutative
multiplication

BA⊗ BA
∇
−→ B(A⊗A)

Bµ
−−→ BA,

where ∇ is the shuffle (Eilenberg-Zilber) equivalence, and µ is the multiplication map
of A, which is an algebra map since it is commutative. A simple calculation then
shows that

(BA⊗ftB
A′)⊗ (BA⊗ftB

A′) → BA⊗ftB
A′ : (w ⊗ a)⊗ (w′ ⊗ a′) 7→ w · w′ ⊗ aa′,

where · denotes the multiplication on BA defined above, is a chain map, as well as
associative and unital. It is obvious that πf : A′ → A′//A = BA⊗ftB

A′ is a mor-
phism of chain algebras with respect to this multiplication. Moreover, the multiplica-
tive structure on A′//A is such that

(A′//A)//A′ = EA′ ⊗A′ (EA⊗A A′) ∼= EA′ ⊗ EA⊗A k ∼= EA′ ⊗ BA,

whence the obvious projection map (A′//A)//A′ → BA is a weak equivalence, since
EA′ is acyclic. Lemma 2.7 therefore implies that f is h-normal.

Dualizing the proof in the algebra case, we obtain the desired result for chain
coalgebras as well.
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For algebraic topologists, the most interesting source of examples of h-conormal
and h-normal maps of chain complexes may be the following.

Proposition 2.21. If g : X → Y is a simplicial map, where Y is 1-reduced and both
X and Y are of finite type, then C∗g : C∗X → C∗Y is an h-conormal map of chain
coalgebras, with associated conormality structure ΩC∗ιg : ΩC∗(Y \\X) → ΩC∗X, i.e,
(ΩC∗ιg, C∗g) is a normal pair.

It follows almost immediately from the proposition above that applying the normal-
ized chains functor to an h-normal map of simplicial groups gives rise to an h-normal
map of chain algebras, i.e., C∗ preserves both h-normality and h-conormality, under
mild connectivity hypotheses, the proof is given below.

Corollary 2.22. If f : G → G′ is an h-normal morphism of reduced simplicial groups,
then C∗f : C∗G → C∗G

′ is an h-normal morphism of chain algebras.

Proof. It follows from the proof of Proposition 2.16 that we may assume that f =
Gιg : G(Y \\X) → GX for some morphism g : X → Y of 1-reduced simplicial sets.
Since C∗Gιg is weakly equivalent to ΩC∗ιg, Proposition 2.21 and Remark 2.6.2 to-
gether imply that C∗Gιg is h-normal.

The key to the proof of Proposition 2.21 is the following immediate consequence of
Theorems 3.15 and 3.16 in [6], which gives an explicit, natural chain-level model for
any simplicial principal fibration, incorporating multiplicative and comultiplicative
structures. Functoriality of h-conormality should hold for functors between twisted
homotopical categories for which an analogous theorem is true.

Theorem 2.23. If g : X → Y is a simplicial map, where Y is 1-reduced and both X
and Y are of finite type, then there is a natural weak equivalence of mixed bundles of
chain complexes

ΩC∗Y

∼ SzY

��

∂C∗g // C∗Y \\C∗X

∼ Szg

��

ιC∗g // C∗X

=

��
C∗GY

C∗∂g // C∗(Y \\X)
C∗ιg // C∗X.

Remark 2.24. In the diagram above, the map SzY : ΩC∗Y
∼
−→ C∗GY is the natural

chain algebra quasi-isomorphism first defined by Szczarba [13] (cf. Example A.15),
and Szg is a natural extension of SzY .

Proof of Proposition 2.21. There is an equivalence of extended bundles
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ΩC∗X

ΩC∗g

��

SzX

∼

// C∗GX

C∗Gg

��

= // C∗GX

C∗∂ιg

��

ΩC∗X
SzX

∼

oo

∂C∗ιg

��

= // ΩC∗X

πΩC∗ιg

��
ΩC∗Y

∂C∗g

��

SzY

∼

// C∗GY

C∗∂g

��

C∗ ι̃

∼

// C∗

(

X\\(Y \\X)
)

C∗ιιg

��

C∗X\\C∗(Y \\X)
Szιg

∼

oo

ιC∗ιg

��

∼

// ΩC∗X//ΩC∗(Y \\X)

δΩC∗ιg

��
C∗Y \\C∗X

ιC∗g

��

∼

Szg// C∗(Y \\X)

C∗ιg

��

= // C∗(Y \\X)

C∗ιg

��

C∗(Y \\X)
=oo

C∗ιg

��

u

∼

// BΩC∗(Y \\X)

BΩC∗ιg

��
C∗X

= // C∗X
= // C∗X C∗X

=oo u

∼

// BΩC∗X,

where the elementary equivalence of the first column arises from applying Theo-
rem 2.23 to g, that of the second column from applying Lemma 2.15 to g, that of the
third column from applying Theorem 2.23 to ιg : Y \\X → X and that of the fourth
column from applying Lemma 1.10.2 to C∗ιg. We can therefore conclude that C∗g is
h-conormal, with associated conormality structure ΩC∗ιg.

Appendix A. Twisting functions and twisting cochains

A.1. Twisting functions
We recall here the simplicial constructions that play a crucial role in this article.

Definition A.1. LetX be a simplicial set andG a simplicial group, where the neutral
element in any dimension is noted e. A degree −1 map of graded sets τ : X → G is a
twisting function if

d0τ(x) =
(

τ(d0x)
)−1

τ(d1x)

diτ(x) = τ(di+1x) i > 0

siτ(x) = τ(si+1x) i > 0

τ(s0x) = e

for all x ∈ X.

Remark A.2. Let X be a reduced simplicial set, and let GX denote the Kan simplicial
loop group on X [10]. Let x̄ ∈ (GX)n−1 denote a free group generator, corresponding
to x ∈ Xn. There is a universal, canonical twisting function τX : X → GX, given by
τX(x) = x̄. This twisting function is universal in the sense that it mediates a bijection
between the set of twisting functions with source X and the set of morphisms of
simplicial groups with source GX.

Remark A.3. If f : X → Y is a simplicial map, τ : Y → G is a twisting function, and
ϕ : G → H is a simplicial homomorphism, then ϕtf : X → H is clearly also a twisting
function.

Definition A.4. Let τ : X → G be a twisting function, where G operates on the left
on a simplicial set Y . The twisted cartesian product of X and Y , denoted X ×τ Y , is
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a simplicial set such that (X ×τ Y )n = Xn × Yn, with faces and degeneracies given
by

d0(x, y) = (d0x, τ(x) · d0y)

di(x, y) = (dix, diy) i > 0

si(x, y) = (six, siy) i > 0.

If Y is a Kan complex, then the projection X ×τ Y → X is a Kan fibration [10].

Definition A.5. Let G be a simplicial group, where the neutral element in each
dimension is denoted e. The Kan classifying space of G is the simplicial set WG such
that WG0 = {( )} and for all n > 0,

WGn = G0 × · · · ×Gn−1,

with face maps given by

di(a0, . . . , an−1) =











(d1a1, . . . , dn−1an−1) : i = 0

(a0, . . . , ai−2, ai−1 · d0ai, d1ai+1, . . . , dn−1−ian−1) : 0 < i < n

(a0, . . . , an−1) : i = n

and degeneracies given by s0
(

( )
)

= (e), while

si(a0, . . . , an−1) =











(e, s0a0, . . . , sn−1an−1) : i = 0

(a0, . . . , ai−1, e, s0ai, . . . , sn−1−ian−1) : 0 < i < n

(a0, . . . , an−1, e) : i = n.

Remark A.6. Our definition of the Kan classifying space differs for the sake of con-
venience from that in [10] by a permutation of the factors.

Remark A.7. The classifying spaceWG deserves its name, as homotopy classes of sim-
plicial maps into WG classify twisted cartesian products with fiber G. The universal
G-bundle is a twisted cartesian product

G →֒ WG×νG
G ։ WG,

with contractible total space, where νG : WG → G is the natural (couniversal) twist-
ing function defined by

νG(a0, . . . , an−1) = an−1,

and G acts on itself by left multiplication. The twisting function νG is couniversal
in the sense that it mediates a bijection between the set of twisting functions with
target G and the set of simplicial maps with target WG.

Remark A.8. The classifying space functor W is right adjoint to the Kan loop group
functor G. Furthermore, the unit map ηX : X → WGX is a weak equivalence for all
reduced simplicial sets X.
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Remark A.9. It follows from the universality of τX : X → GX and the couniversality
of νG : WG → G that the diagram

WG

ηG

��

νG //

τ
WG

$$JJJJJJJJJ
G

WGWG
ν
GWG //

GWG

εG

OO

commutes for all simplicial groups G.

A.2. Twisting cochains
Notation A.10. In this section we apply the following notational conventions.

• We apply the Koszul sign convention for commuting elements of a graded mod-
ule or for commuting a morphism of graded modules past an element of the
source module. For example, if V and W are graded algebras and v ⊗ w, v′ ⊗
w′ ∈ V ⊗W , then

(v ⊗ w) · (v′ ⊗ w′) = (−1)|w|·|v′|vv′ ⊗ ww′.

Furthermore, if f : V → V ′ and g : W → W ′ are morphisms of graded modules,
then for all v ⊗ w ∈ V ⊗W ,

(f ⊗ g)(v ⊗ w) = (−1)|g|·|v|f(v)⊗ g(w).

• The suspension endofunctor s on the category of graded modules over a com-
mutative ring k is defined on objects V =

⊕

i∈Z
Vi by (sV )i ∼= Vi−1. Given a

homogeneous element v in V , we write sv for the corresponding element of sV .
The suspension s admits an obvious inverse, which we denote s−1.

• Let T denote the endofunctor on the category of free graded k-modules, for a
commutative ring k, given by

TV = ⊕n>0V
⊗n,

where V ⊗0 = R. An elementary tensor belonging to the summand V ⊗n of TV
is denoted v1| · · · |vn, where vi ∈ V for all i.

We begin by recalling the cobar and bar constructions in the differential graded
framework. Let Coalg

k
denote the category of 1-connected, coaugmented chain coal-

gebras over a commutative ring k, i.e., of coaugmented comonoids in Chk such that
C<0 = 0, C0 = k, and C1 = 0. Let Alg

k
denote the category of connected, augmented

chain algebras over k, i.e., of augmented monoids B in Chk such that B<0 = 0 and
B0 = R.

The cobar construction functor Ω : Coalg
k
→ Chk, defined by

ΩC =
(

T (s−1C>0), dΩ
)

where, if d denotes the differential on C, then

dΩ(s
−1c1| · · · |s

−1cn) =
∑

16j6n

±s−1c1| · · · |s
−1(dcj)| · · · |s

−1cn

+
∑

16j6n

±s−1c1| . . . |s
−1cji|s

−1cj
i| · · · |s−1cn,
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with signs determined by the Koszul rule, where the reduced comultiplication applied
to cj is cji ⊗ cj

i (using Einstein implicit summation notation).
Observe that the graded k-vector space underlying ΩC is naturally a free asso-

ciative algebra, with multiplication given by concatenation. The differential dΩ is a
derivation with respect to this concatenation product, so that ΩC is itself a chain
algebra. We can and do therefore choose to consider the cobar construction to be
a functor Ω : Coalg

k
→ Alg

k
. Moreover, if the chain complex underlying a chain

coalgebra is degreewise finitely generated and projective, then the same is true of its
cobar construction.

The bar construction functor from Alg
k
to Chk, defined by

BB = (T (sB>0), dB)

where, if d is the differential on B, then (modulo signs, which are given by the Koszul
rule)

dB(sb1| · · · |sbn) =
∑

16j6n

±sb1| · · · |s(dbj)| · · · |sbn

+
∑

16j<n

±sb1| . . . |s(bjbj+1)| · · · |sbn.

Observe that the graded k-module underlying BB is naturally a cofree coassocia-
tive coalgebra, with comultiplication given by splitting of words. The differential dB

is a coderivation with respect to this splitting comultiplication, so that BB is itself a
chain coalgebra. We can and do therefore choose to consider the bar construction to
be a functor B : Alg

k
→ Coalg

k
. Moreover, if the chain complex underlying a chain

algebra is degreewise finitely generated and projective, then the same is true of its
bar construction.

Let η : Id → BΩ denote the unit of this adjunction. It is well known that for all
1-connected, coaugmented chain coalgebras C, the counit map

ηC : C
≃
−→ BΩC (2)

is a quasi-isomorphism of chain coalgebras.

Definition A.11. A twisting cochain from a 1-connected, coaugmented chain coal-
gebra (C, d) with comultiplication ∆ to a connected, augmented chain algebra (A, d)
with multiplication m consists of a linear map t : C → A of degree −1 such that

dt+ td = m(t⊗ t)∆.

Remark A.12. A twisting cochain t : C → A induces both a chain algebra map

αt : ΩC → A

specified by αt(s
−1c) = t(c) and a chain coalgebra map (the adjoint of αt under the

(Ω,B)-adjunction)

βt : C → BA,

satisfying

αt = εA ◦ Ωβt and βt = Bαt ◦ ηC .

It follows that αt is a quasi-isomorphism if and only if βt is a quasi-isomorphism.



102 EMMANUEL D. FARJOUN and KATHRYN HESS

Example A.13. Let C be a 1-connected, coaugmented chain coalgebra. The universal
twisting cochain

tΩ : C → ΩC

is defined by tΩ(c) = s−1c for all c ∈ C, where s−1c is defined to be 0 if |c| = 0. Note
that αtΩ = IdΩC , so that βtΩ = ηC . Moreover, tΩ truly is universal, as all twisting
cochains t : C → A factor through tΩ, since the diagram

C
tΩ //

t !!CC
CC

CC
CC

ΩC

αt

��
A

always commutes.

Example A.14. Let A be a connected, augmented chain algebra. The couniversal
twisting cochain

tB : BA → A

is defined by tB(sa) = a for all a ∈ A and tB(sa1| · · · |san) = 0 for all n > 1. Note
that βtB

= IdBA, so that αtΩ = εA. Moreover, tB truly is couniversal, as all twisting
cochains t : C → A factor through tB, since the diagram

BA

tB

��
C

βt

=={{{{{{{{

t
// A

always commutes.

Example A.15. Let K be a reduced simplicial set, and let GK denote its Kan loop
group. In 1961 [13], Szczarba gave an explicit formula for a twisting cochain

szK : C∗K → C∗GK,

natural in K. The associated chain algebra map

SzK := αszK : ΩC∗K → C∗GK (3)

is a quasi-isomorphism of chain algebras for every 1-reduced K [9]. It follows that
the induced coalgebra map

Sz♯K := βszK : C∗K → BC∗GK

is also a quasi-isomorphism when K is 1-reduced.

Remark A.16. If t : C → A is a twisting cochain, f : C ′ → C is a chain coalgebra map
and g : A → A′ is a chain algebra map, then gtf : C ′ → A′ is also a twisting cochain.

Definition A.17. Let t : C → A be a twisting cochain. Let M be a right A-module,
where ρ : M ⊗A → M is the A-action, and let N be a left C-comodule, where λ :
N → C ⊗N is the C-coaction. Let d denote the differential on both M and N . The
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twisted tensor product of M and N over t is a chain complex M ⊗t N = (M ⊗N,Dt),
where

Dt = d⊗N +M ⊗ d+ (ρ⊗N)(M ⊗ t⊗N)(M ⊗ λ).

Remark A.18. There are analogous constructions for left A-modules and right C-
comodules, using the twisting isomorphism A⊗ C ∼= C ⊗A.

Appendix B. Twisting structures

We recall in this section a categorical structure that conveniently generalizes both
twisting cochains from differential graded coalgebras to differential graded algebras
and twisting functions from simplicial sets to simplicial groups. Such a definition
was first formulated in [4]; this presentation is a variant of the somewhat less highly
category-theoretical formulation in [8], strongly emphasizing a bundle-theoretic per-
spective. Twisting structures provide a useful formalism for taking into account
important monoidal structures that are not given by the categorical product.

We begin by studying mixed bundles, which are the building blocks of a twisting
structure. We then define twisting structures and study Nomura-Puppe sequences in
categories endowed with a twisting structure. We conclude with two explicit examples,
based on the categories of simplicial sets and of chain complexes.

Throughout this section (M,⊗, I) denotes a monoidal category. If A and A′ are
monoids in M, then AModA′ denotes the category of (A,A′)-bimodules. Similarly,

C′ComodC denotes the category of (C ′, C)-bicomodules, where C ′ and C are comon-
oids. Let Mon and Comon denote the categories of augmented monoids and coaug-
mented comonoids in M, respectively.

B.1. Mixed bundles

The following definitions are classical.

Definition B.1. Let A be a monoid in M. Let (M,ρ) be a right A-module, and let
(N,λ) be a left A-module. The tensor product of M and N over A is the coequalizer
in M

M ⊗A N := coequal(M ⊗A⊗N
ρ⊗N

⇉
M⊗λ

M ⊗N),

if it exists.

Let C be a comonoid in M. Let (M,ρ) be a right C-comodule, and let (N,λ) be
a left C-comodule. The cotensor product of M and N over C is the equalizer in M

M�CN := equal(M ⊗N
ρ⊗N

⇉
M⊗λ

M ⊗ C ⊗N),

if it exists.

Objects of M that are endowed with a compatible action and coaction are our
primary object of study here.
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Definition B.2. If C is a comonoid in M, and A is a monoid in M, then CMixA is
the category of (C,A)-mixed modules, where

ObCMixA

= {(M,λ, ρ) | M ∈ M, (M,λ) ∈ CComod, (M,ρ) ∈ ModA, (C ⊗ ρ)(λ⊗A) = λρ},

and morphisms preserve both the action and the coaction.

Definition B.3. Let (M,⊗, I) be a monoidal category. The category of mixed bundles
in M, denoted Bun, has as objects sequences of morphisms

A
i
−→ N

p
−→ C,

where A ∈ ObMon, C ∈ ObComon, N ∈ CMixA, i is a morphism of right A-
modules, and p is a morphism of left C-comodules. Morphisms in Bun are the obvious
structure-preserving triples of morphisms in M.

The source functor S : Bun → Mon and target functor T : Bun → Comon are
specified by

S(A
i
−→ N

p
−→ C) = A and T(A

i
−→ N

p
−→ C) = C.

Twisting structures are defined for monoidal categories (M,⊗, I) that admit a
particularly nice class of mixed modules, as in the definition below. We use in this
definition the set-theoretic hierarchy of categories established in Appendix A.2 of [11].

Definition B.4. Let (M,⊗, I) be a monoidal category. A twistable triple

(mon, comon,mix)

consists of full subcategories mon and comon of Mon and Comon, respectively,
and a pseudofunctor

mix : comon ×monop → CAT : (C,A) 7→ CmixA

where CAT is the 2-XL-category of all (ordinary) categories, such that for all A,A′ ∈
Obmon and C,C ′ ∈ Ob comon,

1. CmixA is a full subcategory of CMixA;

2. cotensoring gives rise to a functor

C ′
g�C− : CmixA → C′mixA

for all g ∈ comon(C ′, C), where C ′
g denotes C ′ endowed with the right C-

comodule structure induced by g and its usual left C ′-comodule structure such
that iterated cotensoring is associative up to natural isomorphism;

3. tensoring gives rise to a functor

−⊗A fA
′ : CmixA → CmixA′

for all f ∈ mon(A,A′), where fA
′ denotes A′ endowed with the left A-module

structure induced by f and its usual right A′-module structure such that iterated
tensoring is associative up to natural isomorphism; and

4. the natural map

(C ′
f�CM)⊗A gA

′ → C ′
f�C(M ⊗A gA

′)

is an isomorphism for all f ∈ comon(C ′, C), M ∈ CmixA and g ∈ mon(A,A′).
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If (mon, comon,mix) is a twistable triple, let bun denote the full subcategory of

Bun of which the objects A
j
−→ M

p
−→ C are such that A ∈ Obmon, C ∈ Ob comon

and M ∈ ObCmixA.

Example B.5. Consider the monoidal category sSet of simplicial sets. The monoidal
product is the categorical product, which implies that all objects are naturally comon-
oids, where the comultiplication is the diagonal map, and that an X-comodule struc-
ture on Y is equivalent to the existence of a morphism Y → X. Cotensor products
are thus simply pullbacks.

Let sSet0 and sGr denote the categories of reduced simplicial sets and of simplicial
groups, respectively, and let

mix : sSet0 × sGrop → CAT : (X,G) 7→ XMixG,

i.e., we consider all mixed modules. On morphisms mix is given by extension of
coefficients in the comonoid variable and restriction of coefficients in the monoid
variable. It is easy to check that the triple (sGr, sSet,mix) is twistable, since a
simplicial morphism p : Y → X where Y admits a right G-action corresponds to a
mixed (X,G)-module if and only if p(y · a) = p(y) for all y ∈ Yn, a ∈ Gn and n > 0.

Example B.6. Let k be any commutative ring, and let dgProj
k
denote the category

of differential graded k-modules that are projective and finitely generated in each
degree, where the monoidal product ⊗ is the usual graded tensor product over k. Let
mon denote the category of augmented, connected chain algebras and comon the
category of coaugmented, 1-conneced chain coalgebras in dgProj

k
. Let

mix : comon ×monop → CAT : (C,A) 7→ CmixA,

be the pseudofunctor such that objects of CmixA are mixed modules M with under-
lying (nondifferential) graded mixed module of the form C ⊗X ⊗A for some graded
k-module X. On morphisms mix is given by extension of coefficients in the comonoid
variable and restriction of coefficients in the monoid variable.

For all M ∈ ObCmixA with underlying graded k-module C ⊗X ⊗A and any
coalgebra morphism g : C ′ → C, there is a natural isomorphism between the graded
k-module underlying C ′

g�CM and C ′ ⊗X ⊗A; the dual result holds for algebra
morphisms. It is therefore straightforward to show that the triple (mon, comon,mix)
is twistable.

Certain types of mixed bundles play a key role in the definition of twisting struc-
tures.

Definition B.7. Let (M,⊗, I) be a monoidal category, and let (mon, comon,mix)

be a twistable triple. Let ζ = (A
j
−→ N

q
−→ C) ∈ Obbun. Let η : I → C and ε : A → I

denote the coaugmentation of C and the augmentation of A, respectively.
If j = η�CN , then ζ is principal. If q = N ⊗A ε, then ζ is coprincipal. A bundle

that is both principal and coprincipal is called biprincipal.
The full subcategory of bun consisting of biprincipal bundles is denoted biprin.

Remark B.8. Let (M,⊗, I) be a monoidal category, and let (mon, comon,mix) be a

twistable triple. Let ζ = (A
j
−→ N

q
−→ C) ∈ Obbun. If ζ is principal, then A ∼= I�CN ,
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while if ζ is coprincipal, then C ∼= N ⊗A I. It follows that if ζ is principal, then j is
naturally a morphism in CmixA, since η : I → C is a morphism of C-bicomodules,
where I is endowed with the trivial C-bicomodule structure induced by η. Similarly,
if ζ is coprincipal, then q is naturally a morphism in CmixA. We conclude that if ζ
is biprincipal, then it can be seen as a sequence of morphisms in CmixA.

Definition B.9. Let (M,⊗, I) be a monoidal category, and let (mon, comon,mix)

be a twistable triple. Let ζ = (A
j
−→ M

q
−→ C) ∈ Obbun.

If ζ is coprincipal, and f : A → A′ is a morphism in mon, then the coprincipal
bundle induced by f is

f∗(ζ) = (A′ j⊗AA′

−−−−→ M ⊗A A′ M⊗Aε′

−−−−−→ C),

where ε′ : A′ → I is the augmentation of A′.

If ζ is principal, and g : C ′ → C is a morphism in comon, then the principal bundle
induced by g is

g∗(ζ) = (A
η′�CM
−−−−−→ C ′

�CM
g�CM
−−−−→ C ′),

where η′ : I → C ′ is the coaugmentation of C ′.

Note that condition 3 of Definition B.4 implies that f∗(ζ) is indeed coprincipal,
while condition 2 of the same definition implies the dual result. It follows then from
condition 4 that if ζ is biprincipal, then so are f∗(ζ) and g∗(ζ).

Remark B.10. Let (M,⊗, I) be a monoidal category, and let (mon, comon,mix) be a

twistable triple. Let ζ = (A
j
−→ M

q
−→ C) ∈ Obbiprin. If f : A → A′ is a morphism in

mon, and g : C ′ → C is a morphism in comon, then there are natural isomorphisms

f∗g
∗(ζ) ∼= g∗f∗(ζ),

by condition 4 of Definition B.4.

Remark B.11. Let (M,⊗, I) be a monoidal category, and let (mon, comon,mix) be

a twistable triple. Let ζ = (A
i
−→ M

p
−→ C) and ξ = (B

j
−→ N

q
−→ D) be objects in bun.

Let ϕ = (α, γ, β) : ζ → ξ be a morphism of bundles.

If ζ and ξ are coprincipal, and

A

α

��

f // A′

α′

��
B

g // B′

is a commuting diagram of monoid morphisms, then there is an induced morphism
of bundles

(α, α′)∗ : f∗(ζ) → g∗(ξ),
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given explicitly by

A′

α′

��

i⊗AA′

// M ⊗A A′

γ′

��

M⊗AεA′ // C

β

��
B′

j⊗BB′

// N ⊗B B′
N⊗BεB′ // D,

where γ′ is the unique map induced on the coequalizers by γ, α and α′. In particular,
since

A A

f

��
A

f // A′

commutes for every monoid morphism f : A → A′, there is a morphism of coprincipal
bundles

(A, f)∗ : ζ → f∗(ζ).

Dually, if ζ and ξ are principal, and

C ′

β′

��

f // C

β

��
D′

g // D

is a commuting diagram of comonoid morphisms, then there is an induced morphism
of bundles

(β′, β)∗ : f∗(ζ) → g∗(ξ),

given explicitly by

A

α

��

ηC′�CM // C ′�CM

γ′′

��

f�CM // C ′

β′

��
B

ηD′�DN // D′�DN
g�DD′

// D′

where γ′′ is the unique map induced on the equalizers by γ, β and β′. In particular,
since

C ′

g

��

g // C

C C

commutes for every comonoid morphism g : C ′ → C, there is a morphism of principal
bundles

(g, C)∗ : g∗(ξ) → ξ.
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B.2. Twisting structures: definition

The following definition is a pragmatic and simplified variant of the definition of
twisting structures formulated in [4].

Definition B.12. A quasitwisting structure on a monoidal category (M,⊗, I) en-
dowed with a twistable triple (mon, comon,mix) consists of a pair of functors

ζ : mon → biprin and ξ : comon → biprin

such that S ◦ ζ = Id and T ◦ ξ = Id, while Ω = S ◦ ξ and B = T ◦ ζ form an adjoint
pair

comon
Ω

⇄
B

mon.

Notation B.13. For all monoids A and comonoids C in N, we write

ζ(A) = (A
jA
−→ EA

qA
−−→ BA)

and

ξ(C) = (ΩC
iC−→ PC

pC
−−→ C)

and call these the classifying bundles for A and C, for reasons that should become
more clear as we explain the role that these special bundles play.

Definition B.14. Let u : Id → BΩ and v : ΩB → Id denote the unit and counit of
the (Ω,B)-adjunction. A quasitwisting structure (Ω,B, ζ, ξ) on a monoidal category
(M,⊗, I) endowed with a twistable triple (mon, comon,mix) is a twisting structure
if

1. for every morphism g : C → BA in comon, there are natural isomorphisms of
bundles

g∗
(

ζ(A)
)

∼=

��

=
(

A

=

��

// C�BAEA

∼=

��

// C
)

=

��
(g♭)∗

(

ξ(C)
)

=
(

A // PC ⊗ΩC A // C
)

,

where g♭ : ΩC → A denotes the transpose of g;

2. for every morphism f : A → A′ in mon, there is a natural isomorphism of bun-
dles

(Bf)∗
(

ζ(A′)
)

∼=

��

=
(

A′

=

��

// BA�BA′EA′

∼=

��

// BA
)

=

��
f∗
(

ζ(A)
)

=
(

A′ // EA⊗A A′ // BA
)

;

and

3. for every morphism g : C ′ → C in comon, there is a natural isomorphism of
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bundles

g∗
(

ξ(C)
)

∼=

��

=
(

ΩC

=

��

// C ′�CPC

∼=

��

// C ′
)

=

��
(Ωg)∗

(

ξ(C ′)
)

=
(

ΩC // PC ′ ⊗ΩC′ ΩC // C ′
)

Remark B.15. Note that axiom 1 of the definition above implies in particular that
there are isomorphisms of bundles

u∗
C

(

ζ(ΩC)
)

∼=

��

=
(

ΩC

=

��

// C�BΩCEΩC

∼=

��

// C
)

=

��
ξ(C) =

(

ΩC // PC // C
)

and

(vA)∗
(

ξ(BA)
)

∼=

��

=
(

A

=

��

// PBA⊗ΩBA A

∼=

��

// BA
)

=

��
ζ(A) =

(

A // EA // BA
)

.

Our interest in twisting structures is motivated by the existence of the construc-
tions described in the next definition, of which part 1 is modeled on the Borel con-
struction associated to the action of a topological group on a topological space, while
part 2 is analogous to the definition of the homotopy fiber of a continuous map.

Definition B.16. Let (M,⊗, I) be monoidal category endowed with a twistable
triple (mon, comon,mix) and a twisting structure (Ω,B, ζ, ξ).

1. Let f : A → A′ be a morphism of augmented monoids in N. The Borel quotient
of f is

A′//A = EA⊗A A′ ∈ BAMixA′ ,

where A′ is considered as a left A-module via the structure induced by f .

2. Let g : C ′ → C be a morphism of coaugmented comonoids in N. The Borel
kernel of g is

C\\C ′ = C ′
�CPC ∈ C′MixΩC ,

where C ′ is considered as a right C-comodule via the structure induced by g.

The Borel quotient and Borel kernel constructions fit into particularly interesting
biprincipal bundles.

Definition B.17. Let (M,⊗, I) be a monoidal category endowed with a twistable
triple (mon, comon,mix) and a twisting structure (Ω,B, ζ, ξ).

1. Let f : A → A′ be a morphism mon. The Nomura-Puppe sequence associated
to f is the sequence of morphisms in M

A
f
−→ A′ πf

−−→ A′//A
δf
−→ BA

Bf
−−→ BA′,

where πf = jA ⊗A A′ and δf = EA⊗A εA′ .
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2. Let g : C ′ → C be a morphism in comon. The dual Nomura-Puppe sequence
associated to g is the sequence of morphisms in M

ΩC ′ Ωg
−−→ ΩC

∂g
−→ C\\C ′ ιg

−→ C ′ g
−→ C,

where ιg = C ′�CpC and ∂g = ηC′�CPC.

Remark B.18. Using the notation of the definition above, observe that

(A′ πf
−−→ A′//A

δf
−→ BA) = f∗

(

ζ(A)
)

∼= (Bf)∗
(

ζ(A′)
)

,

(ΩC
∂g
−→ C\\C ′ ιg

−→ C ′) = g∗
(

ξ(C)
)

∼= (Ωg)∗
(

ξ(C ′)
)

,

and that both are biprincipal bundles.

The bundles defined above are members of a particularly interesting class of biprin-
cipal bundles.

Definition B.19. Let (M,⊗, I) be a monoidal category endowed with a twistable
triple (mon, comon,mix) and a twisting structure (Ω,B, ζ, ξ). An object ζ = (A →
N → C) of biprin is classifiable with respect to the given twisting structure if there
exists a comonoid map g : C → BA such that

ζ ∼= g∗
(

ζ(A)
)

.

The morphism g is called the classifying map of the bundle ζ.

Remark B.20. Recall that axiom 1 of Definition B.14 implies that ζ ∼= g∗
(

ζ(A)
)

if

and only if ζ ∼= (g♭)∗
(

ξ(C)
)

, where g♭ : ΩC → A is the transpose of g : C → BA.

B.3. Twisting structures: examples

B.3.1. Simplicial sets

When (M,⊗, I) = (sSet,×, ∗), we work with the twisting structure (G,W, ζ, ξ). We
refer the reader to, e.g., [10] for the definition of the Kan loop group functor G :
sSet0 → sGr, where sSet0 denotes the category of reduced simplicial sets and sGr
the category of simplicial groups. We recall the definition of its right adjoint W :
sGr → sSet0 in Appendix A.1, where we also sketch the theory of twisting functions,
which we use below in defining ζ and ξ.

Recall that since the monoidal structure considered on sSet is the categorical
product, any objectX admits a natural comonoid structure given by the diagonal map
∆X , while a (left or right) (X,∆X)-comodule structure on an object Y corresponds
to a simplicial map f : Y → X. Under this identification, the cotensor product of two
(X,∆X)-comodules f : Y → X and g : Z → X is exactly their pullback Y ×

X
Z.

For any simplicial group G,

ζ(G) = (G
jG
−→ WG×νG

G
qG
−−→ WG),

the well-known “universal G-bundle,” where νG : G → WG is couniversal twisting
function, jG is the obvious inclusion and qG the obvious projection. On the other
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hand, if X is any reduced simplicial set, then

ξ(X) = (GX
iX−−→ X ×τX GX

pX
−−→ X),

the “path fibration on X,” where τX : X → GX is the universal twisting function, iX
is the obvious inclusion, and pX the obvious projection.

It is an easy exercise in using twisting functions to show that this quasitwisting
structure is indeed a twisting structure.

If f : G → G′ is a morphism of simplicial groups, then its Borel quotient is

G′//G = WG×fνG
G′,

which is a model for the homotopy orbits of the action of G on G′ induced by f . In
particular, ∗//G = WG. If g : X ′ → X is a morphism of reduced simplicial sets, then
its Borel kernel is

X\\X ′ = X ′ ×τXg GX,

which is a model for the homotopy fiber of g. In particular, X\\∗ = GX.

B.3.2. Chain complexes

To define a twisting structure on dgProj
k
, we use the machinery recalled in Ap-

pendix A.2. Let mon and comon denote, as before (Example B.6), the categories
of augmented, connected algebras and of coaugmented, 1-connected coalgebras in
dgProj

k
. Let CmixA also be defined as in Example B.6.

The twisting structure we use in this case is (Ω,B, ζ, ξ), where

Ω: comon → mon and B : comon → mon

are the cobar and bar constructions recalled in Appendix A.2. Moreover, for all A ∈
Obmon,

ζ(A) = (A
jA
−→ BA⊗tB

A
qA
−−→ BA),

where tB is the couniversal twisting cochain, jA(a) = 1⊗ a for all a ∈ A and
qA(w ⊗ a) = w · ε(a) for all w ∈ BA and a ∈ A. Observe that BA⊗tB

A ∈ BAmixA

as required. For all C ∈ Ob comon,

ξ(C) = (ΩC
iC−→ C ⊗tΩ ΩC

pC
−−→ C),

where tΩ is the universal twisting cochain, iC(w) = 1⊗ w for all w ∈ ΩC and pC(c⊗
w) = c · ε(w) for all c ∈ C and w ∈ ΩC. Again, C ⊗tΩ ΩC ∈ CmixΩC , as required.

Analogously to the simplicial case, it is an easy exercise in using twisting cochains
to show that this quasitwisting structure is indeed a twisting structure.
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