A GENERALIZATION OF THE WANG SEQUENCE

HAIBAO DUAN

(communicated by Don Davis)

Abstract

The classical Wang sequence (for cohomology of fiber bundles over a sphere) is extended to a more generalized setting, given by gluing together two disc bundles over manifolds along their boundaries.

1. The result

Given an Euclidean vector bundle ξ over a manifold N let $D(\xi)$ and $S(\xi) = \partial D(\xi)$ be the unit disc bundle and the unit sphere bundle of ξ , respectively. That is,

$$D(\xi) = \{ v \in \xi \mid ||v||^2 \le 1 \}, S(\xi) = \{ v \in \xi \mid ||v||^2 = 1 \}.$$

A smooth manifold M is said to have $focal\ genus\ 2$ if it admits a decomposition of the form

$$M = D(\xi_1) \cup_g D(\xi_2), \tag{1}$$

where ξ_t is an oriented Euclidean vector bundle on a manifold N_t , t=1,2, and where $g: S(\xi_2) \to S(\xi_1)$ is a diffeomorphism. We identify each N_t as a submanifold of M via the obvious embedding $i_t: N_t \stackrel{\sigma_t}{\to} D(\xi_t) \subset M$, and call it a *focal submanifold* of M, where σ_t is the zero section of the bundle ξ_t .

Let $p_t: S(\xi_t) \to N_t$ be the bundle projection, and put

$$g_t = \begin{cases} g : S(\xi_2) \to S(\xi_1) & \text{for } t = 1; \\ g^{-1} : S(\xi_1) \to S(\xi_2) & \text{for } t = 2. \end{cases}$$

For each $t \in \{1, 2\}$ let \bar{t} be its complement in $\{1, 2\}$.

In this paper all homologies and cohomologies are over integer coefficients. For a manifold N write $1 \in H^0(N)$ for the multiplicative unit. Our main result is

Theorem 1.1. Let M be a manifold having focal genus 2 and with focal submanifolds N_t , t = 1, 2. For each $t \in \{1, 2\}$ there is an exact sequences

$$\cdots \to H^{r-1}(N_t) \xrightarrow{\theta_t} H^{r-\dim \xi_{\overline{t}}}(N_{\overline{t}}) \xrightarrow{\alpha_t} H^r(M) \xrightarrow{i_t^*} H^r(N_t) \xrightarrow{\theta_t} \cdots, \tag{2}$$

where

$$i) \ \alpha_t(i_{\overline{t}}^*(x) \cup y) = x \cup \alpha_t(y) \ \text{for} \ x \in H^*(M), \ y \in H^*(N_{\overline{t}});$$

The author's research was supported by 973 Program 2011CB302400 and NSFC 11131008. Received March 17, 2011, revised June 11, 2011; published on September 19, 2011. 2000 Mathematics Subject Classification: 55N10, 57N65.

Key words and phrases: Wang sequence, Gysin sequence, Thom isomorphism.

Article available at http://intlpress.com/HHA/v13/n2/a3 and doi:10.4310/HHA.2011.v13.n2.a3 Copyright © 2011, International Press. Permission to copy for private use granted.

ii) $\theta_t = \beta_{\bar{t}} \circ g_t^* \circ p_t^*$ with $\beta_t : H^*(S(\xi_t)) \to H^*(N_t)$ the connecting homomorphism in the Gysin sequence of the fibration p_t [8, p.143].

Moreover, if both N_1 , N_2 are oriented, and if g is orientation reversing, then with respect to the induced orientation on M

iii) $\alpha_t(1)$ is the Poincare dual of the cycle class $i_{\overline{t}*}[N_{\overline{t}}] \in H_*(M)$.

The decomposition for θ_t in ii) is useful to derive its multiplicative properties. To explain this we examine the case where the oriented bundle ξ_2 has a decomposition $\xi_2 = \eta \oplus \varepsilon$ with ε the trivial \mathbb{R} -bundle on N_2 . Let $s: N_2 \to S(\xi_2) = S(\eta \oplus \varepsilon)$ be the section defined by s(b) = (0,1), and write $i_b: p_2^{-1}(b) \to S(\xi_2)$ for the inclusion of the fibre sphere $p_2^{-1}(b)$, $b \in N_2$. It is shown in [3] that there is a unique class $\alpha \in H^{\dim \xi_2 - 1}(S(\xi_2))$ such that $s^*(\alpha) = 0$ and $\langle i_b^*(\alpha), [p_2^{-1}(b)] \rangle = 1$, $b \in N_2$. Moreover,

Lemma 1.2. ([3, Lemma 4]). As an $H^*(N_2)$ -module, $H^*(S(\xi_2))$ has the basis $\{1, \alpha\}$ subject to the single relation

$$\alpha^2 + e(\eta)\alpha = 0,$$

where $e(\eta) \in H^*(N_2)$ is the Euler class of the oriented bundle η .

With respect to the $H^*(N_2)$ -module structure on $H^*(S(\xi_2))$ the composed ring map

$$H^*(N_1) \stackrel{p_1^*}{\to} H^*(S(\xi_1)) \stackrel{g_1^*}{\to} H^*(S(\xi_2)) = H^*(N_2) \{1, \alpha\}$$

gives rise to two additive maps $\varphi, \psi: H^*(N_1) \to H^*(N_2)$ characterized by

$$g_1^* \circ p_1^*(x) = \varphi(x) + \psi(x)\alpha, x \in H^*(N_1).$$
 (3)

Corollary 1.3. Let $M = D(\xi_1) \cup_g D(\xi_2)$ be a manifold having focal genus 2 and with $\xi_2 = \eta \oplus \varepsilon$. Then

$$\theta_1 = \psi : H^*(N_1) \to H^*(N_2).$$

In particular

$$\theta_1(xy) = \varphi(x)\theta_1(y) + (-1)^{(k-1)|y|}\theta_1(x)\varphi(y) + (-1)^{(k-1)|y|-k^2}\theta_1(x)\theta_1(y)e(\eta).$$

Remark 1.4. The author is grateful to Fuquan Fang and Zizhou Tang for informing him that a manifold $M = D(\xi_1) \cup_g D(\xi_2)$ with focal genus 2 coincides with the notion of the double mapping cylinder of the pairs of maps $p_1: S(\xi_1) \to N_1, p_2 g_2: S(\xi_1) \to N_2$ due to Grove and Halperin [4]. Letting F be a path component of the homotopy fiber of the inclusion $S(\xi_1) \subset M$, then a classification on F up to fundamental group, integral cohomology and rational homotopy type has been obtained by Grove and Halperin in [4, Theorem D].

The name "double mapping cylinder" could indicate the much more general construction of the adjoint space $M_f \cup M_g$, where M_f and M_g are the mapping cylinders of two maps $f: X \to Y$ and $g: X \to Z$ between topological spaces, and where the union is over the common subspace $X \times 1 \subset M_f$, M_g . With the term "focal genus 2" we hope to emphasize the geometric decomposition (1) on M given by two disc bundles over the focal submanifolds N_t , t=1,2.

2. Examples and applications

Manifolds having focal genus 2 are many. We choose to mention those that arise naturally in geometry.

2.1. Let M be a compact manifold on which a Lie group G acts with cohomogeneity one (i.e., the principal orbits G/H are of co-dimension 1). Then the orbit space M/G is either a circle or an interval. In the latter case the two endpoints of the interval correspond to nonprincipal orbits N_1 , $N_2 \subset M$ and the manifold M is obtained by gluing the normal disc bundles over N_1 and N_2 along their common boundaries.

We refer to [4, 5, 7] for examples of manifolds admitting cohomogeneity one action of Lie groups.

2.2. Let M be a Riemannian manifold that admits a transnormal function $f: M \to \mathbb{R}$ (i.e., there is a function $b: \mathbb{R} \to \mathbb{R}$ so that $||df||^2 = b(f)$ [10]), and let $N_1, N_2 \subset M$ be the focal manifolds of f corresponding to the maximum and minimum of f. Theorem A in [10] concludes that, again, M is obtained by gluing the normal disc bundles over N_1 and N_2 along their common boundaries.

The idea of transnormal function is a natural generalization of the classical isoparametric functions, see [1, 6, 10].

2.3. Let $\pi: E \to M$ be a smooth fibration over a base manifold $M = D(\xi_1) \cup_g D(\xi_2)$ having focal genus 2. We set $E_t = \pi^{-1}(N_t)$ and put $\pi_t = \pi \mid E_t : E_t \to N_t$, $t \in \{1, 2\}$. Then a focal genus 2 structure on E with focal submanifolds E_t is seen from

$$E = D(\pi_1^* \xi_1) \cup_G D(\pi_2^* \xi_2),$$

where $\pi_t^* \xi_t$ is the pullback of ξ_t via π_t and where the diffeomorphism G is a bundle map over g.

2.4. Let $p: E \to S^n$ be a smooth fibration over the *n*-sphere S^n with fiber F. A focal genus 2 structure on E is afforded by

$$E = F \times D^n \cup_G F \times D^n$$

by **2.3**, where the clutching diffeomorphism $G: F \times S^{n-1} \to F \times S^{n-1}$ has the form $G(z,v) = (\beta(v)z,v)$ for some map $\beta: (S^{n-1},s_0) \to (Diff(F),id)$, and where Diff(F) is the group of diffeomorphism on F. It follows from $\beta(s_0) = id$ that the corresponding homomorphism φ in (3) acts identically on $H^*(F)$. It follows also from the triviality of ξ_2 that $e(\eta) = 0$. Thus Theorem 1.1, together with Corollary 1.3, implies that

Corollary 2.1. Let $p: E \to S^n$ be a smooth fibration over the n-sphere S^n with fiber F. There is an exact sequence

$$\cdots \to H^{r-1}(F) \xrightarrow{\theta} H^{r-n}(F) \xrightarrow{\alpha} H^r(E) \xrightarrow{i^*} H^r(F) \xrightarrow{\theta} \cdots$$
 (4)

in which

$$\begin{array}{l} i) \ \alpha(i^*(x) \cup y) = x \cup \alpha(y); \\ ii) \ \theta(xy) = \theta(x)y + (-1)^{(n-1)\dim x} x \theta(y). \end{array}$$

In 1949 H.-C. Wang [9] studied fibrations $p: E \to S^n$ with the typical fiber F a finite simplicial complex, and obtained an exact sequence (in analogue to (4)) in the homology groups of total space E and the fiber F. The sequence (4) was later

obtained as a consequence of the spectral sequence of a fibration and the property ii) was first observed by Leray [2, p.442]. Property i) is also practical and a proof is given in [11, p.336].

3. Proof of Theorem 1.1

For a smooth submanifold $i: N \hookrightarrow M$ in a Riemannian manifold M with oriented normal bundle ξ , identify the unit disc bundle $D(\xi)$ of ξ as a tubular neighborhood $t: D(\xi) \to M$ of the embedding. It induces the *Excision isomorphism*

$$t^*: H^*(M, M \setminus N) \stackrel{\cong}{\to} H^*(D(\xi), D(\xi) \setminus N)$$

and satisfies also $i = t \circ \sigma$, where $\sigma : N \to D(\xi)$ is the zero section. Since σ is a homotopy inverse of the bundle projection $p : D(\xi) \to N$ we have

$$t^* = p^* \circ i^* : H^*(M) \to H^*(D(\xi)).$$

Let $U \in H^k(D(\xi); D(\xi) \setminus N)$ be the Thom class of the oriented bundle ξ , $k = \dim_{\mathbb{R}} \xi$. Cup product with U yields the *Thom isomorphism* [8, p.97]

$$T: H^*(N) \xrightarrow{p^*}_{\cong} H^*(D(\xi)) \xrightarrow{\cup U}_{\cong} H^*(D(\xi); D(\xi) \setminus N), \quad T(\beta) = p^*(\beta) \cup U.$$

Write ψ for the composed isomorphism

$$\psi = (t^*)^{-1} \circ T : H^*(N) \stackrel{\cong}{\to} H^*(M, M \setminus N)$$

and let $s:(M,\emptyset)\to (M,M\setminus N)$ be the obvious inclusion of the topological pairs.

Lemma 3.1. For any $x \in H^*(M)$, $y \in H^*(N)$ one has in $H^*(M)$ the relation

$$x \cup s^* \psi(y) = s^* \psi(i^*(x) \cup y).$$

Proof. Consider the commutative diagram induced by t

$$\begin{array}{cccc} H^*(M) \times H^*(M, M \setminus N) & \stackrel{t^* \times t^*}{\to} & H^*(D(\xi)) \times H^*(D(\xi); D(\xi) \setminus N) \\ & \cup \downarrow & & \downarrow \cup \\ & & \downarrow \cup \\ & H^*(M, M \setminus N) & \stackrel{t^*}{\to} & H^*(D(\xi); D(\xi) \setminus N) \end{array},$$

where the vertical maps are the cup products. It follows that for any $x \in H^*(M)$, $y \in H^*(N)$ one has in $H^*(D(\xi); D(\xi) \setminus N)$ that

$$\begin{split} t^*(x \cup \psi(y)) &= t^*(x) \cup t^*(\psi(y)) \\ &= (t^*(x) \cup p^*(y)) \cup U \text{(by the definition of } \psi) \\ &= p^*(i^*(x) \cup y) \cup U \text{(since} t^* = p^* \circ i^*) \\ &= T(i^*(x) \cup y) \text{(by the definition of } T). \end{split}$$

Applying $s^* \circ t^{*-1}$ to the both ends of the equalities verifies Lemma 3.1.

Proof of Theorem 1.1. Let $M = D(\xi_1) \cup_g D(\xi_2)$ be a manifold having focal genus 2 and with focal submanifolds $i_t : N_t \hookrightarrow M$, t = 1, 2. Clearly, a tubular neighborhood of i_t can be taken as $D(\xi_t) \subset M$.

Assume that t=1 (consequently, $\bar{t}=2$) and that dim $\xi_2=k$. Let

$$j:(M,\emptyset)\to (M,N_1), h:(M,N_1)\to (M,M\backslash N_2)$$

and $s:(M,\emptyset)\to (M,M\backslash N_2)$ be the obvious inclusions of the topological pairs. Since N_1 is a strong deformation retract of $M\backslash N_2$ the map h induces an isomorphism on cohomology.

Define the map α_1 by the commutativity of the diagram

$$\begin{array}{ccc}
H^{r}(M, N_{1}) & \stackrel{j^{*}}{\to} & H^{r}(M) \\
h^{*} \uparrow \cong & s^{*} \nearrow & \uparrow \alpha_{1} \\
H^{r}(M, M \backslash N_{2}) & \stackrel{\psi}{\simeq} & H^{r-k}(N_{2})
\end{array} (5)$$

where the commutativity of the upper triangle follows from $s = h \circ j$. In view of the isomorphism $h^* \circ \psi$ we may replace in the cohomology exact sequence

$$\cdots \to H^{r-1}(N_1) \xrightarrow{\partial} H^r(M, N_1) \xrightarrow{j^*} H^r(M) \xrightarrow{i^*_1} H^r(N_1) \to \cdots$$

of the pair (M, N_1) the relative cohomology group $H^r(M, N_1)$ by $H^{r-k}(N_2)$ to obtain

$$\cdots \to H^{r-1}(N_1) \stackrel{\theta_1}{\to} H^{r-k}(N_2) \stackrel{\alpha_1}{\to} H^r(M) \stackrel{i_1^*}{\to} H^r(N_1) \to \cdots,$$

where $\theta_1 = \psi^{-1} \circ (h^*)^{-1} \circ \partial$. This establishes the exactness of the sequence (2).

Property iii) of the Theorem is essentially shown in the proof of [8, Theorem 11.3], and property i) comes directly from Lemma 3.1.

It remains to establish the decomposition ii) for the additive map $\theta_1 = \psi^{-1} \circ (h^*)^{-1} \circ \partial$ in (2). The inclusion $D(\xi_2) \hookrightarrow M$ gives rise to a relative homeomorphism $f: (D(\xi_2), S(\xi_2)) \hookrightarrow (M, D(\xi_1))$ which satisfies $f \mid S(\xi_2) = g_1$ and induces also the (vertical) exact ladder

where $h':(M, N_1) \to (M, D(\xi_1))$ is the obvious inclusion with $h' \mid N_1 = \sigma_1$, and where β_2 is the connecting homomorphism in the Gysin exact sequence of the sphere bundle $S(\xi_2) \to N_2$. Property ii) follows from commutativity of the above diagrams, as well as the following obvious relations

$$\begin{split} g_1^* \circ (\sigma_1^*)^{-1} &= g_1^* \circ p_1^*; \\ \theta_1 &= T^{-1} \circ f^* \circ (h'^*)^{-1} \circ \partial; \\ \beta_2 &= T^{-1} \circ \partial_2, \end{split}$$

where T is the Thom isomorphism of the bundle ξ_2 . These complete the proof.

References

- [1] U. Abresch, Isoparametric hypersurfaces with four or six distinct principal curvatures. Necessary conditions on the multiplicities, Math. Ann. 264 (1983), no. 3, 283–302.
- [2] J. Dieudonné, A history of Algebraic and Differential Topology, 1900–1960, Boston, Basel, 1989.
- [3] H. Duan, The degree of a Schubert variety, Adv. Math., 180(2003),112-133.
- [4] K. Grove and S. Halperin, Dupin hypersurfaces, group actions and the double mapping cylinder, J. Differential Geom. Vol. 26, No. 3 (1987), 429–459.
- [5] C. Hoelscher, Classification of cohomogeneity one manifolds in low dimensions, Ph.D. thesis, University of Pennsylvania, Philadelphia, 2007.
- [6] W. Y. Hsiang, R. Palais and C. L. Terng, The topology of isoparametric submanifolds, J. Diff. Geom., Vol. 27 (1988), 423-460.
- [7] A. Kollross, A classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2002), 571–612.
- [8] J. Milnor and J. Stasheff, Characteristic classes, Ann. of Math. Studies 76, Princeton Univ. Press, 1975.
- [9] H.-C. Wang, The homology groups of the fibre bundles over a sphere, Duke Math. J., 16(1949), 33-38
- [10] Q. M. Wang, Isoparametric functions on Riemannian manifolds. I. Math. Ann. 277 (1987), no. 4, 639–646.
- [11] G. W. Whitehead, Elements of homotopy theory. Graduate Texts in Mathematics, vol. 61, Springer-Verlag, 1978.

Haibao Duan dhb@math.ac.cn

Hua Loo-Keng Key Laboratory of Mathematics, Institute of Mathematics, Chinese Academy of Sciences, Beijing, 100190, P.R. China