
Homology, Homotopy and Applications, vol. 13(1), 2011, pp.205–221
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Abstract
We show that every monomial ring can be realized topo-

logically by a certain topological space. This space is called a
generalized Davis-Januszkiewicz space and can be thought of as
a colimit over a multicomplex, a combinatorial object general-
izing a simplicial complex. Furthermore, we show that such a
space is obtained as the homotopy fiber of a certain map with
total space the classical Davis-Januszkiewicz space.

Introduction

A classical problem in algebraic topology is the realizability of certain rings or
algebras, that is, finding a topological space whose cohomology ring is a given ring or
algebra. A notable example is the realizability of graded polynomial rings, posed as
a question by Steenrod in [15]. Complete answers were given only decades later, for
example, by Notbohm in [12] in the case when the ground ring is Fp with p an odd
prime and by Andersen and Grodal in [1] in the general case.

In this paper we focus on the realizability of monomial algebras, i.e., quotients of
a polynomial algebra by an ideal generated by monomials. Let R = k[x1, . . . , xm]/I
be such an algebra; if all the monomials in I are squarefree, then R = SR(K) is
the Stanley-Reisner algebra of some simplicial complex K. The algebra SR(K) is an
algebraic invariant of K, and it is one of the central objects of study in combinatorial
commutative algebra. In [7] Davis and Januszkiewicz showed that every Stanley-
Reisner algebra R(K) is realized topologically by a space DJ(K). Subsequent work
of Buchstaber and Panov ([3]) has shown the existence of a homotopy equivalent
model for DJ(K) as a cellular subcomplex of BTm = (CP∞)m, and Notbohm and
Ray ([13]) expressed it as a homotopy colimit of a certain diagram over the poset
category of K.

In this paper we show that in fact every monomial algebra can be realized topo-
logically by a generalized Davis-Januszkiewicz space. We emphasize the fact that
a monomial ring can be thought of as the Stanley-Reisner ring of a combinatorial
object generalizing a simplicial complex, called a multicomplex. This is the content
of Theorem 3.6.
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Any simplicial complex can be viewed as a multicomplex in a canonical way. More-
over, to any multicomplex K one can associate a certain classical simplicial com-
plex Kpol. The corresponding Davis-Januszkiewicz spaces DJ(K) and DJ(Kpol) are
related by a fibration that reflects topologically the algebraic process of polarization.
Explicitly, the second main result of this paper is Theorem 4.3, in which we show
that DJ(K), the topological space realizing the Stanley-Reisner ideal of a multi-
complex K, is the homotopy fiber of a map with total space DJ(Kpol), a classical
Davis-Januszkiewicz space, and base space the classifying space of a torus.

Organization of the paper

In Section 1 we introduce the notion of a multicomplex, study the basic facts
about them and show how they generalize simplicial complexes. In Section 2 we
review a classical construction, due to Fröberg, called polarization. It associates a
squarefree monomial ring to any monomial ring, while at the same time preserving
homological properties. In Section 3 we define the Davis-Januszkiewicz space of a
multicomplex and describe its main properties. In particular, Theorem 3.6 describes
its cohomology ring. In Section 4 we show that the polarization of a monomial ring
is reflected topologically by a fibration involving the Davis-Januszkiewicz spaces of a
multicomplex and a simplicial complex. This is the content of Theorem 4.3.
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1. Multicomplexes

We introduce the definition of a multicomplex. This is inspired by [6], but the
treatment is substantially different. A simplicial complex K on the vertex set [m] =
{1, . . . ,m} is a collection of subsets of [m] such that whenever σ ∈ K and τ ⊂ σ,
then also τ ∈ K. We can also think of K as a collection of elements of {0, 1}m such
that whenever σ ∈ K and τ 6 σ, then also τ ∈ K. The order on the two-element set
{0, 1} is just 0 < 1, and the order on {0, 1}m is the standard Cartesian partial order.
Suppose K is a simplicial complex in the first sense; then a simplex σ corresponds to
the element (σ1, . . . , σm) given by

σi =

{
1 if i ∈ σ,

0 if i /∈ σ.

In other words, (σi, . . . , σm) consists of the values of the characteristic function of
σ as a subset of [m]. In the opposite direction, by taking the support of an m-tuple
(σ1, . . . , σm) ∈ {0, 1}m we obtain σ = {i ∈ [m] | σi 6= 0}. For example, the boundary
∂∆2 of the 2-simplex is represented in the first sense by the set

{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}

}
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and in the second sense by the set
{
(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)

}
.

Using slightly different notation, we could replace 1 with the symbol ∞. We then
represent a simplicial complex by a set of elements of {0,∞}. We can define a gen-
eralization of this classical concept by considering collections of elements of Nm∞ with
the analogous property of a simplicial complex and satisfying an additional “bound-
edness” condition. Here N∞ = N ∪ {∞} = {0, 1, 2, . . . ,∞} with i <∞ for each i ∈ N

and N
m
∞ is endowed with the structure of a partially ordered set given by the standard

Cartesian order. A chain in K is a totally ordered subset L of K. Since ∞ is larger
than every natural number, every chain L has a least upper bound in N

m
∞, i.e., an

element sup(L) ∈ N
m
∞, possibly ∞, such that sup(L) > τ for every τ ∈ L.

Definition 1.1. A multicomplex K on [m] is a subset of Nm∞ such that

1. If σ ∈ K and τ 6 σ, then also τ ∈ K;

2. Any chain L in K has an upper bound in K, i.e., sup(L) ∈ K.

The elements of Nm∞ are called multisimplices. A subcomplex of K is any subset of
K which is also a multicomplex in its own right.

For any multisimplex σ, we denote by σi its i-th coordinate in N
m
∞.

Remark 1.2. The poset Nm∞ can be endowed with the structure of a meet-semilattice
via a coordinatewise minimum of multisimplices. More precisely, if S is a (not neces-
sarily finite) subset of Nm∞, then its meet ∧S is the element whose i-th coordinate is
given by min{τi | τ ∈ S}. If S = {σ1, . . . , σn} we write ∧S = σ1 ∩ · · · ∩ σn and call it
the intersection of σ1, . . . , σn.

Since σ1 ∩ · · · ∩ σn 6 σi for 1 6 i 6 n, condition 1 of Definition 1.1 says that a
multicomplex is actually a sub-semilattice of Nm∞.

The maximal elements in a multicomplex K considered as a poset are called its
maximal multisimplices. The following lemma states that every multicomplex is deter-
mined by its maximal multisimplices. We use the notation 〈µ1, . . . , µs〉 to denote
the multicomplex determined by the simplices µ1, . . . , µs. In detail, we have that
〈µ1, . . . , µs〉 = {σ ∈ N

m
∞ | σ 6 µi for some i, 1 6 i 6 s}. The multicomplex 〈σ〉 gener-

ated by a single multisimplex σ is denoted by ∆(σ) or just ∆σ.
In principle a multicomplex could have an infinite number of maximal multisim-

plices. The next proposition shows that this cannot happen.

Proposition 1.3. Every multicomplex has a finite number of maximal multisim-
plices.

We prove Proposition 1.3 with the help of the following lemma.

Lemma 1.4. Every infinite sequence of elements of Nm∞, with m > 1, admits a non-
decreasing infinite subsequence.

Proof. We proceed by induction on the number of coordinates m. Suppose first that
m = 1. Let S = (sn)n>1 be an infinite sequence in N∞. If S is not bounded above
we define a subsequence by setting n1 = 1 and then, assuming ni has been chosen,
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Figure 1: The multicomplex in N
2
∞ generated by (∞, 1) and (1, 3).

set ni+1 to be the least index of S such that ni < ni+1 and sni
< sni+1

. Such an
index can always be chosen; otherwise S would be bounded above. The subsequence
(sni

)i>1 is clearly strictly increasing as required.
Suppose now S has an upper bound different from ∞. It follows that only finitely

many different elements of N∞ appear in the sequence, and therefore that one of them
must occur infinitely many times. This gives the required constant sequence.

If S has ∞ as an upper bound and infinitely many terms equal ∞, then the
subsequence given by such terms is infinite and constant. Finally, if there are only
finitely many terms equal to ∞ we can discard them to obtain a subsequence which
falls in one of the first two cases. The resulting subsequence will also be a subsequence
of the original one. This concludes the proof of the base step of the induction.

Suppose now that the proposition holds for m− 1 and let S = (sn)n>1 be an infi-
nite sequence of elements of N

m
∞. By considering only the first m− 1 coordinates

of the sn, we obtain, by applying the induction hypothesis, a non-decreasing infi-
nite subsequence indexed by the integers n1 < n2 < · · · . Consider the corresponding
subsequence S′ = (sni

)i>1 of S and take the sequence given by the last coordinate
of each sni

. By induction we can again find an infinite non-decreasing subsequence,
indexed by integers p1 < p2 < · · · , to obtain a subsequence (spj )j>1 of S′ and hence
of S which, by construction, is infinite and non-decreasing.

Corollary 1.5. Let µ1, . . . , µs be the maximal multisimplices of a multicomplex K.
Then K = 〈µ1, . . . , µs〉.

Proof of Proposition 1.3. Any two maximal multisimplices have to be incomparable,
but the previous lemma states that any infinite sequence of elements of Nm∞ admits
at least two (in fact infinitely many) comparable ones.

Remark 1.6. Even though a regular simplicial complex is not directly a multicomplex,
there is a canonical way to embed it into one. Let indeed K be an abstract simplicial
complex, represented by a set of subsets of [m] = {1, . . . ,m}. Let F ⊂ [m] be a face
of K; then we assign a multisimplex σ(F ) given by

σ(F )i =

{
∞ if i ∈ F ,

0 otherwise.

The multicomplex 〈σ(F ) | F maximal face of K〉 corresponds uniquely to K.
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Conversely, let L be a multicomplex on m vertices whose maximal multisimplices
have only ∞’s and 0’s as coordinates. We assign to each maximal multisimplex µ
of L the subset F (µ) = {i ∈ m | µi = ∞} of [m]. In this way, the multicomplex L
corresponds uniquely to the simplicial complex 〈F (µ) | µ maximal face of L〉.

Definition 1.7. Let K be a multicomplex on m vertices. Its ν-vector ν(K) is the
m-tuple with i-th coordinate ν(K)i = max{σi | σ ∈ K,σi 6= ∞}, or ν(K)i = 0 if such
a maximum does not exist.

Definition 1.8. An m-tuple τ in N
m
∞ is said to be a non-multisimplex of K if it

does not belong to K. A non-multisimplex τ of K is said to be a missing face if all
the σ ∈ N

m
∞ with σ 6 τ belong to K. In other words, a missing face is a minimal

non-multisimplex.

Remark 1.9. By the second defining condition of a multicomplex, a multisimplex
containing ∞ in one of its coordinates can never be a missing face.

If K and K ′ are multicomplexes, then we define their union and intersection to
be the corresponding set-theoretic union and intersection. By condition 1 of Defini-
tion 1.1, the intersection K ∩K ′ can be written as

K ∩K ′ = {σ ∩ σ′ | σ ∈ K,σ ∈ K ′},

where the intersection is the meet operation of K as a semilattice, as described in
Remark 1.2.

It is obvious that K ∪K ′ is again a multicomplex and that for K ∩K ′ the first
defining condition of a multicomplex is clearly satisfied. For the boundedness condi-
tion, suppose L is a chain in K ∩K ′; then L has an upper bound σK in K and an
upper bound σK′ in K ′. They might be different, but σK ∩ σK′ belongs to both K
and K ′ and is still an upper bound for L, so that K ∩K ′ really is a multicomplex.

Suppose now that K is a multicomplex on [m]. The set of all possible intersections
of its maximal multisimplices forms a partially ordered set with respect to the induced
order. This is called the intersection poset of K and is denoted by L(K).

Remark 1.10. The intersection poset of a multicomplex is finite by Proposition 1.3.
Moreover, it is a sub-semilattice of K, since it contains by construction all possible
intersections of elements of K.

Lemma 1.11. For any multisimplex σ there exists a unique element i(σ) of L(K)
with i(σ) > σ which is minimal with respect to the induced partial order on L(K).

Proof. As L(K) contains the maximal multisimplices of K, the required i(σ) always
exists. Moreover, if there were two incomparable elements i(σ) and i′(σ), with
i(σ) > σ, i′(σ) > σ, and minimal in the set of elements with this property, then we
would have that their intersection also satisfies i(σ) ∩ i′(σ) > σ. This would contradict
their minimality, as i(σ) ∩ i′(σ) is smaller than both i(σ) and i′(σ).

The previous lemma has a very important consequence, since it implies that our
main object of study, the Davis-Januszkiewicz space introduced in the next section,
can be obtained as a colimit indexed over the finite poset L(K) instead of that over
the possibly infinite face poset of K.
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Figure 2: The multicomplex 〈(0, 4), (3, 3), (∞, 1)〉.
The elements of its intersection semilattice are circled.

Definition 1.12. Let K be a multicomplex on [m] and k a commutative ring with
unity. The Stanley-Reisner ring or face ring of K is the quotient

SR(K) = k[x1, . . . , xm]/IK

of the polynomial ring k[x1, . . . , xm] on m generators of degree 2 by the ideal

IK = (xσ | σ is a missing face of K),

where xσ = xσ1

1 xσ2

2 · · ·xσm
m for σ = (σ1, . . . , σm). When σi = 0, the corresponding vari-

able xi does not appear. The ideal IK is called the Stanley-Reisner ideal of K.

Note that the Stanley-Reisner ideal is well defined as a consequence of Remark 1.9.

Remark 1.13. If τ is a non-multisimplex of K, there exists a missing face σ such
that σ 6 τ . The corresponding monomial xσ divides xτ , and therefore xτ belongs
to the Stanley-Reisner ideal of K. This means that IK contains all the monomials
corresponding to non-multisimplices of K. In particular, there is a one-to-one cor-
respondence between monomial ideals in the polynomial ring on m variables and
multicomplexes on m vertices.

Remark 1.14. Let K and L be two multicomplexes on [m]. From the definition of the
Stanley-Reisner ideal it follows immediately that

IK + IL = IK∩L and IK ∩ IL = IK∪L.

2. Polarization

Unlike the Stanley-Reisner ring of a regular simplicial complex, the Stanley-Reisner
ring of a multicomplex needs not be squarefree. Nonetheless, there is a canonical way
to obtain a squarefree monomial ideal out of an arbitrary one, known as polariza-
tion. In this section we introduce a slight generalization of this concept, suitable for
the treatment of generalized Davis-Januszkiewicz space. For a reference on Stanley-
Reisner and monomial rings the reader can consult, among others, [5] and [16].
Throughout this section we assume that the base ring k is a field.
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Suppose I is a monomial ideal in R = k[x1, . . . , kn]. For each variable xi, denote
by pi the maximum exponent such that xpii divides at least one of the minimal
generators. Fix an m-tuple of integers v = (v1, . . . , vm) such that vi > pi, 1 6 i 6 m
and set |v| =

∑n
i=1 vi. We define the v-polarization of R to be the polynomial ring

Rpol
v = k[x11, x12, . . . , x1v1 , . . . , xn1, . . . , xnvn ]

on v new variables. If some power xsi divides one of the minimal generators of I,
then s 6 pi, and we set its polarization to be the monomial xi1xi2 · · ·xis of Rpol.
Accordingly, the polarization of a generator xs11 · · ·xsnn of I is defined to be the product
of the polarization of the powers xsii and is thus itself a monomial in Rpol which is
obviously squarefree. The v-polarization Ipolv of I is finally the ideal of Rpol generated
by the polarization of the minimal generators of I.

Example 2.1. Let I be the ideal (x21, x1x2) in k[x1, x2]; then p1 = 2, p2 = 1 so that

Rpol
(2,1) = k[x11, x12, x21]. The polarized ideal Ipol(2,1) is generated by the monomials

x11x12 and x11x21.

There is an obvious map Rpol
v → R, sending a variable xij to xi, which induces

a homomorphism on the quotient rings Rpol
v /Ipolv → R/I. Its kernel is the ideal

(Ipolv + L)/Ipolv , where L is generated by the differences

x11 − x12, x12 − x13, . . . , x1v1−1 − x1v1 , . . . , xn1 − xn2, . . . , xnvn−1 − xnvn . (1)

This gives at once an isomorphism between R/I and Rpol
v /(Ipolv + L). One of the most

interesting features of polarization is that such differences form a regular sequence in
Rpol
v /Ipolv , and thus the homological properties of R/I are preserved. For example,

R/I is a Cohen-Macaulay, respectively, Gorenstein, Golod, complete intersection ring
if and only if the polarized quotient is (see [8]).

Definition 2.2. Let K be a multicomplex with Stanley-Reisner ideal IK . The mul-
ticomplex Kpol

v defined by the polarized ideal I
K

pol
v

is called the v-polarization of
K.

Let ν(K) = (ν1, . . . , νm) be the ν-vector of a multicomplex K on m vertices. By
definition of ν-vector, the (ν1 + 1, . . . , νm + 1)-polarization of K is well defined and
we call it simply the polarization Kpol of K.

Remark 2.3. Since a polarized Stanley-Reisner ideal is squarefree, the multicomplex
determined by it corresponds to a regular simplicial complex.

The following remark is elementary, but is a key step in studying the cohomology
structure of Davis-Januszkiewicz spaces in Section 3.

Remark 2.4. Let K1 and K2 be two multicomplexes on m vertices and let K =
K1 ∪K2 with ν-vector ν(K) = ν. Then for any m-tuple v = (v1, . . . , vm) with vi >
νi + 1, 1 6 i 6 m we have that Kpol

v = Kpol
v = (K1)

pol
v ∪ (K2)

pol
v and (K1 ∩K2)

pol
v =

(K1)
pol
v ∩ (K2)

pol
v .

Even though we do not need it in the rest of this paper, it is interesting to note
that we can describe the maximal multisimplices of Kpol

v directly in terms of the
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maximal multisimplices of K, that is, we can give a direct combinatorial description
of polarization.

We introduce an operation on sets of simplices. Applying this operation to the set
of maximal multisimplices of a multicomplex, we obtain a set of generators for Kpol

v .
Let σ = (σ1, . . . , σm) be a multisimplex of [m]. Let i, j be integers such that

1 6 i 6 m, 0 6 j 6 σi. Let w be an integer such that w > σi if σi is finite or w > 0 if
σi = ∞. We define a multisimplex si,j,w(σ) on m+ w vertices as follows:

(σ1, . . . , σi−1, ∞, . . . , ∞, 0, ∞, . . . , ∞, σi+1, . . . , σm).
↑ ↑

i+ j i+ w + 1

If i, w are as above, we also define si,w = {si,j,w(σ) | 0 6 j 6 σi}. More generally, we
define si,w(Σ) =

⋃
σ∈Σ si,w(σ) where Σ is a set of simplices such that for each σ ∈ Σ

then w > σi whenever σi 6= ∞,.
Let now K be a multicomplex on m vertices with ν-vector ν(K) = (ν1, . . . , νm)

and let v = (v1, . . . , vm) be an m-tuple such that vi > νi, 1 6 i 6 m. We can apply to
σ ∈ K the s-operation described above m times to obtain

s(σ) = sm+v1+···+vm−1,vm(· · · (s3+v1+v2,v3(s2+v1,v2(s1,v1(σ))) · · · ). (2)

Remark 2.5. If σ is a multisimplex on m vertices, then by construction the set s(σ)
contains simplices on m+ v1 + · · ·+ vm vertices, so we can re-index the vertices of
simplices of s(σ) by assigning the labels (1, 1), . . . , (1, v1) to the first v1 + 1, the labels
(2, 1), . . . , (2, v2) to the following v2 + 1 vertices and so on. With this labeling in mind,
it is elementary but lengthy to check that Kpol

v is generated by all the simplices in
s(µ), as µ varies among the maximal faces of K.

Example 2.6. LetK be the multicomplex on two vertices with maximal multisimplices
(1, 0) and (0,∞). We see that the missing faces are given by (2, 0) and (1, 1), so that
the Stanley-Reisner ring of K is k[x1, x2]/(x

2
1, x1x2), as in Example 2.1. The algebraic

polarization is then the ring

k[x11, x12, x21]/(x11x12, x11x21). (3)

The multicomplex corresponding to the ring (3) has {11, 12, 21} as the vertex set and
the missing faces (1, 1, 0) and (1, 0, 1), so thatKpol = 〈(0,∞, 0), (∞, 0, 0), (0,∞,∞)〉).
According to Remark 2.5, we can describe Kpol directly as 〈s(1, 0), s(0,∞)〉. The
ν-vector is ν(K) = (1, 0), so by (2) we have

s(1, 0) = s3,0(s1,1(1, 0)) = s3,0({(0,∞, 0), (∞, 0, 0)}) = {(0,∞, 0), (∞, 0, 0)}

and

s(0,∞) = s3,0(s1,1(0,∞)) = s3,0({(0,∞,∞)}) = {(0,∞,∞)}.

Remark 2.7. The v-polarization of a simplicial complex carries essentially the same
information as the polarization. It is mainly a technical tool to deal with the polariza-
tion of sub-multicomplexes of larger multicomplexes, as in the proof of Theorem 4.3.

Let K be a multicomplex onm vertices with ν-vector ν(K) = ν. It is easy to check,
either from the algebraic definition or from the construction described above, that
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there is a bijection between the intersection posets ofKpol and ofKpol
v . The map sends

a simplex σ ∈ L(Kpol), which has |ν|+m coordinates, to a simplex σv ∈ L(Kpol
v )

obtained by filling in the remaining |v| − |ν| −m coordinates with ∞.
Let us illustrate this fact with a simple example. Set K = 〈(1)〉 = {0, 1}, the

multicomplex on 1 vertex generated by (1). It has ν(K) = (1), so its polarization
is Kpol = 〈(∞, 0), (0,∞)〉. Now, if v = (4), for n > 1, the v-polarization is Kpol

v =
〈(∞, 0,∞,∞), (0,∞,∞,∞). Then L(Kpol) = {(∞, 0), (0,∞), (0, 0)} and L(Kpol

v ) =
{(∞, 0,∞,∞), (0,∞,∞,∞), (0, 0,∞,∞)}.

Algebraically, we see that the Stanley-Reisner ring of Kpol is k[x11, x12]/(x11x12)
and that of Kpol

v is k[x11, x12, x13, x14]/(x11x12).

3. Davis-Januszkiewicz spaces

In this paper we consider complex projective spaces CPn as pointed CW-complexes
with the standard cellular structure consisting of one i-cell in each even dimension 2i,
for i = 0, . . . , n, the 0-cell being a fixed base point ∗. When m 6 n, there is a natural
cellular inclusion CPm →֒ CPn. We also allow n to be zero in which case CP0 = ∗, or
to be ∞, in which case CP∞ = ∪∞

n=0CP
n with the induced cellular structure.

As a subset of a partially ordered set, any multicomplex K inherits the structure
of a partially ordered set himself. We denote by CAT(K) the corresponding category.
Its objects are then simplices σ of K and there is exactly one morphism whenever
σ 6 τ . For a given multicomplex K on [m], we define a functor XK from CAT(K) to
the category TOP of topological spaces as

XK(σ) = CPσ1 × · · · × CPσm . (4)

For each morphism σ 6 τ , there is a corresponding inclusion XK(σ) →֒ XK(τ), in-
duced by componentwise cellular inclusion of the projective spaces.

Definition 3.1. Let K be a multicomplex. The Davis-Januszkiewicz space DJ(K)
of K is the colimit of the functor XK , i.e., DJ(K) = colimXK .

Remark 3.2. The space DJ(K) sits naturally in the m-fold product

BTm = CP∞ × · · · × CP∞

by considering K as a subcomplex of the full multisimplex ∆m = 〈(∞, . . . ,∞)〉. Since
all the maps in the colimit of XK are the natural cellular inclusions, the colimit
reduces to the union of topological spaces

DJ(K) =
⋃

σ∈K

XK(σ)

and the Davis-Januszkiewicz space of K inherits a cellular structure with cells in
one-to-one correspondence with finite (i.e., with no coordinate equal to ∞) simplices
of K.

As soon as a multicomplex K contains a non-finite multisimplex, i.e., one having
∞ as one of the coordinates, the category CAT(K) becomes infinite. We would like
to work over a finite category instead, mainly to be able to use induction arguments,
as in the proof of Theorem 3.6. Luckily enough it is possible to do so by restricting
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our attention to the full subcategory CAT(L(K)) whose objects are the simplices in
the intersection poset of K. In the following lemma we describe what happens if we
restrict the functor XK to CAT(L(K)). Denote such a restriction XK |CAT(L(K)) by

XL(K).

Proposition 3.3. The Davis-Januszkiewicz space of K is determined by the inter-
section poset L(K), i.e., colimXK ≈ colimXL(K).

Proof. We show that the topological space on the right-hand side of the above equality
satisfies the universal property of the colimit on the left-hand side. This automatically
gives the required homeomorphism by uniqueness of colimits.

We start by indicating the maps from the spaces XK(σ) to the colimit over the
intersection poset colimXL(K). By Lemma 1.11, for each multisimplex σ of K there
is a unique element i(σ) of L(K) satisfying σ 6 i(σ) which is minimal with respect
to such inequality. On one hand, the existence of i(σ) gives by functoriality a mor-
phism XK(σ) →֒ XK(i(σ)) = XL(K)(i(σ)) which, composed with the natural mor-
phism XL(K)(i(σ)) → colimXL(K), produces the required morphism

XK(σ)
fσ
−→ colimXL(K).

On the other hand, the minimality condition implies that every map from XK(σ)
to some other space Z, compatible with the colimit maps XK(σ) → colimXK , fac-
tors through colimXL(K). Finally, the uniqueness of such i(σ) guarantees that the
factorization is unique, thus concluding the proof.

Remark 3.4. In the case when K corresponds to a regular simplicial complex (see
Remark 1.6), the maximal multisimplices of K contain only 0’s and ∞’s and therefore
so do all of their intersections. This means that only points ∗ and CP∞’s appear as
factors in the spaces XL(K)(σ), σ ∈ L(K). In such case DJ(K) is the classical Davis-
Januszkiewicz space of the (unique) regular simplicial complex corresponding to K.

Suppose that K is a multicomplex admitting a vector j = (j1, . . . , jm) ∈ N
m of

“weights” such that each maximal multisimplex σ has for each i either σi = ji or
σi = ∞. We can associate to K a regular simplicial complex L whose simplices are
in one to one correspondence to those of L(K). The maximal faces of L are given
by F (µ), as µ varies among the maximal faces of K, with F (µ) = {i ∈ m | µi = ∞}.
The Davis-Januszkiewicz space DJ(K) associated to the multicomplex K is then the
generalized moment-angle complex Z(L; X) of [2] for the m-tuple

X = ((CP∞,CPj1), . . . , (CP∞,CPjm)).

We now move to description of the cohomological properties of Davis-Januszkiewicz
spaces of multicomplexes. We noted in Remark 3.2 that the space DJ(K) sits natu-
rally in the m-fold product BTm = CP∞ × · · · × CP∞. The cohomology ring of BTm

with coefficients in a commutative ring with unity k is a polynomial ring k[v1, . . . , vm]
on m variables of degree 2.

In analogy with the case of regular simplicial complexes, the following lemma
expresses the Davis-Januszkiewicz space of a union of two multicomplexes as a certain
pushout. This makes it possible to use Mayer-Vietoris arguments for the cohomology
of those spaces.
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Lemma 3.5. If a multicomplex K can be written as a union of two subcomplexes K ′

and K ′′, then DJ(K) sits in the following pushout diagram:

DJ(K ′ ∩K ′′) //

��

DJ(K ′′)

��
DJ(K ′) // DJ(K)

where the maps originating from the top left corner are the natural inclusions. More-
over, the above diagram is also a homotopy pushout.

Proof. As DJ(K ′) and DJ(K ′′) are disjoint outside DJ(K ′ ∩K ′′) and the maps are
the natural inclusions, the pushout is given by the union, but then

DJ(K ′) ∪DJ(K ′′) =

(
⋃

σ∈K′

XK′

(σ)

)
∪

(
⋃

σ∈K′′

XK′′

(σ)

)
=
⋃

σ∈K

XK(σ)

because for K = K ′ ∪K ′′ the functor XK satisfies XK(σ) = XK′

(σ) for any σ ∈ K ′

and XK(σ) = XK′′

(σ) for any σ ∈ K ′′. This concludes the proof of the first state-
ment, since the last term in the previous equation is exactly DJ(K). As all maps are
inclusions of CW-complexes, they are cofibrations and therefore the pushout is also
a homotopy pushout.

Theorem 3.6. Le k be a commutative ring with unity k and K be an arbitrary multi-
complex on [m]. The cohomology ring H∗(DJ(K); k) with coefficients in k is isomor-
phic, as a ring, to the Stanley-Reisner ring of K and the inclusion i : DJ(K) →֒ BTm

induces the canonical projection k[x1, . . . , xm] ։ k[x1, . . . , xm]/IK .

Proof. As noted in Remark 3.2, the cells of DJ(K) are in one-to-one correspondence
with the finite simplices of K. As there are no odd-dimensional cells, it is clear that
additively H∗(DJ(K); k) ∼= k[x1, . . . , xm]/IK , where xi is the cohomology class cor-
responding to the 2-cell of the i-th coordinate CP∞ in BTm and a finite multisimplex
σ = (σ1, . . . , σm) corresponds to the cohomology class given by xσ = xσ1 · · ·xσm .

We now show that the inclusion i : DJ(K) →֒ BTm induces the canonical pro-
jection. By Proposition 3.3, we can take DJ(K) to be colimXL(K) and proceed by
induction on the number of elements of L(K).

The “smallest” possible L(K) consists only of one multisimplex σ = (σ1, . . . , σm).
The colimit DJ(K) is given by XK((σ1, . . . , σm)), which is just the product
CPσ1 × · · · × CPσm of complex projective spaces. In this case the conclusion is clear.

Suppose now that L(K) has a number of simplices greater than zero. Let µ be any
maximal multisimplex of K and consider the two subcomplexes ∆µ and K \ µ of K
generated respectively by µ and by all the other maximal multisimplices. Denote by L′

and L′′ the sub-posets of L(K) corresponding respectively to the intersection posets
of ∆µ and K \ µ. As they are generated by a strictly smaller number of maximal
multisimplices of K, the induction hypothesis can be applied. Note that L′ really
consists of just one multisimplex, that is, µ.

For the sake of simplicity, write H∗(Y ) for the cohomology with k-coefficients of
any space Y and R for the polynomial ring k[v1, . . . , vm]. Using the Mayer-Vietoris
sequence in cohomology associated to the pushout diagram of Lemma 3.5 and noting
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that K \ µ ∩∆µ = ∂µ and K \ µ ∪∆µ = K, we get a short exact sequence (of graded
k-modules)

0 −→ H∗(DJ(K)) −→ H∗(DJ(K \ µ))⊕H∗(DJ(∆µ)) −→ H∗(DJ(∂µ)) −→ 0.

Let iK , resp. iK\µ, i∆µ, i∂µ be the inclusion of DJ(K), resp.

DJ(K \ µ), DJ(∆µ), DJ(∂µ),

into BTm. Applying the induction hypothesis we get a commutative diagram of k-
modules

H∗(DJ(K)) // H∗(DJ(K \ µ))⊕H∗(DJ(∆µ)) // H∗(DJ(∂µ))

R

i∗K

OO

// R⊕R

i∗K\µ⊕i
∗
∆µ

OO

// R

i∗∂µ

OO

ker i∗K //

OO

IK ⊕ I∆µ

OO

// I∂µ,

OO

where the first map in the second row is the diagonal sending a polynomial h ∈ R to
(h, h) ∈ R⊕R and the second map is the difference sending (f, g) to f − g.

Since all the rows are exact and the last two columns are exact by the inductive
hypothesis, by the Nine Lemma, the first column is also exact. Moreover, the last
row in the diagram identifies ker i∗K with IK ∩ I∆µ. Since IK ∩ I∆µ = IK , we have
identified additively the cohomology of DJ(K) with the quotient of R by I(K), i.e.,
Stanley-Reisner ring of K.

The only thing left to describe is the multiplicative structure. To this extent, let
xτ and xσ be the respective cohomology classes corresponding to the finite simplices
τ and σ. Since the induced map i∗ : H∗(BTm) → H∗(DJ(K)) is just the canonical
projection from the polynomial ring R to its quotient ring R/IK , naturality of the cup
product reduces the computation of xτ ⌣ xσ to the product of the cohomology classes
in H∗(BTm) corresponding to the same simplices. It follows that xτ ⌣ xσ = xτ+σ,
thus showing that the additive isomorphism found above is also multiplicative.

4. Davis-Januszkiewicz spaces as homotopy fibers

In this section we investigate the relation between the Davis-Januszkiewicz space
of a multicomplex and that of its polarization.

In the proof of Theorem 4.3 we make use of the following lemma, which is an easy
consequence of Mather’s Cube Lemma ([10]).

Lemma 4.1. For any commutative diagram of the form

A

��

// B

��

��0
0

0

0

0

0

0

0

0

0

0

0

0

0

C //

''P

P

P

P

P

P

P

P

P

P

P

P

P

P D

  A
A

A

A

A

A

A

X
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with the square A-B-C-D a homotopy pushout, the homotopy fibers fit in a homotopy
pushout diagram

FA

��

// FB

��
FC // FD,

where FA, FB, FC , FD denote the homotopy fibers of the maps respectively from A,
B, C, D to X.

We move on to the description of the Davis-Januszkiewicz space as a certain homo-
topy fiber. To do so, we need to consider an H-space structure on CP∞. A good
reference for the material in the following paragraph is, for example, [9], in particular
Part II.

Since the infinite complex projective space CP∞ is a K(Z, 2) space, for any CW-
complex X there is a natural isomorphism η : H2(X;Z) → [X,CP∞] from the second
cohomology group ofX to the group of homotopy classes of mapsX → CP∞. Identify-
ing K(Z× Z, 2) with CP∞ × CP∞, there is a multiplication map µ : CP∞ × CP∞ →
CP∞ which makes CP∞ into an H-group in such a way that addition in H2(X;Z)
corresponds to the multiplication µ under the isomorphism η. This multiplication is
unique up to homotopy, but it is not needed for what follows. By H-group we mean
an H-space with a homotopy associative and homotopy commutative multiplication
and a homotopy inverse. We write µ(t, u) = t ∗ u for the product of two elements
under this multiplication of CP∞ and t−1 for the image of an element t under the
homotopy inverse.

Let K be a fixed multicomplex on m vertices with ν-vector ν(K) = (ν1, . . . , νm).
If we fix an arbitrary vector v = (v1, . . . , vm) with vi > νi + 1 for 1 6 i 6 m, then the
v-polarizationKpol

v is a well-defined multicomplex on |v| vertices. Let x11 − x12, x12 −
x13, . . . , x1v1−1 − x1v1 , . . . , xn1 − xn2, . . . , xnvn−1 − xnvn be the regular sequence gen-
erating the ideal L of Section 2. The number of linear forms in the sequence is given
by
∑m
i=1(vi − 1) = |v| −m.

Think of the |v|-fold product (CP∞)|v| as indexed by pairs (i, j), where 1 6 i 6 m
and 1 6 j 6 i and the (|v| −m)-fold product (CP∞)|v|−m as indexed by pairs (r, s),
where 1 6 r 6 m and 1 6 s 6 vr − 1. Define a map ϕv from (CP∞)|v| → (CP∞)|v|−m

coordinatewise as ϕv(t)(r,s) = t(r,s) ∗ t
−1
(r,s+1), where the operation ∗ is the multiplica-

tion described above. The Davis-Januszkiewicz space DJ(Kpol
v ) of the v-polarization

of K sits naturally inside (CP∞)|v|, so by composition we have a map

ψv : DJ(K
pol
v )

ι
→֒ (CP∞)|v|

ϕv
−−→ (CP∞)|v|−m. (5)

When v = ν + 1 = (ν1 + 1, . . . , νm + 1), that is, when Kpol
v = Kpol is the polarization

ofK, we denote the corresponding map simply by ψ : DJ(Kpol)
ι
→֒ (CP∞)|ν|+m

ϕν+1
−−−→

(CP∞)|ν|.

Lemma 4.2. Let K a multicomplex with ν-vector ν(K) = ν and let v be a vector
with vi > νi + 1 for 1 6 i 6 m. The following statements hold:

1. There is a homeomorphism DJ(Kpol
v ) ≈ DJ(Kpol)× (CP∞)|v|−|ν|−m.

2. There is a homotopy equivalence of homotopy fibers hofib(ψv) ≃ hofib(ψ).
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Proof. By Remark 2.7 each simplex σv in the intersection poset L(Kpol
v ) is obtained

from a simplex σ ∈ L(Kpol) by adding |v| − |ν| −m coordinates all equal to ∞. This
means that for a simplex σ of Kpol

v we have

XL(Kpol
v )(σv) = XL(Kpol)(σ)× (CP∞)|v|−|ν|−m.

Since colimits of CW-complexes commute with products and

DJ(Kpol
v ) = colimXL(Kpol

v ),

the first statement holds.
For the second statement, let p1 : (CP

∞)|v| → (CP∞)|ν|+m the projection which is
the identity on the coordinates (i, j) with j 6 νi and maps everything else to the base
point and similarly let p2 : (CP

∞)|v|−m → (CP∞)|ν| be the projection which is the
identity on the coordinates (i, j) with j 6 νi − 1 and maps everything else to the base
point. By the first statement in the lemma, the restriction p̂1 of p1 to DJ(Kpol

v ) ≈
DJ(Kpol)× (CP∞)|v|−|ν|−m is the identity on DJ(Kpol) and maps everything else
to the base point; hence it is a trivial fibration with fiber (CP∞)|v|−|ν|−m. Similarly,
p2 is a trivial fibration again with fiber (CP∞)|v|−|ν|−m. By definition of the map ψv,
the following diagram commutes on the nose:

DJ(Kpol
v )

ψv //

p̂1

��

(CP∞)|v|−m

p2

��
DJ(Kpol)

ψ // (CP∞)|ν|.

Since the induced map between the fibers is just the identity of (CP∞)|v|−|ν|−m, the
homotopy fibers hofib(ψ) and hofib(ψv) are homotopy equivalent by [14, Proposition
7.6.1].

We are now ready to prove the second main result of this paper.

Theorem 4.3. Let K be a multicomplex on m vertices with ν-vector ν(K). With
notation as above, if v = (v1 . . . , vm) is such that vi > ν(K)i + 1 for 1 6 i 6 m, then
DJ(K) is the homotopy fiber of ψv : DJ(K

pol
v ) → (CP∞)|v|−m.

Proof. As in the proof of Theorem 3.6, by applying Proposition 3.3 we can use
induction on the number of simplices of the intersection poset L(K). Moreover, by
Lemma 4.2 we can restrict without loss of generality to the case when v = ν + 1 =
(ν1 + 1, . . . , νm + 1), that is, when Kpol

v = Kpol is the polarization of K.
Suppose that L(K) has only one element, i.e., that K has only one maximal mul-

tisimplex σ = (σ1, . . . , σm), so that K = ∆σ. Then DJ(K) = XK(σ) = CPσ1 × · · ·
· · · × CPσm . The polarized multicomplex Kpol corresponds by Remark 2.3 to a regu-
lar simplicial complex L. If σ is finite, L is dual to the boundary of the product of sim-
plices ∆σ1 × · · · ×∆σm , viewed as a polytope. In this case, the map ϕ of (5) is induced
by the canonical characteristic function of CPσ1 × · · · × CPσm as a quasitoric mani-
fold (see [4]) over the above product of simplices. This expresses at onceDJ(K) as the
homotopy fiber of ψ, because for any quasitoric 2n-manifold MP over an n-polytope
P , the Borel construction gives a fibration MP →MP ×Tn ETn → BTn, where the
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total space is homotopy equivalent to the Davis-Januszkiewicz space DJ(K∂P ), for
K∂P the regular simplicial complex dual to the boundary of P .

If σ is not finite, then the map ψ is just a product of the homotopy fibration of
the previous case with a trivial fibration (everything maps to the base point). This
takes care of the base step of our induction.

Suppose now thatK is an arbitrary multicomplex. As in the proof of 3.6, we express
it as a unionK = K ′ ∪K ′′, whereK ′ = ∆µ andK ′′ = K \ µ for some maximal multi-
simplex µ. The intersection posets of K ′ and K ′′ (and consequently of K ′ ∩K ′′) con-
tain strictly less elements than that of K, so we can apply the induction hypothesis to
DJ(K ′), DJ(K ′′) and DJ(K ′ ∩K ′′). Let ν = ν(K) be the ν-vector of K. According

to Remark 2.4, Kpol = (K ′)polν+1 ∪ (K ′′)polν+1 and (K ′ ∩K ′′)polν+1 = (K ′)polν+1 ∩ (K ′′)polν+1,
so by Lemma 3.5, the following square:

DJ((K ′ ∩K ′′)pol)

��

// DJ((K ′′)polν+1u)

��
DJ((K ′)polν+1)

// DJ((K)polν+1),

where all the maps are the natural inclusions, is a homotopy pushout. By definition of
the map ψv of (5), the restriction of ψ : DJ(Kpol) → (CP∞)|ν| to each of the spaces in
the above diagram is the respective ψν+1. All these spaces then fit in a commutative
diagram as in Lemma 4.1, where X is in this case (CP∞)|ν| and the maps are the
corresponding restrictions of of ψ.

It follows that the homotopy fiber of DJ(Kpol) → (CP∞)|ν| is the homotopy
pushout of the fibers, i.e., the homotopy pushout of

DJ(K ′ ∩K ′′)

��

// DJ(K ′′)

DJ(K ′)

which is nothing but DJ(K), as desired.

Since the maximal simplices of the polarized multicomplex Kpol contain only ∞’s
and 0’s in their coordinates, by Remark 3.4 the corresponding Davis-Januszkiewicz
space DJ(Kpol) is a classical Davis-Januszkiewicz space. In light of this fact and with
Theorem 4.3 in hand, we can provide an alternative viewpoint on Theorem 3.6. For
notation and basic facts about spectral sequences the reader may wish to consult, for
example, [11].

We consider the Eilenberg-Moore spectral sequence of the homotopy fibration

DJ(K) → DJ(Kpol)
ψ
−→ (CP∞)|ν| (6)

given by Theorem 4.3. Let H∗(X) denote the cohomology algebra of a topological
space X with coefficients in a fixed field k. The Eilenberg-Moore spectral sequence
associated to a fibration F → E → B is a spectral sequence of commutative algebras,
converging to the cohomology algebra H∗(F ) of the fiber, with E2 term given by the
Tor-algebra TorH∗(B)(H

∗(E); k).



220 ALVISE J. TREVISAN

By construction, the map ψ∗ : H∗((CP∞)|ν|) → H∗(DJ(Kpol)) sends the |ν| gen-
erators of H∗((CP∞)|ν|) to the linear forms of (1). Since those linear forms are a
regular sequence, the algebra H∗(DJ(Kpol)) is free as a module over H∗((CP∞)|ν|).
The Tor-algebra then reduces to a tensor product, so we have

TorH∗((CP∞)|ν|)(H
∗(DJ(Kpol)); k) ∼= H∗(DJ(Kpol))⊗H∗((CP∞)|ν|) k

∼= H∗(DJ(Kpol))/ψ∗(H>0((CP∞)|ν|)).

The Eilenberg-Moore spectral sequence collapses then at the E2 page, and therefore
the cohomology of the fiber is given by the above expression

H∗(DJ(K)) ∼= H∗(DJ(Kpol))/ψ∗(H>0((CP∞)|ν|)),

i.e., by the quotient of the cohomology algebra of DJ(Kpol) by the ideal

L = ψ∗(H>0((CP∞)|ν|))

generated by the regular sequence (1).
Now,DJ(Kpol) is a classical Davis-Januszkiewicz space and its cohomology algebra

is, in the notation of Section 2 the (squarefree) Stanley-Reisner ring SR(Kpol) =

Rpol/IpolK , given by the quotient of the polarized ring Rpol by the the polarization

IpolK of the Stanley-Reisner ideal of K. Putting everything back together, we have
that

H∗(DJ(K)) ∼= Rpol/(IpolK + L) ∼= SR(K),

which recovers Theorem 3.6.
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