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RELATIONS BETWEEN SLICES AND QUOTIENTS OF THE
ALGEBRAIC COBORDISM SPECTRUM

MARKUS SPITZWECK

(communicated by J. Daniel Christensen)

Abstract
We prove a relative statement about the slices of the algebraic

cobordism spectrum. If the map from MGL to a certain quotient
of MGL introduced by Hopkins and Morel is the map to the zero-
slice then a relative version of Voevodsky’s conjecture on the
slices of MGL holds true. We outline the picture for K-theory
and rational slices.

1. Introduction

In this paper we discuss certain aspects of the slice filtration of the algebraic cobor-
dism spectrum MGL. The slice filtration was introduced in [23]. It is a filtration on
any motivic spectrum which can be thought of as an analogue of the Postnikov tower
of a topological spectrum. We discuss the relation between the slice conjecture on
MGL [23, Conjecture (5)] and quotients of MGL. The conjecture describes the slices
in terms of the motivic Eilenberg Mac Lane spectrum and the topological coefficients
MU∗. The quotients are defined using the classifying map L∗ → MGL∗∗ of the formal
group law induced by the canonical orientation of MGL and canonical generators xi

of L∗. Here L∗ denotes the graded Lazard ring. In topology it is well known that
the quotient MU/(x1, x2, . . .)MU is isomorphic to the Eilenberg Mac Lane spectrum
on the integers. This follows essentially from Quillen’s theorem L∗ ∼= MU∗ and the
particular structure of L∗. In motivic homotopy theory no direct analog of this argu-
ment seems to work. In particular, the filtration on MGL obtained by dividing out
the xi (more precisely ideals of L∗ consisting of elements of degree greater than a
given bound) is not directly reflected on the homotopy groups of MGL, instead this
filtration is conjecturally the slice filtration of MGL. We show that if this holds on
the zeroth level then it holds in all levels. The statement is of a purely homotopy
theoretic nature and could be formulated in any context of highly structured ring
spectra.

Over perfect fields the zero slice of the sphere spectrum is known [22], [10]. An
effectivity result for MGL implies that MGL has the same zero slice, see Corollary (3.3).

Our main statement implies that if the quotient of MGL by all the xi coincides with
this zero slice then [23, Conjecture (5)] holds, see Corollary (4.9). As a consequence,
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under the same assumption, slices of all Landweber exact spectra are given in terms
of the Landweber coefficients and the motivic Eilenberg Mac Lane spectrum, see [18].

The author was inspired by the course notes [9].
Here is an overview of the sections. In the first section we show effectivity and

cellularity results for the algebraic cobordism spectrum. Theorem (3.1) states that
the cofiber of the unit map of MGL lies in a certain subcategory of the stable motivic
homotopy category spanned by positive Tate-spheres. As a corollary we obtain the
effectivity of MGL and a proof of the observation in [23] that the zero slices of the
sphere spectrum and MGL coincide. These results can be viewed as refinements to
the cellularity results of [2]. The effectivity of MGL was implicitly assumed in [18].

The second paragraph deals with our main observation that if the Hopkins-Morel
quotient of MGL is the zero slice of MGL then a relative version of Voevodsky’s
conjecture [23] on slices holds true, Theorem (4.7). This is closely related to the
work of Hopkins and Morel on the spectral sequence for MGL in terms of motivic
cohomology, see [11]. In particular it is an unpublished result due to Hopkins and
Morel that over fields of characteristic 0 the quotient of MGL by the xi is isomorphic
to the motivic Eilenberg Mac Lane spectrum, [9]. It thus follows form Corollary (4.9)
that [23, Conjecture (5)] holds over fields of characteristic 0 assuming the Hopkins-
Morel isomorphism. As above we get under the same assumption the structure of the
slices of Landweber spectra.

We note that the idea of using filtrations of the ideal of the Lazard ring spanned
by elements of positive degree in a homotopy way goes back to [9].

The third paragraph covers the relationship of quotients of MGL to the algebraic
K-theory spectrum. The main statement is also contained in [9].

In the last paragraph we consider rational slices. Due to the rational splitting
of MGL this simplifies to understanding the rational Landweber theory LQ for the
additive formal group law over the rationals, see [13]. We obtain these assertions
over regular base schemes by comparing the Landweber decomposition of KGLQ and
a decomposition obtained in [15].
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2. Conventions

Throughout the article we work over a Noetherian base scheme of finite Krull
dimension S. The stable motivic homotopy category over S is denoted by SH(S).
The standard spheres are denoted by Sp,q ∼= S

∧(p−q)
s ∧G∧q

m . The category of smooth
schemes over S is denoted by Sm/S. The tensor unit of SH(S), i.e., the sphere
spectrum, is denoted by 1.

The full subcategory of SH(S) of effective spectra is denoted by SH(S)eff . It is
the full localizing triangulated subcategory generated by all Σ∞T X+, X ∈ Sm/S.



RELATIONS BETWEEN SLICES AND QUOTIENTS 337

The i-th slice of a motivic spectrum E is denoted si(E), see [23].
Throughout the text we will use the language of model categories. An injective

model structure will be a model structure e.g., on a diagram category where weak
equivalences and cofibrations are understood objectwise. Dually the projective model
structure has objectwise fibrations. For homotopy colimits and limits we refer to [5].
For symmetric monoidal model categories we refer to [7].

3. Effectivity of MGL

Let SH(S)T be the full localizing triangulated subcategory of SH(S) spanned by
{Sp,q|p, q ∈ Z}, see [13]. We let SH(S)T>0 be the full localizing triangulated subcat-
egory of SH(S) spanned by {Sp,q|p ∈ Z, q > 0}.

Theorem 3.1. The cofiber of the unit map 1 → MGL is contained in ΣT SH(S)T>0 .

Corollary 3.2. We have MGL ∈ SH(S)T>0 . In particular MGL is an effective spec-
trum.

Proof. Follows from 1 ∈ SH(S)T>0 .

Corollary 3.3. The unit map 1 → MGL induces an isomorphism

s0(1)
∼=−→ s0(MGL).

Proof. The functor s0 is triangulated and s0(X) = 0 for any X ∈ ΣT SH(S)eff .

We start with preparations for the proof of theorem (3.1).

Lemma 3.4. Let r be an integer and let

S2r,r → X → Y → S2r,r[1]

and

X → Z → W → X[1]

be two triangles in SH(S). Suppose Y,W ∈ Σr+1
T SH(S)T>0 . Then the cofiber of the

map S2r,r → Z is in Σr+1
T SH(S)T>0 .

Proof. The cofiber of S2r,r → Z is an extension of W by Y .

Lemma 3.5. Let i : Z → X be a closed immersion in Sm/S and E a vector bundle
over X. Let U = X \ Z, and denote the restrictions of E to Z and U by EZ and EU ,
respectively. Let N be the normal bundle of i. Then the cofiber of Th(EU ) → Th(E) is
canonically isomorphic to Th(EZ ⊕N ) in the A1-homotopy category.

Proof. This follows from the fact that this cofiber is (as Zariski sheaves) isomorphic
to E/(E r j(Z)), j the composition of i followed by the zero section of E , and that
the normal bundle of j is EZ ⊕N .
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We first quote some facts from [13] about finite Grassmannians, see also [4, Ch. 14].
We let G(n, d) be the scheme parameterizing locally free quotients of rank d of the
trivial bundle of rank n. There is a universal short exact sequence

0 // Kn,d // On
G(n,d)

// Qn,d // 0 (1)

of vector bundles on G(n, d), and letting K′n,d be the dual of Kn,d, the tangent bundle
is given by

TG(n,d)
∼= Qn,d ⊗K′n,d. (2)

The map

i : G(n, d) Â Ä // G(n + 1, d + 1)

classifying Kn,d ⊆ On
G(n,d) ↪→ On+1

G(n,d) is a closed immersion. From (2) it follows that
the normal bundle N (i) of i identifies with K′n,d. Next consider the composition on
G(n + 1, d + 1)

α : On
G(n+1,d+1)

Â Ä // On+1
G(n+1,d+1)

// Qn+1,d+1

for the inclusion into the first n factors. The complement of the support of coker(α) is
an open subscheme U ⊆ G(n + 1, d + 1) and there is a map π : U → G(n, d + 1) classi-
fying α|U . It is easy to see that π identifies with Qn,d+1 → G(n, d + 1). An argument
with geometric points reveals that U = G(n + 1, d + 1)r i(G(n, d)). Moreover, the
natural map ι : G(n, d + 1) → G(n + 1, d + 1) classifying the subbundle Kn,d+1 ⊕O ⊂
On+1 is the zero section G(n, d + 1) → Qn,d+1 followed by the inclusion Qn,d+1

∼=
U → G(n + 1, d + 1).

We summarize the above with a diagram:

G(n, d) Â Ä i // G(n + 1, d + 1) U?
_oo

π
//

vv
G(n, d + 1). (3)

We note that compositions of the morphisms ι yield a map ι : pt ∼= G(d, d) →
G(n, d) which we consider as the natural pointing of G(n, d). Note that the unit
of MGL is induced via these maps.

Proposition 3.6. Let E be a vector bundle of rank r over G(n, d) which is a finite
sum of copies of Kn,d, K′n,d and O. Then ι∗E is canonically trivialized. Furthermore
the cofiber of the map of suspension spectra of Thom spaces S2r,r → Σ∞Th(E) lies in
Σr+1

T SH(S)T>0 .

Proof. We prove the statement by induction on n. It clearly holds for n = 0. Suppose
n > 0 and assume the statement holds for n. The statement holds for G(n + 1, 0) and
G(n + 1, n + 1). Let 0 6 d < n. We prove the statement for G(n + 1, d + 1). Let E be
a vector bundle on G(n + 1, d + 1) of the considered type. It is canonically trivialized
over the pointing. We consider the diagram (3). By lemma (3.5) we get an induced
exact triangle

Σ∞Th(EU ) // Σ∞Th(E) // Σ∞Th(EG(n,d) ⊕K′n,d) // Σ∞Th(EU )[1] . (4)

We note Kn+1,d+1|G(n,d)
∼= Kn,d, hence EG(n,d) and EG(n,d) ⊕K′n,d are vector bundles

on G(n, d) of the considered type.
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Since ι∗Kn+1,d+1
∼= K(n, d + 1)⊕O, there is an induced map Th(Kn,d+1 ⊕O) →

Th(Kn+1,d+1) which factors through Th(Kn+1,d+1|U ). The map Th(Kn,d+1 ⊕O) →
Th(Kn+1,d+1|U ) and more generally Th(ι∗E) → Th(EU ) are motivic weak equiva-
lences: we cover U by the opens for which α restricted to a fixed subset of the
summands of On of size d + 1 surjects onto Qn+1,d+1. Those opens are pullbacks
from G(n, d + 1). We claim on such opens the situation trivializes completely. With-
out loss of generality we can assume the first d + 1 summands of On surject onto
Qn+1,d+1. Then Kn+1,d+1 restricted to this open trivializes by projecting to the last
n− d summands of On+1. This trivialization is compatible with the one over the cor-
responding open V ⊂ G(n, d + 1). Thus ((ι∗E)|V )◦ → (E|π−1(V ))◦ is a motivic weak
equivalence, and the same holds for the map (ι∗E)◦ → E◦U by a Mayer-Vietoris argu-
ment. This shows the claim that the map of Thom spaces is also a motivic weak
equivalence.

We can thus rewrite the sequence (4) as

Σ∞Th(ι∗E) // Σ∞Th(E) // Σ∞Th(EG(n,d) ⊕K′n,d) // Σ∞Th(ι∗E)[1] (5)

and use the fact that ι∗E is of the type considered for G(n, d + 1). By induction
hypothesis the cofiber of S2r,r ∼= Σ∞Th(ι∗ι∗E) → Σ∞Th(ι∗E) lies in Σr+1

T SH(S)T>0 .
Moreover again by induction hypothesis Σ∞Th(EG(n,d) ⊕K′n,d) ∈ Σr+j

T SH(S)T>0 with
j = n− d > 0. Now the statement follows from lemma (3.4).

Proof of Theorem (3.1). We let BGLn = colimdG(n + d, d), ξn = colimdKn+d,d the
universal vector bundle. Then

MGL = hocolimnΣ−2n,−nΣ∞Th(ξn) ∼= hocolimn,dΣ−2n,−nΣ∞Th(Kn+d,d).

The unit 1 → MGL is induced via the maps

Σ−2n,−nΣ∞Th(ι∗Kn+d,d) → Σ−2n,−nΣ∞Th(Kn+d,d).

By proposition (3.6) the cofibers of these maps are in ΣT SH(S)T>0 . Since cofiber
sequences are compatible with homotopy colimits the claim follows.

4. Quotients and slices of MGL

Let MGL denote a fibrant and cofibrant model as commutative S-algebra of the
algebraic cobordism spectrum. We work in the simplicial version of the S-modules
of [3], see [16]. In particular MGL is fibrant and cofibrant as (symmetric) T -spectrum.
We let Mod(MGL) be the symmetric monoidal category with weak unit of MGL-
modules. The homotopy category of Mod(MGL) is denoted by DMGL. It is a closed
tensor triangulated category.

We denote ϕ : MU∗ → MGL∗ the canonical map (here MGLi = MGL2i,i by defi-
nition) and fix an isomorphism MU∗ ∼= Z[x1, x2, . . .], |xi| = i (we divide the usual
topological grading by 2).

As in topology we can form the quotient Q := MGL/(x1, x2, . . .)MGL by taking
iterated cofibers of multiplications by the xi in DMGL. More precisely, if the quo-
tient MGL/(x1, . . . , xn−1), n > 1, is already defined as object of DMGL we define the
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MGL-module MGL/(x1, . . . , xn) to be the cofiber of the multiplication by xn map on
MGL/(x1, . . . , xn−1), i.e., we have an exact triangle

Σ2n,nMGL/(x1, . . . , xn−1)
xn−→ MGL/(x1, . . . , xn−1) → MGL/(x1, . . . , xn)

→ Σ2n+1,nMGL/(x1, . . . , xn−1).

The MGL-module Q = MGL/(x1, x2, . . .)MGL is then defined to be the homotopy col-
imit hocolimn→∞MGL/(x1, . . . , xn) in DMGL.

This quotient is well-defined up to isomorphism.
We give a construction of a more explicit model of this quotient.
We pick once and for all the following data:

1. S2i,i = T∧i, i > 0, a cofibrant model of the (2i, i)-sphere in T -spectra, and
denote the corresponding cofibrant spherical MGL-module (S2i,i ∧ S) B MGL
(for notation see [16, section 9]) by Σ2i,iMGL.

2. a map Σ2i,iMGL → MGL representing the element ϕ∗(xi) ∈ MGL2i,i, also
denoted by xi. (We note that by adjunction this map corresponds to a map
S2i,i → MGL in symmetric T -spectra, where such a representative exists since
S2i,i is cofibrant and MGL underlying fibrant.)

We let I be the following category: the objects are (commutative) monomials in
the xi, there is a unique map from M to N if N divides M ; the monomial 1 is
allowed. We let I◦ be the full subcategory consisting of all non-constant monomials.
The subcategory I61 consists of monomials containing each xi with multiplicity at
most 1, I◦61 is the same category with the constant monomial removed.

We let 1 be the category whose diagrams are morphisms, i.e., two objects 0 and
1 and one non-identity map. We let 1n ⊂ I61 be the inclusion of the monomials
containing only the xi, i 6 n. Via these inclusions I61 is the union of all the 1n.

We are going to define the following I-diagram of MGL-modules: a monomial
xk1

1 · · ·xkn
n , ki > 0, is sent to (Σ2,1MGL)∧MGLk1 ∧MGL . . . ∧MGL (Σ2n,nMGL)∧MGLkn . Here

by convention we leave out a factor completely if some ki = 0 as opposed to the fact
that we could have included a factor MGL for the empty tensor product (note these two
possibilities indeed differ since MGL only figures as a weak unit). Also by convention
the monomial 1 is sent to MGL. The morphisms will be given by multiplications with
the xi, i.e., iterations of the morphisms xi. We have to be careful since in general the
two possible maps Σ2i,iMGL ∧MGL Σ2i,iMGL → Σ2i,iMGL given by applying the map
xi either on the left or on the right and then composing with a unit morphism (note
MGL only serves as a weak unit) do not coincide in general. Therefore we make the
convention that for a map M → N in I, M = xk1

1 · · ·xkn
n , N = xl1

1 · · ·xln
n , li 6 ki, we

insert for any 1 6 i 6 n the map (Σ2i,iMGL)∧MGLk1 → (Σ2i,iMGL)∧MGLl1 which applies
xi on the ki − li rightmost tensor factors of the source followed by appropriate unit
maps. The order in which these unit maps are applied and to which tensor factors
they are applied does not matter by the properties of a symmetric monoidal model
category with weak unit.

We end up with a diagram of MGL-modules, denoted D.

Lemma 4.1. The diagram D is commutative.
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Proof. As already remarked the transition maps in D are well-defined. The commu-
tativity of D follows now again from the properties of a symmetric monoidal model
category with weak unit, more precisely from the fact that for maps f and g between
MGL-modules we have (f ∧MGL id) ◦ (id ∧MGL g) = f ∧MGL g.

We need the following lemma in which we denote by hofib the homotopy fiber of
a map between pointed simplicial sets.

Lemma 4.2. Let

X //

²²

Y

²²
Z // W

be a commutative diagram of pointed simplicial sets. Let P be the homotopy pullback
of the right lower triangle of the square. Then the homotopy fiber of the natural map
X → P is naturally equivalent to hofib(hofib(X → Z) → hofib(Y → W )).

Proof. Replacing the diagram with an injectively fibrant diagram the statement fol-
lows from the corresponding strict statement.

Let D61 be the restriction of D to I61 and D◦61 the one to I◦61.
We have the following observations. We use the notion of total cofiber of a diagram

with respect to a subdiagram, see [8]. This is defined to be the cofiber of the natural
map from the homotopy colimit of the subdiagram to the homotopy colimit of the
total diagram. Usually this can be viewed as the total object corresponding to a
diagram of a certain shape, e.g., of a cubical diagram. For a functor to be homotopy
right cofinal see [5, Definition 19.6.1].

Lemma 4.3. 1. The inclusion I◦61 → I◦ is homotopy right cofinal.

2. The total cofiber of the diagram D61 with respect to the inclusion D◦61 → D61,
i.e., the cofiber of the map hocolimD◦61 → D(1) = MGL, is isomorphic to Q in
DMGL.

Proof. (1): Let the inclusion be denoted by j. We have to show that for any object
o ∈ I◦ the under category o\j is contractible. But this under category has the initial
object (o′, o → o′), where o′ contains xi with multiplicity 1 if xi|o, otherwise it contains
it with multiplicity 0.

(2): We first show the analogous statement for finitely many xi: the total cofiber of
D|1n with respect to the inclusion (1n)◦ ⊂ 1n is equivalent to MGL/(x1, . . . , xn)MGL.
This is proved by induction on n using the following statement (with J = 1n for the
induction step n 7→ n + 1):

Let J◦ be a small category and let J be the same category added a terminal
object (so if J already had a terminal object this object will no longer be terminal).
Let C be a pointed model category and G : J × 1 → C be a functor. Let (J × 1)◦ be
again the category obtained by removing the terminal object. Then the total cofiber
of G with respect to the inclusion (J × 1)◦ → J × 1 can be computed as follows: it
is the cofiber of the map Totcof(G|J×{0}) → Totcof(G|J×{1}), Totcof denoting the
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total cofiber with respect to the inclusions of the respective subcategories obtained
by removing the terminal object.

By considering pointed mapping spaces this statement reduces to the dual state-
ment for pointed simplicial sets. Here to compute homotopy limits we can use the
injective model structure on diagram categories. We let K be the opposite of J , simi-
larly with K◦. The category (K × 1)◦ this time denotes K × 1 with the initial object
removed. Let G : K × 1 → sSet• be a functor. Fix an injectively fibrant replace-
ment G → R. We note that R|(K×1)◦ , R|K◦×{i}, i = 0, 1, are again injectively fibrant:
the respective restriction functors are right Quillen functors since the corresponding
adjoints preserve objectwise cofibrations.

Let i be the initial object of K. We replace the diagram R by the square

R(i, 0) //

²²

limR|K◦×{0}

²²
R(i, 1) // limR|K◦×{1}.

This yields again an injectively fibrant diagram, the limit of the lower right triangle
gives the homotopy limit of G|(K×1)◦ , whence the statement follows from lemma (4.2).

We are left to prove the statement for infinitely many xi. The restriction func-
tors from I◦61-diagrams to (1n)◦-diagrams preserve projectively cofibrant diagrams,
whence hocolimD◦61 ' hocolimn(hocolimD|(1n)◦). This shows the claim.

For any n > 0 let Ideg>n be the subcategory of I of monomials of degree > n,
where the degree of a monomial xk1

1 · · ·xkn
n is

∑n
i=1 i · ki. Moreover for a monomial

M let I>M be the subcategory of all monomials which are divisible by M , except M
itself. We also let Ddeg>n = D|Ideg>n

.

Proposition 4.4. Let F : Ideg>n → C be a diagram in a cofibrantly generated model
category C such that for any monomial M of degree n the natural map

hocolimF |I>M → F (M)

is an equivalence. Then the natural map

hocolim(F |Ideg>n+1) → hocolimF

is an equivalence.

Proof. Let Q → F be a cofibrant replacement of F for the projective model structure
on CIdeg>n . Let M be a monomial of degree n. We claim Q|I>M is still cofibrant: in
fact the right adjoint r to the restriction functor preserves objectwise fibrations: for
o ∈ I>M we have r(H)(o) = H(o), for o /∈ I>M we have r(H)(o) = pt.

Thus if we define Q′ by replacing for any M with deg(M) = n the object Q(M)
with colimQ|I>M and leaving the other entries unchanged we do not change the weak
homotopy type of Q. As above Q′|Ideg>n+1 is cofibrant, moreover Q′ is cofibrant itself
since for any B ∈ CIdeg>n we have Hom(Q′|Ideg>n+1 , B|Ideg>n+1) ∼= Hom(Q′, B). Thus

hocolimQ′|Ideg>n+1 ' colimQ′|Ideg>n+1
∼= colimQ′ ' hocolimQ′ ' hocolimQ,

which finishes the proof.
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For the proof of the next statement we use the notion of a left Quillen presheaf
on ω, where ω is the first infinite ordinal. In this case such a presheaf is given by a
model category Cn for each natural number n and left Quillen functors
fn : Cn+1 → Cn for each n > 0. A section consists of objects Xn ∈ Cn for each n > 0
and maps fn(Xn+1) → Xn, n > 0. It is called homotopy cartesian if the maps
(Lfn)(Xn+1) → Xn are isomorphisms in Ho(Cn). The category of sections possesses
the injective model structure where weak equivalences and cofibrations are object-
wise. The proof is analogous to [7, Theorem 5.1.3]. We will use the fact that the
mapping space out of a homotopy cartesian section X• into any Y• is given as the
homotopy limit over the individual mapping spaces map(Xn, Yn), see [19, Lemma
3.1, Remark 3.2].

Lemma 4.5. Let F : C ↔ D : G be a Quillen adjunction between stable pointed model
categories. Suppose RG : HoD → HoC preserves arbitrary sums. Then RG preserves
homotopy colimits.

Proof. We provide a proof. First note that a homotopy colimit of a functor F : I →
D, which we suppose to take values in cofibrant objects, can be computed as the
homotopy colimit of the simplicial diagram [n] 7→ ∐

ϕ : [n]→I F (ϕ(0)), where [n] is
the ordered set {0, . . . , n} viewed as a category. By considering mapping spaces this
reduces to the statement that mapping spaces in sSetI can be computed by homotopy
ends.

Since RG preserves homotopy coproducts by assumption it thus suffices to show
that colimits over 4op are preserved. Let α : 4op → D be a functor. We claim

hocolim(α) ' hocolimnhocolim(α|4op
6n

).

This proves the above since RG preserves finite homotopy colimits since we are
dealing with a stable situation and sequential homotopy colimits over ω since RG
preserves sums. Using mapping spaces we reduce the statement about α to the dual
statement in simplicial sets. Now we observe that Ho(sSet4) is equivalent to homo-
topy cartesian sections in the homotopy category of the category of sections of the left
Quillen presheaf on ω, n 7→ sSet46n , the categories sSet46n carrying the injective
model structure such that the restriction maps preserve cofibrations. Considering
mapping spaces out of constant diagrams shows the claim since a mapping space
between homotopy cartesian sections is a homotopy limit over ω of the individual
mapping spaces.

We now turn to the functors

fi : SH(S) → Σi
T SH(S)eff ⊂ SH(S)

introduced in [23]. These are defined as right adjoints to the inclusions Σi
T SH(S)eff ⊂

SH(S). These functors can be defined on the level of model categories by using
colocalization of model categories, see [14]. In particular it makes sense to ask whether
these functors preserve homotopy colimits.

Corollary 4.6. The functors fi preserve homotopy colimits.

Proof. This follows from lemma (4.5) and the fact that the fi preserve sums [23].
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We now can state the main observation of this text. Here for a spectrum E and
a free abelian group A we denote by E ⊗A the spectrum which corepresents the
functor X 7→ HomAb(A, Hom(E, X)).

Theorem 4.7. Suppose the natural map MGL → Q is the map from MGL to its zero-
slice. Then [23, Conjecture (5)] holds with HMU2q replaced by s0MGL⊗MU2q, i.e.,
there is a natural isomorphism sq(MGL) ∼= Σq

T s0MGL⊗MU2q compatible with the nat-
ural homomorphism MU∗ → MGL∗.

Note that the compatibility with the natural homomorphism MU∗ → MGL∗∗ as
explained in [23] still makes sense.

Proof. Lemma (4.3) and [5, Theorem 19.6.13] imply that the map from MGL to the
total cofiber of D with respect to D◦ → D is the map to Q, hence by assumption
this is the map to the zero-slice. Thus hocolimD◦ → f1MGL is an equivalence. By
corollary (4.6) the fi commute with homotopy colimits. We denote by Fi functorial
versions of the fi on the level of model categories. Then we can rewrite f2hocolimD◦ '
hocolimF2D

◦. Observe the diagram F2D
◦ satisfies the assumptions of proposition

(4.4) for n = 1, hence f2MGL ' hocolimF2D
◦ ' hocolimDdeg>2.

By increasing the degree of the monomials it follows from proposition (4.4) by
induction that fnMGL ' hocolimDdeg>n. In addition the maps

fn+1MGL → fnMGL

are the naturally induced maps

hocolimDdeg>n+1 → hocolimDdeg>n. (6)

Thus the snMGL are the cofibers of these maps. We rewrite the source again as
hocolimFn+1Ddeg>n. Cofibers commute with homotopy colimits, thus

snMGL ' hocolim cofib(Fn+1Ddeg>n → Ddeg>n).

The value of this cofiber of diagrams at a monomial of degree > n is zero, at a
monomial of degree n we have exactly Σn

T s0MGL. Now it is easy to see that the
homotopy colimit of such a diagram is the homotopy coproduct of the entries in
degree n, which is Σn

T s0MGL⊗MU2n.
The compatibility with the natural homomorphism MU∗ → MGL∗∗ follows by the

choice of the xi.

Remark 4.8. Since the snMGL are the cofibers of the maps (6) which have naturally
the structure of maps in DMGL it follows that the snMGL also have naturally the
structure of MGL-modules, i.e., lie in DMGL. It is natural to ask (as was done by the
referee) if the factorization snMGL ∼= Σn

T s0MGL⊗MU2n can be achieved in DMGL.
Indeed, an alternative to the second step in the above proof of the Theorem shows
this is possible: we can form the (homotopy) left Kan extension of Ddeg>n+1 along
the inclusion Ideg>n+1 → Ideg>n (in MGL-modules). By the above reasoning this is
equivalent to Fn+1Ddeg>n (after forgetting the MGL-module structure). Thus the
second step of the above argument goes through in MGL-modules, showing the claim.
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Alternatively we can define a filtration on MGL-modules analogous to the filtration
on spectra given by the fi by defining effective MGL-modules as those modules which
are generated by the free MGL-modules on effective spectra. The equation fnMGL '
hocolimDdeg>n and some adjointness argument shows that the induced filtration on
MGL is compatible with our original filtration after forgetting the module structure.
Thus going through the above argument entirely in MGL-modules also shows the
claim about the decomposition snMGL ∼= Σn

T s0MGL⊗MU2n as MGL-modules.

Recall the natural orientation MGL → MZ of the motivic Eilenberg Mac Lane
spectrum. It is additive, in particular the xi all map to zero in MZ∗∗. Iteratively we
get factorizations MGL/(x1, . . . , xn)MGL → MZ in SH(S) in a compatible way, which
gives a map Q → MZ.

Corollary 4.9. Suppose S is the spectrum of a perfect field. If the natural map
Q → MZ is an isomorphism then [23, Conjecture (5)] holds.

Proof. By [10] and [22] s01 ∼= MZ. Thus by corollary (3.3) the map MGL → MZ is
the map from MGL to its zero-slice. The statement follows from theorem (4.7).

5. K-theory

By the Landweber exactness theorem [13] and [12] the spectrum KGL is the
Landweber spectrum associated to the MU∗-algebra

x−1
1 MU∗/(x2, x3, . . .)MU∗ ∼= Z[u, u−1].

The latter algebra classifies the multiplicative formal group law x + y − uxy.
The orientation MGL → KGL sends all xi ∈ MGL2i,i, i > 2, to 0 ∈ KGL2i,i. Thus we

obtain a factorization MGL/(x2, x3 . . .)MGL → KGL. Since x1 acts invertibly on KGL
this map further factors as

B : x−1
1 MGL/(x2, x3 . . .)MGL → KGL.

Here for a highly structured ring spectrum E, a (highly structured) E-module M and
an element a ∈ E2n,n we set

a−1M = hocolim(M → Σ−2n,−nM → Σ−4n,−2nM → · · · ),
where the transition maps are given by multiplication by a.

Lemma 5.1. Let

0 → M∗
f→ N∗ → Q∗ → 0

be a short exact sequence of evenly graded Landweber exact MU∗-modules. Let

F : EM → EN

be a map of spectra in SH(Z)T representing the homology transformation given by
f via the motivic Landweber exact functor theorem. Then the cofiber of F represents
the Landweber theory given by Q∗.
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Proof. We let X be the stack [Spec(MU∗)/Spec(MU∗MU)] and M̃∗, etc., the quasi-
coherent sheaves on X obtained from the M∗, etc., by pushforward along the map
Spec(MU∗) → X . Then by Landweber exactness the sequence

0 → M̃∗ → Ñ∗ → Q̃∗ → 0

is a short exact sequence of flat OX -modules. In particular tensoring this sequence
with a quasi-coherent OX -module yields again a short exact sequence. However, the
Landweber theorem ([13]) is proved by considering the MGL-homology of a motivic
spectrum as a (MGL∗, MGL∗MGL)-comodule and via restriction along a map of Hopf
algebroids as (MU∗,MU∗MU)-comodule, then tensoring this over OX with M̃∗ and
finally pulling back to Spec(MU∗). This shows that the sequence of motivic homology
theories obtained from the original sequence is short exact. In particular if the first
map is represented by any map of motivic spectra then the cofiber will represent the
homology theory associated with Q∗.

Theorem 5.2. The map of spectra B : x−1
1 MGL/(x2, x3, . . .)MGL → KGL is an iso-

morphism.

Proof. We use that x−1
1 MGL/(x2, x3, . . .)MGL can also be constructed by first invert-

ing x1 and then quotienting out the xi, i > 2. Now observe that all the quotients
x−1

1 MU∗/(x2, . . . , xn)MU∗ are Landweber exact: they are torsionfree, and for a prime
p the element v1 of (MU∗)(p) already acts invertibly. Thus the

0 → Σn+1x−1
1 MU∗/(x2, . . . , xn)MU∗ → x−1

1 MU∗/(x2, . . . , xn)MU∗

→ x−1
1 MU∗/(x2, . . . , xn+1)MU∗ → 0

(Σ refers to a shift of evenly graded groups) are short exact sequences of evenly
graded Landweber modules, and lemma (5.1) applies. Thus it follows inductively that
the quotients −1

1 MGL/(x2, . . . , xn)MGL are the Landweber spectra for the modules
x−1

1 MU∗/(x2, . . . , xn)MU∗. Passing to the colimit shows the claim.

Remark 5.3. Fix a prime p and let BPTop be the topological Brown-Peterson spec-
trum. Let BP be the motivic spectrum on the Landweber coefficients

BPTop
∗ = Z(p)[v1, v2, v3, . . .],

|vi| = 2(pi − 1), i > 1. It can be seen that this coincides with the definition given
in [21] since both definitions give rise to the universal oriented ring cohomology
theory on compact objects with p-typical formal group law.

Let E(n)Top be the topological spectrum for the coefficients

v−1
n BPTop

∗ /(vn+1, vn+2, . . .).

The corresponding motivic Landweber spectrum is denoted E(n). Now the quo-
tients v−1

n BPTop
∗ /(vn+1, . . . , vn+k)BPTop

∗ are also Landweber exact. Hence by the same
method as for theorem (5.2) we see that there is an isomorphism

E(n) ∼= v−1
n BP/(vn+1, vn+2, . . .)BP,

compare this with [6]. (For forming this quotient and localization use that BP can
be obtained as a highly structured MGL(p)-module.)
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The map from [18, par. 6] is ill-defined since BP is not a direct summand of MGL(p)

as an MGL-module.

Next we analyze the relationship to connective or effective K-theory. A version of
that has been introduced in [10].

Since MGL/(x2, . . .)MGL is effective, the canonical map

MGL/(x2, . . .)MGL → x−1
1 MGL/(x2, . . .)MGL ∼= KGL

factors as

Beff : MGL/(x2, . . .)MGL → f0KGL.

Proposition 5.4. Suppose the map MGL → Q is the map from MGL to its zero-slice.
Then Beff induces isomorphisms on slices. If S is the spectrum of a perfect field
and Beff is an isomorphism, then the map MGL → Q is the map from MGL to its
zero-slice.

Proof. Let us assume MGL → Q is the map to the zero-slice. Then by theorem (4.7)
the assumption (SlMGL) of [18] is fulfilled, hence by [18, corollary 4.2] we have
s0KGL ∼= s0MGL, and the isomorphism is realized by the map s0MGL → s0f0KGL.

By the periodicity of KGL the map f1KGL → f0KGL is isomorphic to the map
ΣT f0KGL → f0KGL given by multiplication by the Bott element u ∈ (f0KGL)2,1 =
KGL2,1. Thus the cofiber of this map is isomorphic to s0MGL, and the same holds
true for the cofiber of the map ΣT MGL/(x2, . . .)MGL → MGL/(x2, . . .)MGL given by
multiplication by x1 by the assumption. Iterating this process shows the claim.

Suppose now that S is the spectrum of a perfect field. Then by [10] there are iso-
morphisms s01 ∼= s0KGL ∼= MZ, and by corollary (3.3) we also have s0MGL ∼= s0KGL.
Now if Beff is an isomorphism, then the map

ΣT MGL/(x2, . . .)MGL → MGL/(x2, . . .)MGL

given by multiplication by x1 is the map

f1MGL/(x2, . . .)MGL → MGL/(x2, . . .)MGL

showing the claim.

6. Rational slices

We show in this paragraph that the assumptions from the last sections hold true
after rationalization, at least over regular base schemes.

We denote by LQ the Landweber spectrum associated with the MU∗-module Q
carrying the additive formal group law. It is known (see [1, Corollary 15.1.6]) that
over geometrically unibranched schemes LQ is canonically isomorphic to the motivic
Eilenberg-Mac Lane spectrum.

We note that any rational motivic Landweber spectrum has a decomposition into
a sum of Σ2i,iLQ for various i. This follows directly from the corresponding decom-
position of the topological coefficients.
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Since the Landweber coefficients for the rational K-theory spectrum are Q[v, v−1]
(v is the Bott element in homological degree 2) we obtain

KGLQ ∼= PLQ :=
⊕

i∈Z

Σ2i,iLQ, (7)

which we compare also with [13, Theorem 10.1].
Using projectors [15, Theorem IV.72] gives a decomposition

KGLQ ∼=
⊕

i∈Z

H(i)
B . (8)

This decomposition is first defined for regular base schemes S. For morphisms between
regular base schemes it pulls back. It thus makes sense to pull back the decomposition
given over Spec(Z) to any base scheme, which we shall assume.

The next statement follows from the structure of a rational Snaith map

colimn(LQ ∧ Σ−2n,−nΣ∞P∞+ ) → KGLQ

(see [17] for the Snaith map) and the way the projectors for (8) are defined.
We call the map

Σ−2i,−iΣ∞P∞+ → KGLQ

the i’th Snaith map.

Proposition 6.1. The decompositions (7) and (8) coincide.

Proof. We can assume the base is Spec(Z). We first compute the map

QZ →
∏

j∈Z

Hom(Σ2j,jLQ, Σ2j,jLQ) → Hom(PLQ,PLQ) ∼= (9)

Hom(KGLQ, KGLQ) → Hom(Σ−2i,−iΣ∞P∞+ , KGLQ) = (KGL∗∗Q [[x]])2i,i = Q[[u]].

Here the first map sends a vector (aj)j∈Z to the vector (aj · idΣ2j,jLQ)j∈Z. The
second map sends a vector of homomorphisms to the sum of the homomorphisms.
The third map uses the identification (7). The first map in the second line is precom-
position with the i’th Snaith map. The second identification in the second line uses
the identification of the KGLQ-cohomology of P∞ with the power series ring over the
coefficients induced by the orientation of KGLQ coming from the orientation of KGL.
The last identification applies an appropriate Bott shift to powers of x to obtain the
powers of u.

Note that for the system in i on the right hand side all transition maps are the
same and given by uj 7→ −juj−1 + juj (this follows from the multiplicative formal
group law for KGL). Note also that we define the Bott element to be the negative
reduced class of P1 in P∞ and BGL.

We let Hom(Σ∞P∞+ ,PLQ) = Q[[u′]]. Here u′ is the generator for the additive ori-
entation on PLQ times the Bott element.

The multiplicative isomorphism

Q[[u]] ∼= Hom(Σ∞P∞+ ,KGLQ) ∼= Hom(Σ∞P∞+ , PLQ) ∼= Q[[u]]

is given by u = 1− eu′ , which is the change of formal parameters between the multi-
plicative and additive formal group law.
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Moreover the zeroth Snaith map to KGLQ is the element

1− u ∈ Q[[u]] ∼= Hom(Σ∞P∞+ ,KGLQ).

Thus the Snaith map translates to

eu′ ∈ Q[[u′]] ∼= Hom(Σ∞P∞+ ,PLQ) ∼= HomModSH(Z)(LQ)(LQ ∧ Σ∞P∞+ , PLQ).

We let LQ ∧ Σ∞P∞+ = LQ 〈b0, b1, b2, . . .〉, where the bi are dual generators to the
powers of the orientation generator. It follows that after these identifications the
Snaith map

LQ 〈b0, b1, b2, . . .〉 → PLQ

has the effect

LQbj

1
j!→ Σ2j,jLQ

on summands.
The Snaith map Σ−2i,−iΣ∞P∞+ → PLQ is just the same map with the appropriate

Bott shift applied and is thus given on summands by

Σ−2i,−iLQbj

1
j!→ Σ−2i+2j,−i+jLQ.

Now let us start with the n’th projector p ∈ Hom(PLQ, PLQ), n ∈ Z. Composition
with the i’th Snaith map gives us a map

Σ−2i,−iLQ 〈b0, b1, b2, . . .〉 → PLQ

sending, if n > −i, Σ−2i,−ibn+i to 1
(2n+2i)!Σ

2n,nLQ (abusing notation) and the other
generators to 0. Thus this map is the element

1
(2n + 2i)!

u′2n+2i ∈ Q[[u′]] = Hom(Σ−2i,−iΣ∞P∞+ ,PLQ).

Applying the equation u′ = ln(1− u) we get the result that the map (9) sends the
projector p, if n > −i, to

1
(2n + 2i)!

ln(1− u)2n+2i ∈ Q[[u]] = Hom(Σ−2i,−iΣ∞P∞+ ,KGLQ),

otherwise to 0.
This is the same formula that is used in [15] to define the projectors, see [15,

Def. IV.62, after Cor. IV.67, Def. IV.71].
Now it suffices to observe that the Snaith system is indeed the system appearing

in [15, Def. IV.62, after Cor. IV.67, Def. IV.71] to describe endomorphisms of KGL
and KGLQ, see [15, Th. IV.13, before Prop. IV.33].

Lemma 6.2. The natural map MGLQ → LQ factors as an isomorphism QQ → LQ.

Proof. The claim follows from the decompositions

MGLQ ∼= LQ[b1, b2, . . .] ∼= LQ[x1, x2, . . .]

(see [13] for the definition of the bi, see also [13, Theorem 10.5]).
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Proposition 6.3. Suppose S is regular. Then the map MGLQ → LQ is the map to
the zero slice.

Proof. First note that by the decomposition MGLQ ∼= LQ[b1, b2, . . .] and the effec-
tivity of MGL it follows that LQ is effective. By lemma (6.2) we have to show
that MGL → LQ is the map to the zero slice. The decomposition of MGLQ shows
that for this it suffices to show that HomSH(S)(Σp,qΣ∞+ X, LQ) = 0 for X ∈ Sm/S,
p ∈ Z, q > 1. Equivalently we have to show that every map Σp,qΣ∞+ X → KGLQ,
X ∈ Sm/S, p ∈ Z ,q > 0, factors through LQ[u] with respect to the decomposition
KGLQ ∼= LQ[u, u−1]. We can assume q = 0 by replacing X by X ×Gq

m. Proposition
(6.1) and [15, Corollaire VI.75] imply this for non-negative p. Suppose p < 0. Then by
the periodicity of PLQ the claim we want to show is equivalent to the statement that
for p + 2q > 0 every map Σp+2q,qΣ∞+ X → LQ[u, u−1] factors through uqLQ[u]. This
follows from the decomposition [20, Corollary (5.5)(ii)] of the algebraic K-theory of
the Laurent polynomials over a regular ring.

Corollary 6.4. Suppose S is regular. Then si(MGLQ) ∼= Σi
T LQ⊗MU2i compatible

with the homomorphism MU∗ → MGLQ,∗∗.

Proof. By proposition (6.3) we have s0(LQ) = LQ. The claim follows from the decom-
position MGLQ ∼= LQ[x1, x2, . . .].

Corollary 6.5. Suppose S is regular. Then s0(1Q) = s0(1)Q = LQ.

Proof. This follows now from Corollary (3.3).
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