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Abstract
Using the ku- and BP-theoretic versions of Astey’s cobor-

dism obstruction for the existence of smooth Euclidean embed-
dings of stably almost complex manifolds, we prove that, for
e greater than or equal to α(n), the (2n+ 1)-dimensional 2e-
torsion lens space cannot be embedded in Euclidean space of
dimension 4n− 2α(n) + 1. (Here α(n) denotes the number of
ones in the dyadic expansion of a positive integer n.) A slightly
restricted version of this fact holds for e < α(n). We also give an
inductive construction of Euclidean embeddings for 2e-torsion
lens spaces. Some of our best embeddings are within one dimen-
sion of being optimal.

1. Main results

For a positive integer m let ν(m) and α(m) denote, respectively, the exponent in the
highest power of 2 dividing m, and the number of ones in the dyadic expansion of m.
Let L2m+1(2e) stand for the (2m+ 1)-dimensional 2e-torsion lens space, the quotient
of S2m+1 by the standard (diagonal) action of Z/2e (viewed as a subgroup of the unit
circle S1).

Unless explicitly noted otherwise, all (non)embedding results are to be understood
in the smooth sense. Yet, except for a few low-dimensional cases (carefully pinpointed
in the text), our results are within Haefliger’s metastable range 2m ≥ 3(n+ 1) where,
for a smooth closed manifold Mn, the existence of a topological embedding Mn ⊂ Rm
is equivalent to the existence of a smooth embedding Mn ⊂ Rm.

We study the (Euclidean) embedding dimension of L2m+1(2e), that is, the dimension
of the smallest Euclidean space where this manifold can be embedded. We get no
new (non)embeddings for e = 1 (although we reconstruct some of the known optimal
ones), as our methods are generalizations of ideas already used for real projective
spaces. Instead, we seek to understand the role the exponent e plays in determining
the Euclidean embedding dimension of L2m+1(2e).

Our first result is the following analogue of Astey’s nonembedding theorem for real
projective spaces.
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Theorem 1.1. Let n and e be positive integers with

e ≥ min{α(n)− 6, α(n) + 1− 2ν(n)}, (1)

and set δ = max{0, α(n)− e}. Then the lens space L2(n+δ)+1(2e) does not admit an
embedding in R4n−2α(n)+1.

The more pleasant situation holds for δ = 0 (what we call a high-torsion lens space),
where (1) holds for free, with Theorem 1.1 affirming the impossibility of embedding
L2n+1(2e) in R4n−2α(n)+1. For δ > 0 (a low-torsion lens space), the conclusion is sim-
ilar, but besides the extra1 hypothesis (1), one needs to add the little (2δ)-correcting
term to the dimension of the lens space.

Theorem 1.1 is better (and usually much stronger) than previous nonembedding
results with e ≥ 2. For instance, the best nonembedding that [30] gives for L2n+1(2e)
(using Atiyah’s γ-operations) is in dimension roughly 3n+ 1. Notable exceptions are
the (non)immersion results in [21, 47] (but Theorem 1.1 applies for any α(n)).

As for positive results, we start by recalling that the Haefliger-Hirsch-Massey-
Peterson (HHMP) general embedding result ([38], see also [13] for the case of odd n)
gives an embedding L2n+1(2e) ⊂ R4n+1 for any pair (n, e). Theorem 1.2 below shows
this is, in fact, optimal when n is a power of 2 (improving, in such a case, Theorem 1.1
by one dimension). Theorem 1.3 deals with cases where n is not a power of 2.

Theorem 1.2. For any e, the HHMP-type embedding L2n+1(2e) ⊂ R4n+1 is optimal
when α(n) = 1.

Theorem 1.3. There are embeddings of the form L2n+1(2e) ⊂ Rd for the triples
(e, n, d) indicated by the columns of Table 1, as well as for the special type of triples
(e, n, d) = (≤ 2, 7, 26). In Table 1, δ(1) = 7, δ(2) = 9, and δ(e) = 10 for e ≥ 3.

e ≥ 1 ≥ 1 ≥ 1 ≥ 1

n 2` + 1; ` ≥ 1 2` + 1; even `, α(`) ≥ 2 4` + 3, ` ≥ 2 4` + 3; even `, α(`) ≥ 2

d 8` + 3 8` + 2 16` + δ(e) 16` + δ(e)− 1

eff 3 4 5 6

Table 1: L2n+1(2e) ⊂ Rd (last row indicates embedding efficiency, eff, for e = 2)

The only potentially non-smooth embeddings (outside Haefliger’s range) in this
result are those with ` = 1 in the second column of Table 1, that is, the embed-
dings L7(2e) ⊂ R11. On the other hand, the case ` = 0 is indeed exceptional; as indi-
cated in Remark 2.4, all 3-dimensional lens spaces (smoothly) embed in R5, but no
3-dimensional lens space embeds in R4.

The strength of Theorem 1.3 is better appreciated by contrasting it with Theo-
rem 1.1. For instance, in case of high-torsion lens spaces, the embedding given in

1Motivated by the situation for e = 1 in [2], it was conjectured in [19] that the hypothesis (1) can
be removed in the low-torsion case.



ON THE EMBEDDING DIMENSION OF 2-TORSION LENS SPACES 135

column c of Table 1 is within d(c) dimensions of being optimal, where

d(c) = (2α(`)− 1, 2α(`)− 2, 2α(`), 2α(`)− 1) (2)

for c = (2, 3, 4, 5). These figures lead to a couple of interesting comments about the
potential optimality of our results. Firstly, in terms of the efficiency eff of an embed-
ding Mm ⊂ R2m−eff , we observe that, although the embeddings in columns c = 4, 5
have better efficiency than those for c = 2, 3, (2) indicates that the latter ones are,
in general, closer to being optimal. This is of course interpreted as saying that the
difficulty in computing the embedding dimension of L2n+1(2e) increases with α(n), a
standard empirical fact for real projective spaces. Secondly, note that the only situ-
ation where d(c) could be zero—thus indicating an optimal embedding—is for c = 3
and α(`) = 1; unfortunately the last equality is ruled out for c = 3. In Remark 6.4
we discuss the expectations for what the optimal embedding could turn out to be
for this situation (see also Remark 6.6 and Example 6.7, the difficulty of the former
being the first major obstacle in the field, and the main motivation for this paper).
Now, at the opposite extreme of 2-torsion (i.e., for real projective spaces), we point
out (Remark 4.11) that the cases with the lowest allowed value of α(`) in the fourth
column of Table 1 are known to give optimal embeddings for e = 1. Likewise, the cases
with the lowest allowed value of α(`) in the fifth column of Table 1 give currently best
known embeddings for e = 1.

We now comment on the methods (their origins and expectations) used in proving
the three theorems above.

Following Astey’s work [2] for real projective spaces, the proof of Theorem 1.1
extends, to the embedding realm, the nonimmersion results for lens spaces in [18,
19]. In turn, these arose from Davis’ strong nonimmersion result for real projective
spaces [5] (see also [1]). The form of all these results combines Euclidean dimension,
manifold dimension, and (for lens spaces) torsion in the fundamental group, in order
to better reflect irregularities in the immersion and (now) embedding dimensions. For
real projective spaces,2 the strength of nonimmersion and nonembedding results of
this type is due to the fact that, while involving a simple but general statement, they
are often either the currently best known, or within a short distance of the best known.
For instance, as originally explained in [5] and updated in [4], whenever it is currently
known that Pn does not immerse in Rm, then [5] affirms that Pn+i does not immerse
in Rm−j for some nonnegative integers i and j with i+ j ≤ 3 (the last inequality can
be improved to i+ j ≤ 2, if one excludes the nonimmersion results in [12]). Such a
comparison takes into account the recent works [4, 11, 28, 29] obtained with some
of the most sophisticated homotopy technology currently available. One should keep
in mind, though, that for a fixed projective space, current nonimmersion results can
improve the original [5] by arbitrarily large Euclidean dimensions—but this is not new:
the much older [27] has the same effect over [5]. At any rate, it is interesting to keep
in mind the possibility that the recent advances in homotopy methods could turn out
to be particularly helpful in settling some of the small gaps pinpointed in (2).

Theorem 1.2 is not really new; as we will see in Section 3, it follows from the exact
same argument used in [33] for the case e = 1 (see also [31]).

2Technical problems prevented the first author from obtaining in [19] the required general result that
would have made these considerations work for lens spaces.
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The proof of Theorem 1.3 adapts, to lens spaces, the inductive Euclidean embed-
ding constructions done in [36] for real projective spaces Pn. We need to proceed
with care though, so as to avoid the flaw in [36] coming from using the (not properly
argued) immersions in [15, 16] (see Remarks 4.7 and 4.8). One of the main ingredi-
ents in [36] comes from Milgram’s linear algebra techniques in [39] for constructing,
over a given space Pn+k, spanning fields with the property that enough of them are
trivial over a given smaller Pn. But for lens spaces we need to replace such a linear
algebra component by a careful obstruction theory analysis in the form of modified
Postnikov towers. As a side consequence we get the fact that Milgram’s linear algebra
input in the (start of the) inductive method in [36] not only has the power to produce,
when combined with the embeddings for P7 and P15 in [44], many optimal embed-
dings of real projective spaces (see Remark 4.11), but can actually be extended, via
obstruction theory, to the fatter3 lens spaces in order to trigger a reasonably strong
(and in a sense optimal—see the final remarks in Section 5) inductive construction of
their embeddings. In this respect, it is to be noted that not all known methods for
constructing embeddings of real projective spaces have a chance to work for higher
2-torsion lens spaces. Indeed, some of the projective space arguments known to date
use, in an essential way, phenomena inherent to real projective spaces, thus construct-
ing low-dimensional embeddings that, in general, will not have to be true for high-
torsion lens spaces. So, part of the problem consists of identifying methods that do
construct (reasonably strong) embeddings for general 2e-torsion lens spaces. This is
indeed one of the goals set for this paper, with Proposition 5.5 its most notable accom-
plishment.

Observe that having concentrated in this paper on lens spaces of torsion a power
of 2 is not a real restriction. For one, as we already mentioned, except for a few low-
dimensional cases, all of our results are within Haefliger’s metastable range. There-
fore, using the canonical projection L2m+1(2e) → L2m+1(2ek) in [45, Theorem B],
we see that, for odd k, our embedding results for L2m+1(2e) automatically apply to
L2m+1(2ek).

The paper is organized as follows. Theorem 1.1 is proved in Section 2 by a straight-
forward application of Astey’s general MU-obstruction result [2] for Euclidean embed-
dings of stably almost complex manifolds, together with the ku-calculations in [18]
and the BP-calculations in [19]. Section 3 is devoted to the proof of Theorem 1.2, and
to the description of some easy embedding results, mainly setting grounds for compar-
ing with the embeddings in Section 4. The ideas in [36] are worked out in Section 4
from the point of view of lens spaces in order to prove Theorem 1.3. Section 5 gives
the obstruction theory details that replace Milgram’s linear algebra input. The goal of
the final Section 6 is to pinpoint key subtleties arising when we compare the behavior
of the (immersion and) embedding dimensions of 2e-torsion lens spaces, as e varies.
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2. Proof of Theorem 1.1

Let M be a smooth compact stably almost complex manifold, with stable normal
bundle ν of complex dimension d. Let h∗ denote a multiplicative complex-oriented
cohomology theory whose ring of coefficients is concentrated in even dimensions, and
where 2 is not a zero divisor. Let ξk stand for the canonical real line bundle over the
k-dimensional real projective space Pk. Then, as proved in [2], M does not admit a
Euclidean embedding with codimension 2` provided the following two conditions hold
with k = d− `:
(a) The h∗-Euler class of ν ⊗ ξ2k is nontrivial.
(b) The external product

heven(M)⊗h∗ h∗(P2k) → heven(M × P2k)

is an isomorphism.
In the case M = L2m+1(2e) we take ν = (2N −m− 1)η, where N is any large pos-

itive integer, and where η is obtained as the pull-back, under the canonical projection
L2m+1(2e) → CPm, of the complex Hopf line bundle over the m-dimensional complex
projective space.

Proof of Theorem 1.1. Under the above conditions, and in order to rule out a possible
(4n− 2α(n) + 1)-dimensional Euclidean embedding of L2m+1(2e), for m = n+ δ, the
bundle to consider in (a) above is

(2N −m− 1)η ⊗ ξ2k, (3)

where k = 2N − 2n+ α(n)− 1. If we let h∗ = ku∗, connective complex K-theory, for
δ = 0, and h∗ = BP∗, Brown-Peterson theory at the prime 2, for δ > 0, then the main
results in [18] (for δ = 0) and in [19] (for δ > 0) assert that the h∗-Euler class of (3) is
nontrivial. The result then follows since, in our case (M = L2m+1(2e)), condition (b)
above is a restatement of Proposition 3.1 in [18].

Remark 2.1. In [19, Proposition 2.1] it is proved that if L2m+1(2e) were to immerse
in R4n−2α(n), then the bundle (3) would have a nowhere zero section. Thus, in retro-
spect, the h∗-calculations in [18] and [19] simultaneously yield the non-immersibility
and non-embeddability of L2m+1(2e) (m = n+ δ, as in the proof of Theorem 1.1) in
Euclidean dimensions 4n− 2α(n) and 4n− 2α(n) + 1, respectively. (This is one of the
reasons why the remarks about Theorem 1.1 in Section 1 mainly concern immersions
rather than embeddings.)

Remark 2.2. Astey’s nonembedding result is indirectly based on the triviality of the
(generalized) Euler class of the normal bundle for an embedding in a Euclidean space
(see [40, Corollary 11.4]). Here we point out firstly that, when the above observation
is used for singular cohomology with Z coefficients (rather than ku or BP), we obtain
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the well-known Fact 2.3 below, and secondly that, together with Fact 6.2 in Section 6,
this yields the impossibility of finding a Euclidean embedding with codimension 2 for
any 2e-torsion lens space of dimension ≥ 5. The only notable possible exception is the
parallelizable 7-dimensional real projective space P7 (see Remark 6.6 at the end of the
paper). In particular, we recover cases n = 2, 3 of Theorem 1.1 (for high-torsion lens
spaces in the case of n = 3).

Fact 2.3. The only closed smooth orientable manifolds M that can be embedded in
Euclidean space with codimension 2 are necessarily stably parallelizable. (As observed
in [26], the converse is in general false). Indeed, the normal 2-plane bundle νM of such
an embedding would be orientable with trivial Euler class. But SO(2) = S1, so that
being the realification of a complex line bundle with vanishing first Chern class, νM is
in fact trivial, and consequently M is stably parallelizable.

Remark 2.4. As for low (i.e., 1 or 2) codimension Euclidean embeddings of lens spaces,
Remark 2.2 does not consider the case of lens spaces of dimension 1 or 3. Luckily, these
are well understood. Of course S1 embeds optimally in R2. On the other hand, accord-
ing to [23] no 3-dimensional lens space embeds into R4; however they all (smoothly)
embed in R5, as follows from [25].

3. Proof of Theorem 1.2 (early methods)

We have just indicated in Remark 2.4 that the case n = 1 in Theorem 1.2 is well
known.

Proof of Theorem 1.2 for n > 1. We derive a contradiction from assuming an embed-
ding L2n+1(2e) ⊂ R4n. The argument uses singular cohomology groups with mod 2
coefficients (which will be suppressed from the notation). The Gysin sequence of the
normal sphere bundle E (with projection π) for the hypothesized embedding reduces
to split short exact sequences

0 → Hq(L2n+1(2e)) π∗−→ Hq(E)
ψ−→ Hq−2n+2(L2n+1(2e)) → 0

(the homomorphism after ψ is multiplication by the Euler class, which is trivial as
mentioned in Remark 2.2). For dimensions q < 4n− 1, the splitting is made geomet-
rically explicit in [37, Section 3] by exhibiting a subalgebra A∗ such that

(a) Hq(E) = π∗(Hq(L2n+1(2e)))⊕Aq, for 0 < q < 4n− 1,
(b) A4n−1 = 0, and
(c) A is stable under cohomology operations.

Consequently, in the dimensions of (a), ψ restricts to an isomorphism from Aq onto
Hq−2n+2(L2n+1(2e)). In particular, there is a well-defined element a ∈ A2n−2 with
ψ(a) = 1. Furthermore, as observed in [37, page 784], each element ω ∈ H∗(E) can be
expressed uniquely in the form

ω = π∗(u) + a · π∗(v), (4)

where u, v ∈ H∗(E). As a last piece of notation, let x, y ∈ H∗(L2n+1(2e)) stand for
the nontrivial classes in dimensions 1 and 2, respectively. They are connected by the
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relation βe(x) = y, where βe is the Bockstein associated to the extension

0 → Z/2e → Z/22e → Z/2e → 0.

We recall that H∗(L2n+1(2e)) is generated by x and y subject to the relations

yn+1 = 0 and x2 = εy (5)

where ε = 1 for e = 1, and ε = 0 for e > 1.
Start with the class ω ∈ A2n−1 corresponding to x under ψ, which must clearly have

the form ω = δπ∗(xyn−1) + a · π∗(x), for δ ∈ Z/2. Property (c) above implies that

δπ∗(yn) + a · π∗(y) = βe
(
δπ∗(xyn−1) + a · π∗(x))

(as in [33], one uses here the fact that a is the mod 2 reduction of a similar integral
class) lies in A, whereas property (b) above yields

a2 · π∗(xy) =
(
δπ∗(yn) + a · π∗(y)

)(
δπ∗(xyn−1) + a · π∗(x)

)
= 0 (6)

(the first equality uses the relation yn+1 = 0, recalling n > 1). On the other hand, [37,
lemma on page 785] claims that the expression (4) for a2 = Sq2n−2(a) has the form

a2 = π∗(a′) + a · π∗(W2n−2),

where W2n−2 is the normal Stiefel-Whitney class of L2n+1(2e). But a straightforward
computation using the hypothesis α(n) = 1 gives W2n−2 = yn−1, so that (6) reduces,
by dimensional reasons (once again recall n > 1), to a · π∗(xyn) = 0 or, by the unique-
ness of (4), xyn = 0, in contradiction to (5).

We close this section with a rather geometric argument leading to an easy embed-
ding result for lens spaces, which partially generalizes Mahowald’s embedding Pk ⊂
R2k−2 (valid for k > 3, with k ≡ 3 mod 4; see [34, Theorem 7.2.2]). The (improved)
full generalization is given by Theorem 1.3.

Proposition 3.1. L2n+1(2e) embeds in R4n provided n ≡ 3 mod 4.

Proof. This is a consequence of Lemma 3.2 below and the fact proved in [50] that, for
m ≡ 5, 6, 7 mod 8 and m ≥ 7, every spin manifold Mm embeds in R2m−2.

Lemma 3.2. L2n+1(2e) has a spin structure precisely for n = 0, and for odd n ≥ 1.

Proof. Since L2n+1(2e) is orientable, everything reduces to a straightforward calcu-
lation of the second Stiefel-Whitney class w2 = w2(L2n+1(2e)). We present this using
Wu’s formula w = Sq(v) ([40, Theorem 11.14]), thus avoiding the need for explicit
descriptions of tangent bundles. Wu’s first relation gives v1 = w1, which we already
observed to be trivial. Then Wu’s second relation reduces to v2 = w2. Thus, it suf-
fices to observe that Sq2 acts trivially on H2n−1(L2n+1(2e);Z/2) precisely when n
is odd. (The mod 2 cohomology ring for L2n+1(2e) can easily be obtained from [24,
Example 3E2], whereas the action of the Steenrod algebra follows from the well-known
situation for CPn.)
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4. Inductive construction of embeddings

Following the inductive methods in [36], we now produce explicit Euclidean embed-
dings for 2e-torsion lens spaces. In this section we use the shorter notation Ln,e for
L2n+1(2e).

For e ≥ 1, consider Z/2e as the subgroup of S1 of 2eth roots of unity. For k, j ≥ 0,
think of S2(k+j+1)+1 as the join of S2k+1 and S2j+1 via the explicit homeomorphism
φ : S2k+1 ? S2j+1 → S2(k+j+1)+1 sending (x, y, t) into (

√
1− tx,

√
ty). Under this iden-

tification, the standard Z/2e-action on S2(k+j+1)+1 takes the form

ω(x, y, t) = (ωx, ωy, t). (7)

By restriction, this yields actions on the subsets L′, R′ ⊂ S2k+1 ? S2j+1 determined
by the conditions t ≤ 1/2 and t ≥ 1/2, respectively. At the orbit space level we get a
decomposition

Lk+j+1,e = L ∪ R (8)

where L (resp., R) is the normal real disc bundle for the embedding of Lk,e (resp.,
Lj,e) in Lk+j+1,e coming from the first (resp., last) coordinates. Explicit models for L
and R are then given by

L =
(
S2k+1 ×D2j+2

)/
Z/2e and R =

(
D2k+2 × S2j+1

)/
Z/2e, (9)

where, as indicated by (7), the Z/2e action is diagonal in both cases. More familiar
descriptions are obtained from the following considerations.

LetHm stand for the canonical complex line bundle over CPm, and let ηm denote the
complex conjugate bundleH∗

m. The map λ : S2m+1 × C→ CPm × Cm+1 sending (x, z)
into ([x], zx), where [x] stands for the complex line determined by x, satisfies λ(x, ωz) =
λ(ωx, z) for ω ∈ S1, and produces the standard model for Hm as S2m+1 ×S1 C—the
orbit space of the S1 action on S2m+1 × C given by ω(x, z) = (ω−1x, ωz). In particular,
a model for ηm is given by (S2m+1 × C)/S1 (diagonal action now). As a result, letting
ηm,e denote the pull-back of ηm under the canonical map Lm,e → CPm, we get that
a model for the Whitney multiple nηm,e is given by (S2m+1 × Cn)/Z/2e (diagonal
action, of course). Consequently, we have proved:

Lemma 4.1. L = D((j + 1)ηk,e) and R = D((k + 1)ηj,e), the total spaces of the disc
bundles for (the realifications of) (j + 1)ηk,e and (k + 1)ηj,e.

The easy geometric argument in the proof of [49, Lemma 3.1] can now be adapted
to the current situation in order to identify

L ∩R =
(
S2k+1 × S2j+1

) /(
Z/2e

)

(corresponding to t = 1/2 under φ) with the sphere bundle of the realification of
the (exterior) tensor product η∗k,e ⊗ ηj,e. But in order to directly apply the results
in [36], we switch to their sphere bundle and mapping cylinder notation: L ∩ R is
the total space of both sphere bundles S((j + 1)ηk,e) and S((k + 1)ηj,e). Moreover,
letting πk : S((j + 1)ηk,e) → Lk,e and πj : S((k + 1)ηj,e) → Lj,e stand for the bundle
projections, the considerations in (8) and (9) yield the following reinterpretation of
Lemma 4.1.
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Lemma 4.2. L and R are, respectively, the mapping cylinders of πk and πj. Likewise,
Lk+j+1,e is the double mapping cylinder M(πk, πj).

Here the notation is as in [36, Section 5]. In particular, Theorems 2.2 and 5.2 in [36]
yield an inductive method for constructing embeddings of lens spaces (compare to [43,
Proposition 1]).

Proposition 4.3. Let Lk,e ⊂ Rα, Lj,e ⊂ Rβ, and (k + 1)ηj,e ⊂ Rσ+β be embeddings4,
and assume that the first embedding admits σ everywhere linearly independent normal
sections. Then there is a (topological) embedding Lk+j+1,e ⊂ Rα+β+1, provided either
one of the following two numerical conditions holds:

(i) σ + β > 4j + 2.

(ii) σ + β = 4j + 2 and 2k + 3 ≤ 8a+ 2b, where ν(2j + 2) = 4a+ b and 0 ≤ b ≤ 3.

Remark 4.4. From (8) and (9) we also get the explicit identifications (j + 1)ηk,e =
Lk+j+1,e − Lj,e and (k + 1)ηj,e = Lk+j+1,e − Lk,e. These are analogous to the models
used in [43], a paper exploiting the inductive method coming from Proposition 4.3 to
construct Euclidean embeddings for odd-torsion lens spaces. In that case, the Post-
nikov analysis (corresponding to our rather intricate Section 5) relies on [48] where
the obstructions are directly handled by showing the triviality mod 2 of the relevant
Pontryagin classes. The reader may want to compare this to our final argument in the
proof of Proposition 5.8.

For a fixed k, Proposition 4.3 allows us to start an inductive process (which we
call a round) for constructing embeddings of lens spaces. Namely, having construct-
ed an embedding Lj,e ⊂ Rβ , this result allows us to deduce the “next” embedding
Lj+(k+1),e ⊂ Rα+β+1 provided Lk,e ⊂ Rα (what we call the triggering ingredient, as it
is independent of j) and (k + 1)ηj,e ⊂ Rσ+β (what we call the feeding ingredient, as it
has to be verified for each j in the inductive process). The best results are obtained for
rounds with k one less than a power of 2 (when σk,e in the next lemma is largest). The
following result, a consequence of [36, Theorem 2.2] and the summary of immersions
for lens spaces in [21, Section 1], provides us with the triggering ingredient.

Lemma 4.5. There are embeddings Lk,e ⊂ R4k+2 with σk,e everywhere linearly inde-
pendent normal sections, for the triples (k, e, σk,e) indicated by the columns of Table 2.

k 3 3 3 1

e 1 2 ≥ 3 ≥ 1

σk,e 7 5 4 3

Table 2: Values of σk,e

4Only the first of the three hypothetical embeddings in Proposition 4.3 needs to be smooth.
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Remark 4.6. In getting the value σ3,1 = 7, one needs to observe that, having a trivial
first Stiefel-Whitney class, the normal bundle to an immersion P 7 # R8 is trivial.
Similarly, the value σ1,e = 3 can be deduced (for instance) from the fact that the
normal bundle ν to an embedding L1,e ⊂ R5 (Remark 2.4) is trivial. Indeed, since lens
spaces are orientable, one has w1(ν) = 0, so that ν is in fact a (1-dimensional) complex
vector bundle. Its triviality then follows since c1(ν) = χ(ν) is also trivial, as noted in
the first statement of Remark 2.2.

Remark 4.7. The flaw in [36]—our guiding reference in this section—arises from an
improperly supported use of Lemma 4.5. In our notation, it is affirmed in [36] that
Lemma 4.5 is true for k = 2µ − 1 and σk,1 = 2µ+ δ, where

δ =





1, µ ≡ 0, 1 mod 4
3, µ ≡ 2 mod 4
2, µ ≡ 3 mod 4

(10)

(cases with µ = 1, 2 are contained in Table 2). For µ ≥ 3, such an assertion is deduced
in [36] from an immersion Lk,1 # R4k+2−σk,1—which would be optimal in view of [27].
But such an immersion has been correctly argued only for 3 ≤ µ ≤ 5 (see [6] and [8];
the former has a historical recollection of the problem). The outcome is that only the
first five inductive rounds in [36] are properly supported. As a consequence, all the
results in Section 1 after Theorem 1.6 in [36] are invalidated, and this goes also for
the main theorem appearing at the very start of that paper. Furthermore, the careful
reader will realize that Theorem 1.6—the only “non-approximative” result in [36]—is
correctly argued only after fixing a typo: in part (d) one must add the restriction
α(k) ≥ 2 (at any rate, this restricted case was settled much later in [7]). On the other
hand, the point in the main result of [36], namely, the fact that the efficiency in the
embedding dimension of Pn is an unbounded function of n, was settled in a stronger
way in [49].

Remark 4.8. The thorough reader will note that the information recollected in [21]
would allow us to go for one further round (for k = 7, where σ7,1 = 8 and σ7,e = 7
for e ≥ 2). However, it is surprising to see how the rounds corresponding to large k’s
(k = 2µ − 1, µ ≥ 3) lose strength—even with the improperly-argued σk,1’s in (10). In
fact, the third round (k = 7) produces no new information for 2e-torsion lens spaces
having e ≥ 2. Remark 4.12 below gives further details focusing on the situation in [36]
for real projective spaces.

The feeding ingredient for the two rounds we need (with k = 1, 3) comes from
Lemma 4.9 below. Its e = 1 analogue is proved in [36] by a straightforward application
of Milgram’s linear algebra techniques in [39]. The general case will be proved in the
next section using obstruction theory.

Lemma 4.9. For µ = 1, 2 and positive integers ` and e, set i = 2µ`− 1, and assume
` ≥ 2 when e > 2 = µ. Then 2µηi,e ⊂ R4i+3. If, in addition, ` is even with α(`) ≥ 2,
then 2µηi,e ⊂ R4i+2.

Remark 4.10. While the first conclusion in this lemma is directly used within the two
inductive rounds referred to above (to form columns 2 and 4 in Table 1), the second



ON THE EMBEDDING DIMENSION OF 2-TORSION LENS SPACES 143

conclusion is used to get an improvement by one dimension, in certain cases, of the
embeddings inductively obtained (to form columns 3 and 5 in Table 1). Note that the
label column in Table 1 is considered as the first column.

We now show that Theorem 1.3 is a straightforward consequence of Proposition 4.3
and Lemmas 4.5 and 4.9.

Proof of Theorem 1.3. Let (e, n, d) be as in the second column of Table 1, and proceed
by induction on ` ≥ 1. For the start of the induction, the embedding L3,e ⊂ R11,
apply Proposition 4.3(i) with k = 1, j = 1, α = 5, β = 5 (coming from Remark 2.4),
and σ = 2 (as observed in Remark 4.6), using Lemma 4.9 with µ = 1 and, of course,
` = 1. Then, for the inductive step apply Proposition 4.3(i) with k = 1, j = 2`− 1,
α = 6, β = 8`− 4 (one higher than the inductive hypothesis), and σ = σ1,e = 3 (as in
Lemma 4.5), using Lemma 4.9 with µ = 1 and, of course, the current inductive `.

For (e, n, d) as in the third column of Table 1, apply Proposition 4.3(ii), with k = 1,
j = 2`− 1, α = 6, β = 8`− 5 (coming from the first round above), and σ = σ1,e = 3
(as in Lemma 4.5), using Lemma 4.9 with µ = 1 and ` = n−1

2 .
Now let (e, n, d) be as in the fourth column of Table 1 (we only consider the case

e ≥ 2; see Remark 4.11 for a slight strengthening of the method in the original case e =
1), and proceed by induction on ` ≥ 2. For the inductive step apply Proposition 4.3(i)
with k = 3, j = 4`− 1, α = 14, β = 16`+ δ(e)− 15 (one higher than the inductive
hypothesis), and σ = σ3,e (as in Lemma 4.5), using Lemma 4.9 with µ = 2 and, of
course, the current inductive `. This time, in order to ground the induction (` = 2),
we need to show the existence of an embedding

L7,e ⊂ R17+δ(e). (11)

For e ≥ 3, this is given by the second column in Table 1 (with ` = 3). But for e = 2, (11)
is just the embedding for the special type of triples in the statement of Theorem 1.3.

In order to establish (11) for e = 2, apply Proposition 4.3(i) with k = 3, j = 3,
α = 14, β = 11 (coming from the start of the first induction in this proof), and
σ = σ3,2 = 5 (as in Lemma 4.5), using Lemma 4.9 with µ = 2 and ` = 1, which is
still a valid case in Lemma 4.9 (all we need at this point is the weaker embedding
4η3,2 ⊂ R16).

Finally, for (e, n, d) as in the fifth column of Table 1, apply Proposition 4.3(ii), with
k = 3, j = 4`− 1, α = 14, β = 16(`− 1) + δ(e) (coming from the second round above),
and σ = σ3,e (as in Lemma 4.5), using Lemma 4.9 with µ = 2 and ` = n−3

4 .

Since σ1,e = 3 and the embedding dimension of any L1,e is 5, the first inductive
round (and its improvements) produces embeddings (second and third columns in
Table 1) whose Euclidean dimensions are independent of e. However, the second
round’s output (fourth and fifth columns in Table 1) does depend on e. The next
remark describes the situation (sharpened with the information in [44]) for e = 1.

Remark 4.11. Rees’ PL topological embedding P7 ⊂ R10 in [44] improves by one
dimension the embedding coming from the start of the first inductive round. When
this information is fed into the start of the second round, there results an embedding
P15 ⊂ R25, a corresponding improvement of (11) in one dimension (for e = 2), but still
2 dimensions weaker than Rees’ PL embedding P 15 ⊂ R23 in [44]. But when the latter
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embedding is fed into the next step of the second round, there results the (Haefliger
smoothable) embedding P 23 ⊂ R39, an optimal result according to [8]. Moreover, this
situation even shows that Milgram’s embedding 4η7,1 ⊂ R31 in Lemma 4.9 is optimal,
so that the corresponding sharpening in column 5 of Table 1 indeed fails to apply in
this case. These two phenomena repeat consistently throughout the second round (for
e = 1) yielding the embeddings

P8j+7 ⊂ R16j+7 and 4η4j−1,1 ⊂ R16j−1, for j ≥ 2 (12)

and

P8j+7 ⊂ R16j+6, for even j not a power of 2. (13)

Note that the first embedding in (12) gives the e = 1 case of the fourth column in
Table 1. This embedding and, therefore, the second embedding in (12) are optimal,
according to [8], if j is a power of 2, that is, when the improvement referred in
Remark 4.10 actually fails to apply. Likewise, (13) gives the e = 1 case of the fifth
column in Table 1. It is worth noticing that, according to [8], the embedding in (13)
is currently best known when j is even and α(j) = 2.

Remark 4.12. Inductive rounds corresponding to values k = 2µ − 1 with µ ≥ 3 have a
dramatic loss of strength. In fact, in the case of real projective spaces, this problem
(noticed in the paragraph previous to Theorem 1.8 in [36]) led to a rather weak lower
bound for the embedding efficiency of Pn—roughly 2 log2(α(n)), the main (but faulty)
theorem in [36]. The reason for this diminished strength of methods comes from the
fact that, for i as in Lemma 4.9, the feeding ingredient 2µηi,e ⊂ R4i+3 is (in [36]’s
wording) “rarely satisfied” when µ ≥ 3 (not to mention the embedding in R4i+2), and
thus needs to be replaced with a higher dimensional (therefore weaker) Euclidean
embedding. We offer here a simple numerical analysis (which requires familiarity with
the notation in [36, Lemma 1.5]) of how the problem arises in the case of real projective
spaces. The `-th step in the µ-th inductive round has the form

L2µ−1,1 ⊂ Rα with σ normal sections, L`·2µ−1,1 ⊂ Rβ , 2µη`·2µ−1,1 ⊂ Rσ+β ⇒ · · · .
In these conditions, and in order for Proposition 4.3 to have its strongest conclusion, it
is necessary that σ + β be (perhaps one more than) twice the dimension of L`·2µ−1,1.
This proves to be the case under the condition “p ≤ α(n) + κ(p, n)− α(p+ 1)” of [36,
Lemma 1.5]. In our terms, such a condition easily translates into

2µ+1 − 1 ≤ α(`) + µ+ κ(µ), (14)

where κ(µ) = 1 for µ = 1, and κ(µ) = 4 for µ ≥ 2. Although (14) always holds when
µ ≤ 2, it indeed rarely holds for µ ≥ 3.

5. Proof of Lemma 4.9

We continue to use last section’s notation Lm,e for the lens space L2m+1(2e). Recall
that a model for τm,e, the tangent bundle of Lm,e, is given by the quotient of the space
of pairs (x, y) ∈ S2m+1 × Cm+1, where x and y are perpendicular, by the diagonal
action of Z/2e. Thus (x, y) and (ωx, ωy) are identified in τm,e for ω ∈ Z/2e.
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Lemma 5.1. For m ≥ n ≥ 0, (m− n)ηn,e is the normal bundle for the embedding
Ln,e ⊂ Lm,e coming from the first coordinates.

Proof. Recall from the previous section that (m− n)ηn,e is the quotient space of
S2n+1 × Cm−n by the diagonal action of Z/2e. Then the map

((x, y), (x, z)) 7→ (x, (y, z))

produces a linear monomorphism τn,e ⊕ (m− n)ηn,e ↪→ τm,e over Ln,e ⊂ Lm,e that
identifies τn,e ⊕ (m− n)ηn,e with the restriction of τm,e to Ln,e.

Let F (t) be the Hurwitz-Radon function giving the maximal number of everywhere
linearly independent vector fields on St. The following result gives the basis for our
obstruction theory approach to Milgram’s linear algebra input in [36].

Proposition 5.2. Assume that the restriction to Ln,e of the stable normal bundle
ν : Lm,e → BO is represented by a d-dimensional bundle classified by the map ν′ in the
homotopy commutative diagram

Ln,e BO(d)

Lm,e BO.

-ν′

-ν
??

¤¡
(15)

If 2m+ d ≥ 4n+ 1 and, in case of equality, 2(m− n) ≤ F (2n+ 1), then there is an
embedding (m− n)ηn,e ⊂ R2m+d+1.

Proof. Think of ν as an M -dimensional bundle for M À 0. After cancelling a few
trivial sections, the Ln,e-restriction of the equality

τm,e ⊕ ν = 2m+ 1 +M becomes τn,e ⊕ ν′′ = 2m+ d+ 1,

where ν′′ = (m− n)ηn,e ⊕ ν′. Pick an immersion Ln,e # R2m+d+1 with normal bundle
ν′′. If 2m+ d > 4n+ 1, this immersion is regularly homotopic to an embedding, an
open tubular neighborhood of which can be identified with ν′′ (producing, in partic-
ular, the required embedding for (m− n)ηn,e). The case 2m+ d = 4n+ 1 is treated
in a similar way, except that the regular deformation argument is replaced by [36,
Theorem 2.2].

We next show how to reduce Lemma 4.9 to a particular instance of Proposition 5.2.
The reader will readily verify that, for µ, `, and e as in Lemma 4.9, the numerical
requirements in Proposition 5.2 are satisfied with n = 2µ`− 1, m = 2µ(`+ 1)− 1, and
d = 2µ+1(`− 1)− λ, where

λ =

{
1, when α(`) ≥ 2 and ` ≡ 0 mod 2;
0, otherwise.

(16)

Under these conditions, Lemma 4.9 becomes the conclusion of Proposition 5.2. There-
fore, settling the existence of a map ν′ as in diagram (15) is the only missing task in
order to complete the proof of Lemma 4.9. Moreover, since the stable normal bundle
of Lm,e is well known to be the −(m+ 1) Whitney multiple of the pull-back of the
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Hopf bundle Hm (denoted simply by H if no confusion arises) under the canonical
projection Lm,e → CPm, our real goal becomes showing the existence of the dotted
homotopy lifting in the following diagram. We stress that the hypothesis to this aim,
namely µ, `, and e being as in Lemma 4.9, with λ given by (16), will be in force
throughout the rest of the section.

BO(2µ+1(`− 1)− λ)

BOCP2µ·`−1L2µ·`−1,e
- -

−2µ(`+ 1)H

?· · · · · · · · · · · ·
· · · · · · · · · · · ·

· · · ·: (17)

Remark 5.3. The following considerations refer to the case λ = 1 in (16). While the
assumed parity of ` is an important ingredient in the above derivation of Lemma 4.9
from Proposition 5.2, no use is yet made of the condition α(`) ≥ 2. The latter require-
ment will shortly be identified as the relevant hypothesis for the corresponding (i.e.,
λ = 1) construction of the lifting in (17). In fact, it will be convenient to construct
a slightly stronger set of liftings (for µ, `, and e), namely, one where the restriction
` ≡ 0 mod 2 is removed from the case λ = 1 of (16).

We next take care of a couple of easy cases of (17).

Case ` = 1. (16) gives λ = 0, so we need to show the homotopy triviality of the
horizontal composite in (17). This is standard for e = 1, whereas the case e ≥ 2 follows
from the K̃O-calculations in [30] (this is the point where we require the hypothesis
e ≤ 2 for µ = 2). Therefore we assume ` ≥ 2 from now on, which will allow us to get
the lifting in (17) even at the level of the complex projective space.

Case λ = 1. (The cases with an even ` correspond to the ‘stronger’ liftings leading
to the improvements referred to in Remark 4.10.) For µ = 1, the existence of the
required lifting was actually established in [42] provided ` ≡ 0 mod 2—see the proof
of Theorem 1 on pages 172–173 of that paper. We leave for the reader the verification
that the required lifting for µ = 1 (and any `) follows from an argument similar to
the one we now describe for the situation with µ = 2. The lifting problem we want to
solve is

BO(8(`− 1)− 1)

BOCP4`−1 -
−4(`+ 1)H

?· · · ·
· · · ·

·* (18)

and, interpreted as an upper bound for the geometric dimension of the horizontal map
in (18), its solution follows as a consequence of [10, Theorem 1.3(c)]. Indeed, in that
result take

ε = 3, d = 5, m = 2`− 3, and p = 2N − 4(`+ 1), (19)

where N À 0 (in fact, the summand 2N would have to be replaced by any multiple
of the order of the Hopf bundle over CP4`−1, but this is immaterial for the 2-primary
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calculations below). Then, with the notation as in (19), the conditions implying the
lifting in (18) are:

• ν
(

p
2m+2

) ≥ 1;

• ν
(

p
2m+4

) ≥ 3;

• 2m ≥ d− ε.

Table 1.9 in [10] imposes no further ‘additional conditions’. The third inequality is
immediate, while the first two are straightforward verifications using the identities

ν

(
a

b

)
= α(b) + α(a− b)− α(a),

α(a− 1) = α(a)− 1 + ν(a),

and

α(2N − a) = N − α(a− 1)

for N À 0. For instance, the second inequality is verified as follows:

ν

(
p

2m+ 4

)
= ν

(
2N − 4(`+ 1)

4`− 2

)

= α(4`− 2) + α(2N − 8`− 2)− α(2N − 4(`+ 1))
= α(`− 1) + 1 +N − α(8`+ 1)− (N − α(4`+ 3))
= α(`− 1) + 1− α(`)− 1 + α(`) + 2 = α(`− 1) + 2
= α(`)− 1 + ν(`) + 2 ≥ 2− 1 + 2 = 3,

where the inequality in the previous line uses the hypothesis α(`) ≥ 2. In a similar
way one checks that ν

(
p

2m+2

)
= α(`)− 1.

Remark 5.4. Stronger liftings than (18) can be deduced from the Davis-Mahowald
technique [10] for certain odd values of `. For instance, when ` = 2au+ 3 with odd
u and a ≥ 2, we get a lifting to BO(8(`− 1)− 2) if u = 1, and to BO(8(`− 1)− 3) if
u > 1. These follow from [10, Theorem 1.3(c)] by replacing ε = 3 in (19) with ε = 2
and ε = 1, respectively.

It remains to consider the lifting (17) for ` ≥ 2 and λ = 0. According to (16), as
modified in Remark 5.3, this means in fact

` = 2%, with % > 0. (20)

For this, we first observe that the horizontal composite in (17) factors through the
corresponding quaternionic projective space as

L2µ`−1,e → CP2µ`−1 → HP2µ−1`−1 → BO

(see [46, Lemma 5.4]). Since the case with µ = 2 is far more complicated, we first
dispose of the (rather elementary) situation for µ = 1. The point is that the fiber
of BO(4`− 4) → BO is (4`− 5)-connected so that, at the level of the quaternionic
projective space, the obstructions for the required lifting lie in trivial groups.
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We have saved the most interesting case for last, namely, the one having λ = 0 and
µ = 2, with ` as in (20). Thus, the proof of Lemma 4.9 will be complete once we solve
the instance of (17) summarized by the following result (where we have set j = `− 1,
an odd number in view of (20)).

Proposition 5.5. The homotopy lifting problem

BO(8j)

BOHP2j+1CP4j+3 - -
?· · · · · · · · · · · ·

· · · · · · · · · · · ·
· ·:

can be solved for any positive odd5 integer j, where the horizontal composite classifies
the realification of the Whitney multiple −4(j + 2)H4j+3.

We have already said that the instance of (17) represented by Proposition 5.5 (as
well as the previous instances of (17) we have already solved) is proved in [36] for
real projective spaces by means of direct linear algebra constructions. The lack of such
a technique for higher torsion lens spaces led us to analyze alternative approaches
to Proposition 5.5 that could not only explain in a simple form the corresponding
e = 1 instance in (17), but that would allow us to obtain a suitable generalization to
higher torsion lens spaces. The tool that proved to simultaneously solve these problems
is Mahowald’s theory of modified Postnikov towers (MPT’s) [34], as refined in [14],
which is freely used from this point on. Indeed, such an analysis is actually very
simple in the case of real projective spaces as the whole lifting can be sorted out
through easy primary indeterminacy arguments. This gave a first indication of the
viability of the method in the general case. But its complete success comes from a
careful secondary indeterminacy analysis—the heart of the proof below—that leads to
the required lifting (17) for every torsion lens space (in the form of Proposition 5.5).

The remainder of this section is devoted to the construction of the dotted homotopy
lifting in Proposition 5.5. The proof is a bit lengthy, so we divide it into three main
steps. The first two work for any (even or odd) j; the hypothesis of having an odd
j will be applied only near the end of the third step, in order to evaluate a certain
nontrivial secondary cohomology operation.

Step 1. Description of the MPT we use. Since −4(j + 2)H4j+3 has trivial first and sec-
ond Stiefel-Whitney classes, the classifying map of this bundle can be further factored
through BSpin. We denote the maps in the resulting factorization as

CP4j+3 f→ HP2j+1 g→ BSpin h→ BO, (21)

and note that it suffices to lift the composite gf to BSpin(8j). In the range under
consideration the fiber of BSpin(8j) → BSpin is the stunted real projective space
P8j+6

8j —the quotient of P8j+6 with P8j−1 collapsed to a point. This is the Thom space

5Remark 5.4 indicates stronger liftings for an even j. In fact, the case λ = 1 discussed in (18) gives
a lifting one higher when α(j + 1) ≥ 2. On the other hand, the final remarks in this section explain
why Proposition 5.5 gives an optimal result in the remaining case j = 2% − 1, % > 0.
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of the bundle 8jξ6 (notation as in Section 2), which is a stable coreducible complex by
standard K-theory considerations. Thus P8j+6

8j splits as S8j ∨ P8j+6
8j+1, with homotopy

groups through dimension 8j + 5 given in the Adams chart (see [35, Tables 8.1, 8.2,
and 8.9])

r
r
r
r
6

r
r r

r
r
r
r

r
r

r
r

8j 8j+2 8j+4

©©©©©©©©©©

©©©©

where any potentially nontrivial Adams differential is ruled out by the splitting. The
condition j ≥ 1 assures that we are in the range for a (8j + 6)-MPT to exist; it takes
the form

BSpin(8j)

E3

E2

E1

BSpin

?

?

?

?

p4

p3

p2

p1

- K ′
8j+4

k3

- K8j+3 ×K8j+4 ×K ′
8j+4

k2

- K8j+2 ×K8j+3 ×K8j+4 ×K ′
8j+4 ×K8j+5

k1

- K(Z, 8j + 1)×K8j+2 ×K8j+4,
k0

(22)

where Km stands for the Eilenberg-MacLane space K(Z/2,m). We let K(i) and
µi : K(i)× Ei → Ei stand for the fiber and the action, respectively, in the princi-
pal fibration pi. To conclude the MPT setting, we remark that a standard calculation
gives the following characterizations for the k-invariants:

µ∗1(k
1
8j+2) = 1⊗ k1

8j+2 + Sq2ι8j ⊗ 1, (23)

µ∗1(k
1
8j+3) = 1⊗ k1

8j+3 + Sq2ι8j+1 ⊗ 1, (24)

µ∗1(k
1
8j+4) = 1⊗ k1

8j+4 + Sq1ι8j+3 ⊗ 1 + Sq2Sq1ι8j+1 ⊗ 1, (25)

µ∗1(k
′ 1
8j+4) = 1⊗ k′ 18j+4 + Sq4ι8j ⊗ 1 + ι8j ⊗ w4, (26)

µ∗1(k
1
8j+5) = 1⊗ k1

8j+5 + Sq4ι8j+1 ⊗ 1 + ι8j+1 ⊗ w4, (27)

µ∗2(k
2
8j+3) = 1⊗ k2

8j+3 + Sq2ι8j+1 ⊗ 1, (28)

µ∗2(k
2
8j+4) = 1⊗ k2

8j+4 + Sq1ι8j+3 ⊗ 1 + Sq2ι8j+2 ⊗ 1, (29)

µ∗2(k
′ 2
8j+4) = 1⊗ k′ 28j+4 + Sq1ι′8j+3 ⊗ 1 + Sq2Sq1ι8j+1 ⊗ 1, (30)

µ∗3(k
′ 3
8j+4) = 1⊗ k′ 38j+4 + Sq1ι′8j+3 ⊗ 1 + Sq2ι8j+2 ⊗ 1. (31)
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Here ιt stands for the relevant fundamental class in the various fibers K(i) (note that
we have systematically primed k-invariants, Eilenberg-Mac Lane spaces, and funda-
mental classes coming from the three classes in the right-hand tower of height 3 in the
chart above).

Step 2. Basic (primary) MPT analysis. Since the binomial coefficient
(−2j−4

2j+1

)
is even,

k0
8j+4 is trivial over HP2j+1; the other two k0-invariants are also trivial over HP2j+1

by dimensional reasons. Therefore g lifts in (22) to a map `1 : HP2j+1 → E1 whose
only possibly nontrivial k1-invariants are k1

8j+4 and k′ 18j+4. We now show that these
two k1-invariants map trivially.

To deal with `∗1(k
′ 1
8j+4) we first note that extending the Adams chart through dimen-

sion 8j + 7 extends the (8j + 6)−MPT to an (8j + 8)−MPT with only one extra
k0-invariant, k0

8j+8. Since
(−2j−4

2j+2

)
is even, k0

8j+8 is trivial over HP2j+2 and, thus, the
lifting `1 : HP2j+1 → E1 extends to a lifting HP2j+2 → E1. In this extended MPT,
there is a k2-invariant, k2

8j+7, defined by the relation

(Sq4 + w4)k′ 18j+4 + (Sq6 + w6)k1
8j+2 = 0

in E1. This implies (Sq4 + w4)`∗1(k
′ 1
8j+4) = 0. Thus, assuming `∗1(k

′ 1
8j+4) is the nontrivial

class in H8j+4(HP2j+2;Z/2) yields a contradiction since Sq4 of this class is nontrivial,
but w4 = 0 for g.

To deal with `∗1(k
1
8j+4) we need the fact that g lifts to BSpin(8j + 1). This follows

from a straightforward application of [9, Theorem 1.3(b)]—in a similar way to our
argument for (18), but this time with quaternions instead of complex numbers. With
this information at hand, we consider the following diagram of MPT’s, where the left-
hand tower is (22), the right-hand tower is the MPT for BSpin(8j + 1) → BSpin, and
the map of MPT’s is induced by the canonical map j : BSpin(8j) → BSpin(8j + 1):

ppp ppp

BSpin BSpin .

E1 E′1

E2 E′2

? ?

? ?

? ?

? ?

BSpin(8j) BSpin(8j + 1)

-

-

-

j1

j

j2

(32)

Moreover, the effect in homotopy (up to dimension 8j + 3) of the mapping between
fibers can be read in the Adams charts (see [35, Tables 8.1–8.2 for even j, and 8.9–8.10
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for odd j])

-

r
r
r
r6

r
r r

r
r
r
r

r
r
r

8j 8j+2
©©©©©©

©©

P8j

r
r

8j 8j+2
©©©©

P8j+1

r
r
r

In particular, the (8j + 4)-dimensional k1-invariant on the right-hand side in (32) maps
into k1

8j+4 in (22). Now, since g lifts to BSpin(8j + 1) the composite j1`1 has trivial
k1-invariants (with trivial indeterminacies). It follows that `∗1(k

1
8j+4) = 0.

We have proved:

Lemma 5.6. The map g lifts in (22) to a map `2 : HP2j+1 → E2.

Remark 5.7. Let ˜̀
2 = `2 f . Note that ˜̀∗

2(k
2
8j+3) is trivial by dimensional reasons,

whereas (29) and the fact that Sq2 acts nontrivially on H8j+2(CP4j+3;Z/2) imply
we can kill ˜̀∗

2(k
2
8j+4) by primary indeterminacy. Moreover, (30) shows that this killing

of ˜̀∗
2(k

2
8j+4) does not modify ˜̀∗

2(k
′ 2
8j+4). Also, (31) shows that the k3-invariant of any

possible lifting ˜̀
3 : CP4j+3 → E3 of gf can be killed by primary indeterminacy.

Step 3. Secondary indeterminacy. We now prove the next result, which coupled with
Remark 5.7 implies Theorem 5.5.

Proposition 5.8. There is a lifting ˜̀′
2 : CP4j+3 → E2 of gf in (22) that has trivial

k′ 28j+4-invariant.

Proof. We show that a nontrivial ˜̀∗
2(k

′ 2
8j+4) can be corrected through secondary inde-

terminacy. To this end, we first need to make a slight adjustment in our MPT: We
already noticed that w4 = 0 for g, so that this map factors as

HP2j+1 g′→ F → BSpin,

where F is the fiber of w4 : BSpin → K4. Note that, since π4(BSpin) = Z, F is still
3-connected (not 4-connected), but we have killed w4 in F . We will prove the required
condition for g′f with (22) replaced by the induced MPT over F ; therefore we extend
accordingly our notation for (22) to this MPT over F . In particular, Remark 5.7 gives
us a corresponding lifting

˜̀
2 : CP4j+3 → E2 (33)

of g′f , and we will show how to alter (if needed) its k′ 28j+4-invariant by secondary
indeterminacy coming from the class y4j ∈ H8j(CP4j+3;Z/2), where y stands for the
generator in H2(CP 4j+3;Z/2). Although—although not needed, we remark that this is
in fact the only way to correct the problematic k′ 28j+4-invariant. The next considerations
are preparatory.

We start by expanding the MPT over F (up to stage E2) to the commutative
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diagram

K8j+2×K8j+3×K8j+4×K′8j+4×K8j+5
-E1

E2

F

-
?

?

p2

p1

-

K(Z, 8j)×K8j+1×K8j+3

K8j+1×K8j+2×K8j+3×K′8j+3×K8j+4
-

ρ

?
X

K(Z, 8j)
?

p

K8j+2×K′8j+4···········································-
(Sq2, Sq4)

¡¡µ¡¡µ

»»»»»»»:
γ

K8j+1×K′8j+3

*
-j

CP4j+3

F0,2

y4j©©©*
¢
¢
¢
¢
¢¢̧

α

Here the square involving ρ and p2 is a pull-back, so that F0,2 can be thought of as
the common fiber of (a) the composite p1 p2, and (b) the middle horizontal composite

K(Z, 8j)×K8j+1×K8j+3 → E1 → K8j+2×K8j+3×K8j+4×K ′
8j+4×K8j+5.

Likewise, p : X → K(Z, 8j) is the fiber inclusion of the dotted map (Sq2, Sq4). The
map γ : X → F0,2 exists in view of the commutativity of the square involving the
(Sq2,Sq4) map (see (23)–(27)). The indicated lifting α of y4j exists since

(Sq2, Sq4)(y4j) = 0.

Next we describe suitable variations of the principal actions for p1 and p2 in the
MPT over F . Recall K(1) and K(2) denote, respectively, K(Z, 8j)×K8j+1×K8j+3

and K8j+1×K8j+2×K8j+3×K ′
8j+3×K8j+4. We define µ′1 : F0,2×E1 → E1 to be the

composite

F0,2×E1
ρ×1−→ K(1)×E1

µ1−→ E1.

We then have the diagram

K8j+1×K ′
8j+3×E2

¤£ - -µ2

µ′2

K(2)×E2 E2

?
j×1

?

?

X × E2
-

γ×1

· · · · · ·
· · · · · ·

· · · · · ·
· ·

γ×1

F0,2 × E2

?
1×p2 1×p2 p2

?

:

X × E1
- F0,2 × E1

?
p×1

?
ρ×1

K(Z, 8j)×E1
-¤£ K(1)×E1 E1.-

µ1

µ′1
HHHHHj

The dotted map µ′2 : X×E2 −→ E2, rendering a commutative diagram, exists since
the composite

X × E2

γ×p2−−−→ F0,2 × E1
µ′1−→ E1

k1

−→ K8j+2 ×K8j+3 ×K8j+4 ×K ′
8j+4 ×K8j+5

is null-homotopic as shown by the following chase of classes (where the symbol “↪→”



ON THE EMBEDDING DIMENSION OF 2-TORSION LENS SPACES 153

stands for the map induced by the bottom inclusion in the diagram above):

k1
8j+2

µ1−→ 1⊗k1
8j+2 + Sq2ι8j⊗1 ↪→ 1⊗k1

8j+2 + Sq2ι8j⊗1
p×1−→ 1⊗k1

8j+2
1×p2−→ 0,

k1
8j+3

µ1−→ 1⊗k1
8j+3 + Sq2ι8j+1⊗1 ↪→ 1⊗k1

8j+3
p×1−→ 1⊗k1

8j+3
1×p2−→ 0,

k1
8j+4

µ1−→ 1⊗k1
8j+4 + Sq1ι8j+3⊗1 + Sq2Sq1ι8j+1⊗1 ↪→ 1⊗k1

8j+4
p×1−→ 1⊗k1

8j+4
1×p2−→ 0,

k′ 18j+4
µ1−→ 1⊗k′ 18j+4 + Sq4ι8j⊗1 ↪→ 1⊗k′ 18j+4 + Sq4ι8j⊗1

p×1−→ 1⊗k′ 18j+4
1×p2−→ 0,

k1
8j+5

µ1−→ 1⊗k1
8j+5 + Sq4ι8j+1⊗1 ↪→ 1⊗k1

8j+5
p×1−→ 1⊗k1

8j+5
1×p2−→ 0.

Note that, in the last two rows, summands with a w4 are trivial by construction of F .
(For readers familiar with [47]: the point of this explicit calculation is to make sure
that all terms in the chase lie in wedge portions of the relevant spaces, a point argued
in [47] just from easy dimensional reasons.)

We are finally in a position to explicitly indicate how to kill (if needed), through
secondary indeterminacy, a nontrivial k′ 28j+4-invariant for (33). Start with the compos-
ite

˜̀′
1 = µ′1((γα)×(p2

˜̀
2)) : CP4j+3 → E1,

the (primary) modification of ˜̀
1 = p2

˜̀
2 by the class y4j . From the diagram that defines

µ′2 we have, first, that an explicit lifting of ˜̀′
1 is given by the map

˜̀′
2 = µ′2(α×˜̀

2) : CP4j+3 → E2

and, second, that equation (30) translates, by dimensional reasons, into

(µ′2)
∗(k′ 28j+4) = 1⊗ k′ 28j+4 + a⊗ 1 + ι8j ⊗ b,

where a ∈ H8j+4(X;Z/2) and b ∈ H4(E2;Z/2), and where the former element satisfies

j∗(a) = Sq1ι′8j+3 ⊗ 1 + Sq2Sq1ι8j+1 ⊗ 1. (34)

In particular, the k′ 28j+4-invariant of ˜̀′
2 is computed as

(˜̀′2)∗(k′ 28j+4) = (α×˜̀
2)∗(1⊗ k′ 28j+4 + a⊗ 1 + ι8j ⊗ b)

= ˜̀∗
2(k

′ 2
8j+4) + α∗(a) + α∗(ι8j) · ˜̀∗2(b).

Therefore we will be done once we establish the two relations

α∗(a) = y4j+2 and ˜̀∗
2(b) = 0. (35)

By construction α∗(a) ∈ Φ(y4j), where Φ is the secondary operation determined by
the class a ∈ H8j+4(X;Z/2) (subject to (34)) in the diagram

CP4j+3 K(Z, 8j) K8j+2×K8j+4.

K8j+1×K8j+3 X K8j+4

. - -

--

?©©©©©©©*

y4j (Sq2, Sq4)

aj

α
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This operation is associated to the relation (Sq2Sq1) · Sq2 + Sq1 · Sq4 = 0 (for our
purposes this is a relation on elements coming from integral classes, so that Sq1 acts
trivially on them). But in [17, Theorem A] it is shown that Φ(y4j) = y4j+2 for odd
j (with trivial indeterminacy), giving the first equality in (35). The second equality
in (35) is much simpler. Assume b 6= 0 and let P1 stand for the first Pontryagin class
of the universal vector bundle over BSpin. Since H4(BSpin;Z) = Z is generated by
P1/2, it follows that H4(F ;Z) = Z is generated by P1. Then the mod 2 reduction of
P1 must correspond to b under

Z/2 = H4(F ;Z/2)
p∗1≈ H4(E1;Z/2)

p∗2≈ H4(E2;Z/2).

Thus ˜̀∗
2(b) is the first Pontryagin class of −4(j + 2)H, which equals

(−4(j + 2))y2 = 0.

We close this section with a final word about the optimality of the obstruction theory
methods. As we have seen, the basis for Lemma 4.9 comes (rather indirectly) from the
existence of diagrams of the form (15), settled here by means of modified Postnikov
towers—and by direct linear algebra constructions in [36]. Of course, the smaller d
one can use in (15), the better are the results produced by the inductive rounds in
Section 4. Now, in Remark 4.11 we observed the optimality of some of the embeddings
in the conclusion of Lemma 4.9 for e = 1. In particular, we get the optimality of
the corresponding d used in (15). The point we want to stress here is that the latter
optimality holds for any e, in view of the compatibility of the embeddings Ln,e ↪→ Lm,e
under the canonical projections Lt,e → Lt,e+1. The net outcome to remark is that
the homotopy lifting in Proposition 5.5 turns out to be optimal when j is one less
than a power of 2—the critical µ = 2 case in (20). Together with the corresponding
embeddings of lens space, this infinite family of optimal liftings justifies the several
pages of MPT manipulations.

6. Immersion vs. embedding dimension

In this final section of the paper we focus on certain subtle points arising when
comparing the behavior of the (immersion and) embedding dimensions of 2e-torsion
lens spaces, as e varies. The case t = 2e of the following easy observation was mentioned
in [18] as a convenient way to take advantage of known immersion results for (real
and complex) projective spaces when studying the immersion problem for lens spaces.

Fact 6.1. Any codimension-k Euclidean immersion for CPn brings for free a codi-
mension-k Euclidean immersion for any t-torsion lens space L2n+1(t). Likewise, when
t′ divides t, any codimension-k Euclidean immersion of L2n+1(t) brings for free a
codimension-k Euclidean immersion of L2n+1(t′).

Unfortunately, the first (and potentially the second) statement(s) in Fact 6.1 readily
fails when “immersion” is replaced by “embedding”. For instance, CP1 embeds in
R3, but as observed in Remark 2.4, no 3-dimensional lens space embeds in R4. After
discussing how this problem arises and how it could be mended, we deal, in Remark 6.4
below, with the potential usefulness of such a possibly mended embedding analogue.
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For the time being we note that this initial problem could just as well be a facet of
the following very peculiar situation:

Fact 6.2. With the exception of S1 and P7, which are well known to be parallelizable
manifolds, 3-dimensional lens spaces are the only parallelizable manifolds among lens
spaces. In more detail, Lemma 3.2 and Proposition 6.3 (below) give the parallelizability
of all 3-dimensional lens spaces (the same argument gives the well-known paralleliz-
ability of any compact orientable 3-dimensional manifold), whereas it is proved in [32]
that, except for P7 and L2p−1(p) for p an odd prime (the latter is stably parallelizable,
but not parallelizable), no other lens space of dimension ≥ 5 is stably parallelizable.

Proposition 6.3. Any 3-dimensional spin bundle over a 3-dimensional complex is
trivial.

Proof. This follows from the fact that BSpin(3) = BS3 is 3-connected.

Here is an explicit way of looking (within Haefliger’s metastable range) at the
problems arising in the quest for an embedding analogue of the second statement
of Fact 6.1. Consider the configuration space FZ/2e(S2n+1, 2) consisting of pairs in
S2n+1 × S2n+1 generating different Z/2e orbits. As observed in [20, Lemma 5.1], for
k ≥ 3(n+ 1), Haefliger’s characterization [22, Théorème 1′] for the existence of an
embedding L2n+1(2e) ⊂ Rk decodes into the existence of a map α : FZ/2e(S2n+1, 2) →
Sk−1 satisfying

α(ωx, y) = α(x, y) = α(x, ωy) and α(x, y) = −α(y, x) (36)

for (x, y) ∈ FZ/2e(S2n+1, 2), and ω ∈ Z/2e. Now, although any map satisfying (36)
for all ω ∈ Z/2e will certainly satisfy the same requirements for all ω ∈ Z/2e−1, the
strict inclusion FZ/2e(S2n+1, 2) ⊂ FZ/2e−1(S2n+1, 2) can only be used to interpret, as
an extension problem, the embedding analogue of the second statement in Fact 6.1.

Despite the above problems, it might still be the case that a restricted embedding
version of Fact 6.1 holds. The following considerations are meant to shed evidence on
such a possibility. To this end, it will be convenient to use the notation Emb(M) for
the smallest dimension of the Euclidean space where the given manifold M can be
embedded. The information we use below about these numbers is taken from [8], in
the case of real projective spaces, and from [3, 41], in the case of complex projective
spaces.

First of all, the considerations in Fact 6.2 indicate that, in asking whether an embed-
ding analogue of Fact 6.1 holds, it might be fair to exclude the case n = 1. In fact,
we should exclude the whole family α(n) = 1 as, in such a case, Emb(CPn) = 4n− 1,
but according to Theorem 1.2, Emb(L2n+1(2e)) = 4n+ 1 for all e ≥ 1—one dimension
higher than what the embedding analogue of Fact 6.1 would anticipate.

Assuming now α(n) > 1, there does not seem to be an immediate problem, at
least at the outset (but perhaps mainly due to a lack of information), for a potential
embedding analogue of Fact 6.1. For instance, when n = 6 (the first such case with
even n), Emb(CP6) ∈ {21, 22} whereas Emb(P13) ∈ {22, 23}—three out of the four
possibilities being compatible with a potential embedding analogue of Fact 6.1.
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But for odd n the situation is much nicer, and the problem discussed above for
α(n) = 1 is replaced by the following families6 that are fully compatible with a possible
embedding version of Fact 6.1. Indeed:

(a) For n = 2e + 1 ≥ 3, Emb(CPn) = 2e+2 + 1, whereas Emb(P2n+1) ≤ 2e+2 + 2 if
e ≥ 2.

(b) For n = 2e + 3 ≥ 7, Emb(CPn) ∈ 2e+2 + {7, 8}, whereas Emb(P2n+1) =
2e+2 + 7 if e ≥ 3.

(c) For n = 2e + 5 ≥ 13, both Emb(CPn) and Emb(P2n+1) are of the form
2e+2 + {15, 16}.

(d) For n = 2e + 7 ≥ 15, Emb(CPn) ∈ 2e+2 + {21, 22, 23}, whereas Emb(P2n+1) ≤
2e+2 + 22 if e ≥ 4.

(e) For n = 2e + 9 ≥ 25, both Emb(CPn) and Emb(P2n+1) are of the form
2e+2 + {31, 32}.

Remark 6.4. With the above as indirect evidence, and in order to illustrate its poten-
tial usefulness, we observe that an embedding version of the first statement in Fact 6.1
would imply, in view of Theorem 1.1, that the (4n− α(n)− 1)-dimensional Euclidean
embedding of CPn (for odd n > 1) in [41] would not only be optimal for α(n) = 2, but
would also produce a corresponding (4n− α(n))-dimensional Euclidean embedding of
any lens space L2n+1(2e), optimal when e ≥ α(n) = 2, in view of Theorem 1.1.

In the direction of the potential optimality of the embeddings in [41], we observe
that the immersion (and consequently embedding) dimension of CP3 is 9. On the one
hand, Remark 6.4 already mentions the embedding CP3 ⊂ R9. On the other, the nor-
mal bundle ν of a hypothetical codimension-2 immersion of CP3 would necessarily
be the realification of a complex line bundle. Over CP3 this would be of the form
ν = (Hd)R, the realification of the d-th power of the Hopf bundle (d ∈ Z). In particu-
lar, the first Pontryagin class of ν would easily be computed (using for instance [40,
Corollary 15.5]) to be d2a2, where a ∈ H2(CP3;Z) stands for the Euler class of H.
However this is incompatible with the calculation of the (tangential) Pontryagin class
p1(CP3) = 4a2 in [40, page 178] and the fact that p1(CP3) + p1(ν) = 0 (recall that
CP3 is torsion-free).

Remark 6.5. As for the usefulness of a possible embedding analogue of the second
statement in Fact 6.1, we remark that this would immediately imply the validity of
Theorem 1.2 from the known validity for e = 1.

Remark 6.6. P7 is an important benchmark giving an exceptional situation both for
Fact 6.2 and Theorem 1.1. This manifold is known not to embed in R8 ([23]), but
has best currently known embedding in R12 ([34]), and even in R10, if the embed-
ding is only required to be piecewise linear ([44]). It is interesting to observe that a

6Only projective spaces are considered in this sample; trying to include lens spaces gives an excellent
motivation for sharpening the embeddings in Theorem 1.3, and in particular for trying to close up
the small gaps indicated in the second paragraph after that theorem.
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(topological, at least) embedding

L7(2e) ⊂ R10 (37)

could potentially be obtained for any e by quotienting out the action of Z/2e both in
the fiber and total space of the Hopf fibration S3 → S7 → S4. Indeed, this produces a
fibration L3(2e) → L7(2e) → S4 that, when restricted to the hemispheres of S4, leads
to a splitting of L7(2e) into two parts, each fiber homeomorphic to L3(2e)×D4 and,
therefore (Remark 2.4), embedding in R9. Following the philosophy in the previous
section, if these embeddings were (homotopy) compatible in the common intersection,
then there would be a reasonable chance of getting the embedding in (37). Rees’
embedding P 7 ⊂ R10 would seem to suggest that such compatibility can be attained
for e = 1. But we have not been able to make this idea work for general e (notice
that (37) would be fully compatible with the possibilities discussed in Remark 6.4).
Unfortunately, the relevance of a possible embedding (37) within the inductive proof
of Theorem 1.3 is admittedly limited; the reader will check that the only situation
where (37) would produce a better embedding than those described in Theorem 1.3
(besides the case n = 3 in the second column of Table 1) is for improving (e, n, d) =
(≤ 2, 7, 26), the special triples in Theorem 1.3, to (e, n, d) = (≤ 2, 7, 25)—pretty much
as described at the beginning of Remark 4.11.

We have just mentioned the possibility of extending Rees’ topological embedding
P7 ⊂ R10 to 7-dimensional 2e-torsion lens spaces. In this connection, it is well to keep
in mind Sanderson’s conjecture in [46] that the smooth embedding dimension of P7 is
11.

Example 6.7. Consider lens spaces L2n+1(2e) with n = 2t + 1 for t ≥ 2 (the case of
t ≤ 1 is described in Remark 2.4). For e ≥ 2, i.e., high-torsion lens spaces, the
1-dimension gap we leave for Emb(L2n+1(2e)) = 2t+2 + δ(e), with δ(e) ∈ {2, 3}, is a
shifted version of the known gap for e = 1: according to [8] the best current information
gives Emb(P2n+1) = 2t+2 + δ(1), with δ(1) ∈ {1, 2}.
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