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Abstract
The concept of oriented cohomology theory is well-known

in topology. Examples of these kinds of theories are complex
cobordism, complex K-theory, usual singular cohomology, and
Morava K-theories. A specific feature of these cohomology the-
ories is the existence of trace operators (or Thom-Gysin oper-
ators, or push-forwards) for morphisms of compact complex
manifolds. The main aim of the present article is to develop
an algebraic version of the concept. Bijective correspondences
between orientations, Chern structures, Thom structures and
trace structures on a given ring cohomology theory are con-
structed. The theory is illustrated by singular cohomology,
motivic cohomology, algebraic K-theory, the algebraic cobor-
dism of Voevodsky and by other examples.

1. Introduction

The concept of an oriented cohomology theory is well-known in topology [1, Part
II, p. 37], [36, Ch. 1, 4.1.1]. Examples of this kind of theory are complex cobordism,
complex K-theory, usual singular cohomology, and Morava K-theories. The signifi-
cance of these cohomology theories in algebraic topology is well-known due to Adams,
Milnor, Novikov, Quillen and many others. A specific feature of these cohomology the-
ories is the existence of trace operators (or Thom-Gysin operators, or push-forwards)
for morphisms of compact complex manifolds.

Voevodsky invented machinery producing cohomology theories [42]. However, not
all interesting cohomology theories are of this kind (see [9]). This is why it is rea-
sonable to define what a cohomology theory on algebraic varieties is, what a ring
cohomology theory is and what an oriented cohomology theory is. All these were done
in [25]. An oriented cohomology theory is a pair (A,ω) consisting of a ring cohomology
theory A and an orientation ω (the definition is reproduced below in 1.9). The present
article concerns a construction of an integration (a trace structure) on an oriented
cohomology theory (A,ω) (see Theorem 2.5). This is the very heart of the article.
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In the present article we consider a field k and the category of pairs (X, U) with
a smooth variety X over k and its open subset U . Following [25], a cohomology
theory means a contravariant functor A from this category to the category of abelian
groups endowed with a functor transformation ∂ : A(U)→ A(X, U) and satisfying
the localization, Nisnevich excision and homotopy invariance properties (1.1).

For a ring cohomology theory A (see Agreement 1.7), a trace structure or
equivalently an integration on A is a rule assigning to each projective morphism
f : Y → X of smooth varieties a grade-preserving two-sided A(X)-module operator
trf : A(Y )→ A(X) satisfying certain natural properties and called trace operators
or equivalently push-forwards (see 2.2). Other terms often used for push-forwards
in the literature are Gysin homomorphisms, Thom-Gysin homomorphisms, corestric-
tion homomorphisms, transfers and some others. We prove that all possible trace
structures on a ring cohomology theory A are in a natural bijection with all possible
orientations ω on A (Theorem 2.5).

To do this, we consider, along with the trace structures on A, three other structures
the ring cohomology A can be equipped with: an orientation on A, a Thom structure
on A and a Chern structure on A (see [25]). An orientation on A is a rule ω assigning
to each variety X and to each vector bundle E/X a grade-preserving two-sided A(X)-
module isomorphism

ωE : A(X)→ A(E, E −X)

satisfying certain natural properties (1.9) and called the Thom isomorphism. A Thom
structure on A is a rule assigning to each smooth variety X and each line bundle L
over X a class th(L) ∈ Aev(L,L−X) satisfying certain natural properties (1.13) and
called the Thom class. A Chern structure on A is a rule assigning to each smooth
variety X and each line bundle L over X a class c(L) ∈ Aev(X) satisfying certain
natural properties (1.12) and called the first Chern class (or sometimes called the
Euler class).

It is proved in the present article that for a given A these structures are in natural
bijection with each other. More precisely, we construct the following diagram:

Orientations on A
α // Trace structures on A

β

²²
Chern structures on A

δ

OO

Thom structures on A
γoo

(1)

in which each arrow is a bijection and each round trip coincides with the identity
(Theorem 2.5 and [25, Thms. 3.35, 3.36]). The constructions of these arrows are
described briefly below in this introduction. One of the consequences of the theorem
is this: the existence of at least one of these structures on A implies the existence of a
trace structure on A; a trace structure on A is never defined by the ring cohomology
theory itself (even on usual singular cohomology there are plenty of different trace
structures (see an example below in the Introduction).

However, in practice, certain ring cohomology theories are equipped either with
a Chern structure or with a Thom structure on the nose. Thus they are equipped
with distinguished trace structures. For instance, usual singular cohomology with
integral coefficients (on complex algebraic varieties) is equipped with the known
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Chern structure and algebraic K-theory is equipped with a Chern structure as well
(L 7→ [1]− [L∨]). The corresponding trace structures coincide with the well-known
ones. The motivic cohomology H∗(−,Z(∗)) is equipped with a Chern structure, and
the algebraic cobordism theory MGL∗,∗ (see 2.9.7) is equipped with a natural Thom
structure. Thus these two theories are equipped with the corresponding trace struc-
tures (see 2.9). The last two examples are the main motivating examples for this
article.

Using Theorem 2.5 and [25, Thms. 3.35, 3.36], we describe rather explicitly all
trace structures on A (Theorem 2.15). This description may be considered as one of
the main results of the article.

To explain this description suppose there is given a ring cohomology theory A
which can be equipped with at least one of the above mentioned structures. In this
case, the ring Aev(P∞) is isomorphic to the formal power series Aev(pt)[[t]] in one
variable over the even part Aev(pt) of the coefficient ring of the theory A (this follows
from the projective bundle theorem [25, Th. 3.9]). Consider an assignment which
takes a trace structure on A to the Chern class ζ := c(O(1)) of the anti-tautological
line bundle over P∞ corresponding via γ ◦ β to that trace structure:

Trace structures on A
c // Local parameters of Aev(P∞).

Theorem 2.15 states that this assignment is bijective. In particular, this implies that
there are plenty of trace structures on a ring cohomology theory A which can be
equipped with a Chern structure or with a Thom structure. The injectivity of the
assignment c says that two trace structures f 7→ tr(1)f and f 7→ tr(1)f on A coincide if
the corresponding two local parameters ζ(1) and ζ(2) of Aev(P∞) coincide.

In the case of singular cohomology H∗(−,Z) on complex algebraic varieties and
the standard trace structure, the mentioned local parameter coincides with the gen-
erator of the group H2(CP∞,Z). In the case of algebraic K-theory and Grothendieck
and Quillen’s trace structure defined via higher direct images, the local parameter
coincides with the class [1]− [O(−1)] of the hyperplane in K0(P∞). In the case of de
Rham cohomology and the usual integration of the differential forms, the mentioned
local parameter coincides with the class in H2(CPn,C) of the (1, 1)-differential form
(dz0 ∧ dz̄0 + dz1 ∧ dz̄1 + · · ·+ dzn ∧ dz̄n)/|z|2 on the complex projective space CPn

(more precisely, this form is the restriction of the local parameter to CPn).
For well-known theories (singular cohomology on complex algebraic varieties, étale

cohomology theory, motivic cohomology theory) one can use the usual Chern struc-
ture in order to get a trace structure (via the assignment α ◦ δ) coinciding with the
classical ones. In the case of algebraic K-theory, the assignment L 7→ [1]− [L∨] is
a Chern structure which gives, via α ◦ δ, the well-known Grothendieck and Quillen
trace structure on K-theory defined via the higher direct images of coherent sheaves.
If k = C and the theory is complex cobordism theory restricted to the category of pairs
of algebraic varieties and equipped with the Chern structure given by the Conner-
Floyd classes [6], then the corresponding trace structure coincides with the family of
Gysin maps in complex cobordism theory described in [34, 1.2 and 1.4].

An example of a nonstandard Chern structure on the usual singular cohomol-
ogy with rational coefficients is given by the assignment L 7→ 1− exp(−c1(L)). This
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Chern structure gives a trace structure on H∗(−,Q) which comes via the Chern char-
acter from Grothendieck and Quillen’s trace structure on algebraic K-theory (see [27,
Cor. 1.1.10]).

As was already mentioned, to orient a ring theory A is the same as to fix a trace
structure on A, a Thom structure on A or a Chern structure on A. An orientation
on A is usually denoted ω. The trace structure corresponding to ω via α is usually
written f 7→ fω. The Thom structure corresponding to ω via β ◦ α is often written
L 7→ thω(L). The Chern structure corresponding to ω via γ ◦ β ◦ α is often writ-
ten L 7→ cω(L). An oriented cohomology theory is as well an oriented cohomology
pretheory in the sense of [27] because the mentioned trace structure (the integra-
tion) is perfect in the sense of [27]. An orientable ring cohomology theory is a ring
cohomology theory which can be equipped with an orientation.

For an oriented cohomology theory (A,ω), the trace structure on A defines a Borel-
Moore theory in the sense of [19]. So there is a morphism

ϕω : ΩLM → A|Sm

of the Borel-Moore theories respecting the push-forwards, where ΩLM is the algebraic
cobordism of Levine-Morel [19]. More details can be found in 2.9.8.

We now describe briefly the relation of orientable ring cohomology theories to
commutative formal groups and the relation of the oriented theories to commuta-
tive formal group laws. The last relation gives one of the key tools in order to con-
struct the assignment α. Here are the relations: by the projective bundle theorem one
has the Künneth formula Aev(P∞ ×P∞) = Aev(P∞)⊗Aev(pt) Aev(P∞). The Segre
morphism µ : P∞ ×P∞ → P∞ (corresponding to the line bundle p∗1O(1)⊗ p∗2O(1))
induces the pull-back operator

µ∗ : Aev(P∞)→ Aev(P∞ ×P∞) = Aev(P∞)⊗Aev(pt) Aev(P∞)

to the completed tensor product, which in turn defines a Hopf-algebra structure on
Aev(P∞). This is the formal group FA associated with the orientable ring cohomol-
ogy theory A. The assignment A 7→ FA gives rise to a functor from the category of
all orientable cohomology theories and ring morphisms to the category of commuta-
tive formal groups of dimension one. This functor is used in the topological context
to identify operations (endomorphisms) of interesting cohomology theories with the
endomorphisms of certain formal groups.

An orientation ω on A identifies the ring Aev(pt)[[u]] with Aev(P∞) sending the
variable u to the local parameter ξω := cω(O(−1)). In the same way, the orientation
ω identifies the ring Aev(P∞ ×P∞) with the ring Aev(pt)[[u1, u2]]. Under the last
identification, the element µ∗(ξω) becomes a formal power series Fω(u1, u2) in two
variables over the ring Aev(pt). It is the formal group law Fω corresponding to the
orientation ω of the theory A. The series Fω(u1, u2) is a unique series satisfying the
following property: for each smooth variety X and each pair of line bundles L1 and
L2 over X, one has the relation

cω(L1 ⊗ L2) = Fω(cω(L1), cω(L2))

in Aev(X).
We now sketch the structure of the text. In Section 2, the notion of a trace struc-

ture on A is defined (here the requirement 5 concerning a short Gysin sequence is
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added to the notion of integration introduced in [30]). We construct a triangle of
correspondences α, ε, δ

Orientations on A
α // Trace structures on A

ε
wwppppppppppp

Chern structures on A

δ

ffLLLLLLLLLL

with the same α and δ as above, in which each arrow is a bijection and each round trip
coincides with the identity (Theorem 2.5). In [25, (1)], a triangle of correspondences

Orientations on A

ρ

''OOOOOOOOOOO

Chern structures on A

δ

77ooooooooooo
Thom structures on A

γoo

(2)

is constructed with the same γ and δ as above, in which each arrow is a bijection and
each round trip coincides with the identity ([25, Thms. 3.5, 3.35, 3.36]). Combining
the two triangles, we get the square diagram (1) except for the arrow β. The arrow β is
described just below Theorem 2.5. It follows from the description of β that ρ = β ◦ α
and ε = γ ◦ β.

The proof of Theorem 2.5 is rather long. It occupies all of Section 2 and is organized
as follows. The uniqueness assertions of items 1 and 2 of the theorem are proved in
Subsection 2.1. The proof of the uniqueness assertion of item 1 is based on the first
variant of the Riemann-Roch type theorem proved in [27, Th. 1.1.9]. The proof of
the existence assertion is given below in Subsection 2.7 and it requires a construction
of a trace structure.

The construction of a trace structure related via α to an orientation is rather
long. It occupies several subsections. Namely, in Subsection 2.2 trace operators are
constructed for closed imbeddings of smooth varieties (they are called Gysin opera-
tors). In Subsection 2.3, trace operators are constructed for the case of projections
X ×Pn → X (they are called Quillen’s operators). In Subsection 2.4, properties of
Gysin operators are proved, and in Subsection 2.5, properties of Quillen’s operators
are proved except for the Key property, which is proved in Subsection 2.6. Trace
operators for any projective morphism are constructed in Subsection 2.7. These trace
operators form a trace structure on A as it is stated in Theorem 2.12 from the same
subsection. The proof of Theorem 2.5 is completed in Subsection 2.8.

The article is completed by Theorem 2.15. In this theorem an orientable ring
cohomology theory A is considered and the set of all trace structures is identified with
the set of all local parameters of the ring Aev(P∞) (the even part of the ring A(P∞)).
Moreover, this identification is given in one direction very explicitly. Namely, it takes
a trace structure f 7→ trf on A to the Chern class c(O(1)) ∈ Aev(P∞) corresponding
via Theorem 2.5 to that trace structure.

Since the text is rather long it is reasonable to sketch here our constructions of the
assignments α, ε and δ (the assignments β and γ are described in Theorems 2.5 and
in [25, Th. 3.36]). We first describe the arrow ε, then sketch the description of δ and
finally sketch the description of α.
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Suppose we are given a trace structure f 7→ trf on A. For the zero section z : X → L
of a line bundle L over X, set c(L) = zA(trz(1)) ∈ A(X) (the pull-back of the push-
forward of the element 1). The assignment L 7→ c(L) is the Chern structure on A
corresponding via ε to the trace structure (see 2.5).

Suppose we are given a Chern structure L 7→ c(L) on A. In this case the projective
bundle theorem holds (see [25, Th. 3.9]) and there is a Chern class theory E 7→ cn(E)
with values in A. To produce an orientation ω on A, we associate to each vector
bundle E/X its Thom class th(E) ∈ A(E,E −X). Firstly, for a rank n vector bun-
dle E, we define an element t̄h(E) := cn(OE(1)⊗ p∗(E)) ∈ A(P(1⊕ E)). It turns out
that the pull-back operator identifies A(P(1⊕ E),P(1⊕ E)−P(1)) with a subgroup
of A(P(1⊕ E)) and t̄h(E) belongs to this subgroup. The class th(E) is defined
as the image of the element t̄h(E) under the pull-back isomorphism identifying
A(P(1⊕ E),P(1⊕ E)−P(1)) with A(E, E −X). The required orientation ω on A
is given by the assignment which associates to a vector bundle p : E → X the map

ωE := (∪ th(E)) ◦ pA : A(X)→ A(E,E −X).

Details are given in the proof of [25, Th. 3.35].
We now describe the construction of the assignment α. This is the very heart of the

article. So suppose we are given an orientation ω on A. We sketch our construction
of the trace structure f 7→ trω

f corresponding via α to ω. First of all, each projective
morphism f : Y → X can be presented as a composition of a closed imbedding i : Y ↪→
Pn ×X and the projection p : Pn ×X → X. So it suffices to define trace operators
for closed imbeddings and for projections, to set trω

f = trω
p ◦ trω

i , and to verify that
the resulting operator trω

f does not depend on the choice of the decomposition of f .
For a closed imbedding i : S ↪→ T of smooth varieties, we define the trace operator
trω

i : A(S)→ A(T ) as the composition

A(S) ωN−−→ A(N, N − S) ∼= A(T, T − S)→ A(T ),

where N = NT/S is the normal bundle to S in T , ωN is the Thom isomorphism
(given by the orientation ω), and the isomorphism A(N, N − S) ∼= A(T, T − S) is the
“excision isomorphism” (see [25, Th. 2.2]). The homomorphism A(T, T − S)→ A(T )
is just the pull-back homomorphism induced by the inclusion of pairs

(T, ∅) ⊂ (T, T − S).

The trace operators trω
p for the projections p : Pn ×X → X are defined as follows.

We first define the Chern structure on A corresponding to the orientation: given a
line bundle L over a smooth X consider the zero section z : X → L and the composi-

tion map A(X) ωL−−→ A(L, L−X)→ A(L) zA

−−→ A(X), and set cω(L) to be equal to the
evaluation of this composition on the element 1 ∈ A(X). Then we define certain ele-
ments [Pm]ω in A(pt) called the classes of projective spaces. By the projective bundle
theorem, the ring A(Pn ×X) as a two-sided A(X)-module is a free module with the
basis 1, ζ, . . . , ζn, where ζ = cω(O(1)) ∈ A(Pn). So we define the trace operator trω

p

to be the unique two-sided A(X)-module operator trω
p : A(Pn ×X)→ A(X) which

takes the element ζr to the class [Pn−r]ω for r = 0, 1, . . . , n. So to finish the definition
of the operators trω

p it remains to define the classes [Pm]ω.
To do this we need the formal group law corresponding to the orientation ω of



ORIENTED COHOMOLOGY THEORIES II 355

A. This formal group law is the formal power series Fω(u1, u2) ∈ Aev(pt)[[u1, u2]]
described above. Write down the unique normalized Fω-invariant differential 1-form
ωF on the formal group (law) in terms of the local parameter u:

ωF = (P0 + P1u + P2u
2 + · · · )du.

Now set
[Pm]ω = Pm ∈ Aev(pt).

This completes the definition of the classes [Pm]ω and thus completes the definition of
the operators trω

p : A(Pn ×X)→ A(X). Finally, for the morphism f : Y → X and the
presentation f = p ◦ i, set trω

f = trω
p ◦ trω

i . Theorem 2.12 states that the operator trω
f

is well-defined and respects the composition of projective morphisms, and moreover
that the assignment f 7→ trω

f is a trace structure required by item 1 of Theorem 2.5.
Another definition (coinciding with the given one) of the classes [Pm]ω uses the

complex cobordism theory Ω(∗) and the formal group law FΩ associated with this
theory and its canonical Chern class for line bundles (the Conner-Floyd class) [6].
This law was originally introduced by Novikov and Mischenko in [24]. It is defined
over the ring Ω = Ω(pt) and, according to a theorem of Quillen ([33, Th. 2]), FΩ is
a universal commutative formal group law of dimension 1. This implies that there
exists a unique ring homomorphism lω : Ω→ Aev(pt) such that the coefficients of Fω

coincide with the lω-images of the corresponding coefficients of FΩ. Now set

[Pm]ω = lω([CPm]),

where [CPm] is the class of CPm in Ω. This completes the second definition of the
classes [Pm]ω. The two definitions coincide because by Mischenko’s theorem (see [24]),
the normalized invariant differential form ωΩ coincides with the form

([CP0] + [CP1]u + [CP2]u2 + · · · )du

and clearly a scalar extension takes the normalized invariant differential form to the
normalized invariant differential form.

The normalized invariant form ω of a formal group law F = Fω(u1, u2) is com-
puted as follows (see [33]): ωF = du/F2(u, 0), where F2 is the derivative of F with
respect to the variable u2. Now let us make a test showing that, for certain examples of
cohomology theories and certain choices of the Chern structures, the classes [Pm]ω do
coincide with the known ones. Namely, if the cohomology theory is the usual singular
cohomology, the de Rham cohomology or the motivic cohomology, and if the Chern
structure L 7→ c(L) is the usual one, then the associated formal group law is addi-
tive: F = u1 + u2. In this case one has ω = du and the classes are given by [P0]ω = 1
and [Pr]ω = 0 for all r > 0. This agrees with what is well-known. If the cohomology
theory is algebraic K-theory and the Chern structure is given by L 7→ [1]− [L∨],
then the associated formal group law is multiplicative: F = u1 + u2 − u1u2. In this
case one has ω = du/(1− u) = (1 + u + u2 + · · · )du and the classes are given by
[Pr]ω = 1 for all r > 0. This agrees with Grothendieck’s trace structure on the alge-
braic K-theory given via the higher direct images. In the case of complex K-theory,
topologists like to take as the Chern structure the assignment L 7→ [L]− [1]. In this
case the associated formal group law is again multiplicative: F = u1 + u2 + u1u2,
ω = du/(1 + u) and the classes are given by [Pr]ω = (−1)r for all r > 0. In [3] the
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assignment L 7→ [1]− [L∨] is chosen as a Chern structure for complex K-theory. This
is why the morphism Kalg → Ktop commutes with the push-forwards corresponding
to the Chern structures chosen in [3].

Finally one should stress that a version of the Poincaré duality isomorphism
between a cohomology and a homology theory represented by an oriented T -spectrum
is proved in [32]. It is shown there that trace operators in cohomology coincide
with the expected ones. Namely, for projective varieties X, Y ∈ Sm and a morphism
f : X → Y , one has trω

f = (Dω
Y )−1f∗Dω

X , where Dω states for a Poincaré duality iso-
morphism defined by the orientation ω and f∗ is the operator on homology induced
by f . A trace structure on an oriented homology theory is constructed in [29].

1.1. Terminology and notation
Let k be a field. The term “variety” is used in this text to mean a reduced

quasi-projective scheme over k. If X is a variety and U ⊂ X is a Zariski open, then
Z := X − U is considered to be a closed subscheme with a unique structure of a
reduced scheme, so Z is considered to be a closed subvariety of X. We fix the follow-
ing notation:

• Ab – the category of abelian groups;

• Sm – the category of smooth varieties;
SmOp - the category of pairs (X, U) with smooth X and open U in X.
Morphisms are morphisms of pairs.
We identify the category Sm with a full subcategory of SmOp assigning to a
variety X the pair (X, ∅);

• pt = Spec(k);
For a smooth X and an effective divisor D ⊂ X, we write L(D) for a line bundle
over X whose sheaf of sections is the sheaf LX(D) (see [12, Ch. II, §6, 6.13]).
This line bundle has a section vanishing exactly on D;

• P(V ) = Proj(Sym∗(V ∨)) – the space of lines in a finite-dimensional k-vector
space V ;

• LV = OV (−1) – the tautological line bundle over P(V );

• 1X – the trivial rank-one bundle over X, often we will write 1 for 1X ;

• For a vector bundle E over X we write s(E) for its section sheaf;
For a vector bundle E over X we write E∨ for the vector bundle dual to E;

• P(E) := Proj(Sym∗(s(E∨))) – the space of lines in a vector bundle E;
LE = OE(−1) – the tautological line bundle on P(E);
E0 – the complement to the zero section of E;
z : X → E – the zero section of a vector bundle E;

• For a contravariant functor A on Sm, set

A(P∞) = lim←−A(P(V )), (3)

where the projective system is induced by all the finite-dimensional vector sub-
spaces V ↪→ k∞.
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Similarly, set

A(P∞ ×P∞) = lim←−A(P(V )×P(W )),

where the projective system is induced by all the finite-dimensional subspaces
V, W ⊂ k∞.

1.2. Cohomology theories
In this section we recall briefly the basic notions and certain results from [25]. We

use the basic definitions, constructions and results from [25]. Recall the notion of a
cohomology theory from [25, 30].

Definition 1.1. A cohomology theory is a contravariant functor SmOp
A−→ Ab to-

gether with a functor morphism ∂ : A(U)→ A(X, U) satisfying the following proper-
ties:

1. Localization: the sequence A(X)
jA

−−→ A(U) ∂P−−→ A(X,U) iA

−→ A(X)
jA

−−→ A(U)
is exact for each pair P = (X,U) ∈ SmOp, where

j : U ↪→ X and i : (X, ∅) ↪→ (X, U)

are the natural inclusions;
2. Excision: the operator A(X, U)→ A(X ′, U ′) induced by a morphism

e : (X ′, U ′)→ (X,U)

is an isomorphism, if the morphism e is étale and for Z = X − U , Z ′ = X ′ − U ′

one has e−1(Z) = Z ′ and e : Z ′ → Z is an isomorphism;
3. Homotopy invariance: the operator A(X)→ A(X ×A1) induced by the projec-

tion X ×A1 → X is an isomorphism.

The operator ∂P is called the boundary operator and is usually written ∂. A
morphism of cohomology theories ϕ : (A, ∂A)→ (B, ∂B) is a functor transformation
ϕ : A→ B commuting with the boundary morphisms in the sense that for every pair
P = (X, U) ∈ SmOp one has ∂B

P ◦ ϕU = ϕP ◦ ∂A
P .

We also write AZ(X) for A(X, U), where Z = X − U , and call the group AZ(X)
the cohomology of X with support on Z. The operator

AZ(X) iA

−→ A(X) (4)

is called the support extension operator for the pair (X,U).
Now recall the deformation to the normal cone construction and some of its prop-

erties.

1.2.1. Deformation to the normal cone
The deformation to the normal cone is a well-known construction (for example,
see [10]). Since the construction and its property (6) play an important role in what
follows we give here some details.

Let i : Y ↪→ X be a closed imbedding of smooth varieties with normal bundle N .
There exists a smooth variety Xt together with a smooth morphism pt : Xt → A1
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and a closed imbedding it : Y ×A1 ↪→ Xt such that the map pt ◦ it coincides with
the projection Y ×A1 → A1, and

• the fiber of pt over 1 ∈ A1 is canonically isomorphic to X and the base change of
it by means of the imbedding 1 ↪→ A1 coincides with the imbedding i : Y ↪→ X;

• the fiber of pt over 0 ∈ A1 is canonically isomorphic to N and the base change of
it by means of the imbedding 0 ↪→ A1 coincides with the zero section Y ↪→ N .

Thus we have the diagram

(N, N − Y ) i0−→ (Xt, Xt − Y ×A1) i1←− (X, X − Y ). (5)

Here and further we identify a variety with its image under the zero section of any
vector bundle over this variety.

Let us recall a construction of Xt, pt and it. For that take X ′
t to be the blow-up of

X ×A1 with the center Y × {0}. Set Xt = X ′
t − X̃ where X̃ is the proper preimage

of X × {0} under the blow-up map. Let σ : Xt → X ×A1 be the restriction of the
blow-up map σ′ : X ′

t → X ×A1 to Xt and set pt to be the composition of σ and the
projection X ×A1 → A1.

The proper preimage of Y ×A1 under the blow-up map is mapped isomorphically
to Y ×A1 under the blow-up map. Thus the inverse isomorphism gives the desired
imbedding it : Y ×A1 ↪→ Xt (observe that it(Y ×A1) does not cross X̃).

It is not difficult to check that the imbedding it satisfies the mentioned two proper-
ties. (The preimage of X × 0 under the map σ′ consists of two irreducible components:
the proper preimage of X and the exceptional divisor P(N ⊕ 1). Their intersection is
P(N) and it(Y × A1) crosses P(N ⊕ 1) along P(1) = the zero section of the normal
bundle N .)

We claim that diagram (5) induces isomorphisms on A-cohomology.

Theorem 1.2. The following diagram consists of isomorphisms:

AY (N)
iA
0←− AY×A1(Xt)

iA
1−→ AY (X). (6)

Moreover, for each closed subset Z ⊂ Y the following diagram

AZ(N)
iA
0←− AZ×A1(Xt)

iA
1−→ AZ(X) (7)

consists of isomorphisms as well.

This theorem is analogous to the Homotopy Purity Theorem from [23, Th. 3.2.3].

Corollary 1.3. Let j0 : P(1⊕N) ↪→ X ′
t be the imbedding of the exceptional divisor

into X ′
t and let j1 = et ◦ i1 : X ↪→ X ′

t, where et : Xt ↪→ X ′
t is the open inclusion. Then

the diagram

AP(1)(P(1⊕N))
jA
0←−− AY×A1(X ′

t)
jA
1−−→ AY (X) (8)

consists of isomorphisms.

Now recall the notion of a ring cohomology theory from [25, 30].
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Definition 1.4. Let P = (X, U), Q = (Y, V ) ∈ SmOp. Set

P ×Q = (X × Y, X × V ∪ U × Y ) ∈ SmOp.

This product is associative with the obvious associativity isomorphisms. The unit of
this product is the variety pt.

This product is commutative with the obvious isomorphisms P ×Q ∼= Q× P .

Definition 1.5. One says that a cohomology theory A is a ring cohomology theory
if for every P, Q ∈ SmOp there is given a natural bilinear morphism

× : A(P )×A(Q)→ A(P ×Q)

called the cross-product which is functorial in both variables and satisfies the following
properties:

1. associativity: (a× b)× c = a× (b× c) ∈ A(P ×Q×R) for a ∈ A(P ), b ∈ A(Q),
c ∈ A(R);

2. there is given an element 1 ∈ A(pt) such that for any pair P ∈ SmOp and any
a ∈ A(P ) one has 1× a = a = a× 1 ∈ A(P );

3. partial Leibniz rule: ∂P×Y (a× b) = ∂P (a)× b ∈ A(X × Y, U × Y ) for a pair
P = (X, U) ∈ SmOp, smooth variety Y and elements a ∈ A(U), b ∈ A(Y ).

Given cross-products, define cup-products ∪ : AZ(X)×AZ′(X)→ AZ∩Z′(X) by

a ∪ b = ∆A(a× b), (9)

where ∆: (X,U ∪ V ) ↪→ (X ×X, X × V ∪ U ×X) is the diagonal. Clearly, cup-pro-
ducts thus defined are bilinear and functorial in both variables. These cup-products
are associative as well: (a ∪ b) ∪ c = a ∪ (b ∪ c). If p is the projection X → pt, then the
element pA(1) ∈ A(X) is the unit for the cup-products ∪ : AZ(X)×A(X)→ AZ(X)
and ∪ : A(X)×AZ(X)→ AZ(X), and a partial Leibniz rule holds:

∂(a ∪ b) = ∂(a) ∪ b for a ∈ A(U), b ∈ A(X).

Given cup-products one can construct cross-products by a× b = pA
X(a) ∪ pA

Y (b)
for a ∈ A(X,U) and b ∈ A(Y, V ). Clearly these two constructions are inverse to each
other. Thus having products of one kind we have products of the other kind and we
can use both products at the same time.

Definition 1.6. A ring morphism ϕ : (A, ∂A,×A, 1A)→ (B, ∂B ,×B , 1B) of ring co-
homology theories is a morphism ϕ : (A, ∂A)→ (B, ∂B) of the underlying cohomology
theories which takes the unit 1A to the unit 1B and commutes with the ×-products:

ϕ(1A) = 1B ∈ B(pt)

and for every pair P,Q ∈ SmOp and every pairs of elements a ∈ A(P ), b ∈ A(Q) one
has

ϕP×Q(a× b) = ϕ(a)× ϕ(b) ∈ B(P ×Q).

Remark 1.7. The character A is reserved below in the text for a ring cohomology
theory in the sense of 1.5, which is the same as [25, Def. 2.13]. Moreover, to simplify
technicalities we will assume through the text below that:
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• all cohomology theories take values in the category of Z/2-graded abelian groups
and grade-preserving homomorphisms, the boundary operator ∂ is either grade-
preserving or of degree +1 and furthermore, all ring cohomology theories are
Z/2-graded-commutative ring theories, i.e. for any a ∈ Ap(P ) and b ∈ Aq(Q)
one has the relation a× b = (−1)pqb× a in Ap+q(P ×Q),

• all Thom isomorphisms in the sense of [25, Def. 3.1] are grade-preserving and
all Chern and Thom classes [25, Def. 3.2, 3.3] are of even degree.

• A ring morphism of ring cohomology theories is a morphism

ϕ : (A, ∂A)→ (B, ∂B)

of the underlying cohomology theories which takes the unit 1A to the unit 1B ,
commutes with the ×-products and which is grade-preserving.

So for a variety X and a pair (X,U) ∈ SmOp we will write Aev(X) (respectively
Aodd(X)) for the subgroup of all even (respectively odd) degree elements of the ring
A(X). The subgroup Aev(X) is a subring and the subgroup Aodd(X) is an Aev(X)-
module. We will write Aev(X,U) (respectively Aodd(X, U)) for the subgroup of all
even (respectively odd) degree elements of A(X,U). One should remark that under
the mentioned agreements the second partial Leibniz rule holds for a ring cohomology
theory A:
• suppose that ∂X,U is a graded operator of degree +1; then for each a ∈ Ap(U)

and each b ∈ Aq(Y ) the relation ∂Y×X,Y×U (b× a) = (−1)qb× ∂X,U (a) holds in
A(Y ×X,Y × U).

• suppose that ∂X,U is a grade-preserving operator; then for each a ∈ Ap(U)
and each b ∈ Aq(Y ) the relation ∂Y×X,Y×U (b× a) = b× ∂X,U (a) holds in
A(Y ×X,Y × U).

Remark 1.8. Following Agreement 1.7 the reader should replace everywhere through
the article [25] the concept of “universally central elements” (see [25, Def. 2.15]) by
the concept of “even degree elements”. For instance, reading [25] the reader should
replace the ring Auc(X) of all universally central elements by the ring Aev(X) of all
even degree elements.

Now recall three structures which A can be endowed with: an orientation, a Chern
structure and a Thom structure. It is proved in [25, Thms. 3.5, 3.35, 3.36] that there
is a natural one-to-one correspondence between these structures.

Recall that for a vector bundle E over a variety X we identify X with z(X), where
z : X → E is the zero section. If X is a smooth variety, then we write 1X for the
trivial rank-one bundle over X. Often we will just write 1 for 1X if it is clear from
context what the variety X is.

Definition 1.9. An orientation on the theory A is a rule ω assigning to each smooth
variety X, to each closed subset Z of X and to each vector bundle E/X an operator

ωE
Z : AZ(X)→ AZ(E),

which is a grade-preserving two-sided A(X)-module isomorphism and satisfies the
following properties:
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1. invariance: for each vector bundle isomorphism ϕ : E → F the following diagram
commutes:

AZ(X)
ωE

Z−−−−→ AZ(F )

id

y
yϕA

AZ(X)
ωE

Z−−−−→ AZ(E).

2. base change: for each morphism f : (X ′, X ′ − Z ′)→ (X,X − Z) with closed
subsets Z ↪→ X and Z ′ ↪→ X ′ and for each vector bundle E/X, the following
diagram commutes:

AZ(X)
ωE

Z−−−−→ AZ(E)

fA

y
ygA

AZ′(X ′)
ωE′

Z′−−−−→ AZ′(E′)

where E′ is the pull-back of E to X ′ and g : E′ = E ×X X ′ → E is the projec-
tion.

3. for each pair of vector bundles p : E → X and q : F → X, the following diagram
commutes:

AZ(X)
ωE

Z−−−−→ AZ(E)

ωF
Z

y
yω

p∗(F )
Z

AZ(F )
ω

q∗(E)
Z−−−−→ AZ(E ⊕ F )

and both compositions coincide with the operator ωE⊕F
Z .

The operators ωE
Z are called Thom isomorphisms. The theory A is called orientable

if there exists an orientation of A. The theory A is called oriented if an orientation ω is
chosen and fixed. An oriented cohomology theory is a pair (A,ω) with an orientation
ω on A.

It is convenient, say for a construction of an orientation, to give an equivalent
definition of orientation using Thom classes rather than Thom isomorphisms. Here is
the definition.

Definition 1.10. A Thom classes theory on A is an assignment which associates
to each smooth variety X and to each vector bundle p : E → X over X an element
th(E) ∈ AX(E) satisfying the following properties:

1. th(E) is of even degree, that is, th(E) ∈ Aev
X (E);

2. ϕA(th(F )) = th(E) for each vector bundle isomorphism ϕ : E → F ;

3. fA(th(E)) = th(f∗(E)) for each morphism f : Y → X of smooth varieties;

4. the operator A(X)→ AX(E), a→ th(E) ∪ pA(a) is an isomorphism;
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5. multiplicativity property: for the projections qi : E1 ⊕ E2 → Ei (i = 1, 2) one
has

q∗1th(E1) ∪ q∗2th(E2) = th(E1 ⊕ E2) ∈ AX(E1 ⊕ E2). (10)

The element th(E) is called the Thom class of the vector bundle E.

Lemma 1.11. If ω is an orientation on the theory A, then the assignment

E 7→ ωE
X(1) ∈ Aev

X (E)

is a Thom classes theory on A. We write thX(E) for the element ωE
X(1) ∈ Aev

X (E).
If an assignment E/X 7→ th(E) ∈ Aev

X (E) is a Thom classes theory on A, then
the family of homomorphisms ∪th(E) ◦ pA : AZ(X)→ AZ(E) form an orientation ω
on A.

The two mentioned correspondences between orientations and Thom classes theo-
ries are inverse to each other.

1.2.2.
To orient a ring theory A one can use a Chern structure on A or a Thom structure
on A. Moreover, in [25, (1)] a triangle of correspondences is constructed

Orientations on A
ρ

''PPPPPPPPPPPP

Chern structures on A

δ

77nnnnnnnnnnnn
Thom structures on A

γoo

(11)

with the same γ and δ as in the Introduction, in which each arrow is a bijection
and each round trip coincides with the identity ([25, Thms. 3.5, 3.35, 3.36]). For an
orientation ω on A we often write thω for the Thom structure corresponding to ω via
the arrow ρ, and cω for the Chern structure corresponding to ω via the arrow γ ◦ ρ.

We recall here the definitions of a Chern structure on A and of a Thom structure
on A. To do this, it is convenient to fix certain notation. Namely, for any variety X,
any vector bundle F over X and any even degree element α ∈ A(P(F ))ev, we will
often write

α : A(X)→ A(P(F )) (12)

for the operator given by a 7→ α ∪ pA(a), where p : P(F )→ X is the projection.

Definition 1.12. A Chern structure on A is an assignment L 7→ c(L) which asso-
ciates to each smooth X and each line bundle L/X an even degree element c(L) ∈
A(X) satisfying the following properties:

1. functoriality: c(L1) = c(L2) for isomorphic line bundles L1 and L2; fA(c(L)) =
c(f∗(L)) for each morphism f : Y → X;

2. nondegeneracy: the operator (1, ξ) : A(X)⊕A(X)→ A(X ×P1) is an isomor-
phism where ξ = c(O(−1)) and O(−1) is the tautological line bundle on P1;

3. vanishing: c(1X) = 0 ∈ A(X) for any smooth variety X.

The element c(L) ∈ Aev(X) is called a Chern class of the line bundle L. (It is proved
in [25, Lem. 3.29] that the elements c(L) are nilpotent.)
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Definition 1.13. One says that A is endowed with a Thom structure if for each
smooth variety X and each line bundle L/X there is given an even degree element
th(L) ∈ AX(L) satisfying the following properties:

1. functoriality: ϕA(th(L2)) = th(L1) for each isomorphism ϕ : L1 → L2 of line
bundles; fA

L (th(L)) = th(LY ) for each morphism f : Y → X and each line
bundle L/X where LY = L×X Y is the pull-back line bundle over Y and
fL : LY → L is the projection to L;

2. nondegeneracy: the cup-product ∪ th(1) : A(X)→ AX(X ×A1) is an isomor-
phism (here X is identified with X × {0}).

The element th(L) ∈ Aev
X (L) is called the Thom class of the line bundle L.

1.2.3.
We use here the notation from Subsection 1.2.1. Let et : Xt ↪→ X ′

t be the open inclu-
sion, let p : P(1⊕N)→ Y be the projection and let s : Y → P(1⊕N) be the section
of the projection identifying Y with the subvariety P(1) in P(1⊕N). The following
commutative diagram will be repeatedly used below in the text:

P(1⊕N)
j0−−−−→ X ′

t
j1←−−−− X

s

x It

x
xi

Y
k0−−−−→ Y ×A1 k1←−−−− Y.

Here It = et ◦ it, j0 is the inclusion of the exceptional divisor, j1 = et ◦ i1 and k0 and
k1 are the closed imbeddings given by y 7→ (y, 0) and y 7→ (y, 1), respectively. The
following result is proved in [25, Cor. 3.19].

Corollary 1.14 (Useful lemma). Let A be an orientable ring cohomology theory, let
V ′

t = X ′
t − it(Y ×A1) and let jt : V ′

t ↪→ X ′
t be the open inclusion. Then

Ker(jA
0 ) ∩Ker(jA

t ) = (0).

In other words, the operator (jA
0 , jA

t ) : A(X ′
t)→ A(P(1⊕N))⊕A(V ′

t ) is a monomor-
phism.

1.3. Examples of orientations
Here we recall examples of oriented ring cohomology theories from [25, 30]. The

orientation is described using either a Chern or a Thom structure.

1.3.1.
Let A be algebraic K-theory [41]. The rule L→ [1]− [L∨] endows A with a Chern
structure and thus orients A (property 2 of Definition 1.12 follows from [34, §8, Th.
2.1]).

It is interesting to note that the corresponding Chern class cn of a rank n vector
bundle E is exactly the known class

λ−1(E∨) = [1]− [E∨] + [∧2E∨] + · · ·+ (−1)n[∧nE∨].
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1.3.2.
Let m be an integer prime to char(k). Let A be étale cohomology theory

A∗Z(X) = ⊕+∞
q=−∞H∗

Z(X, µ⊗q
m )

with the obvious Z/2-grading. Consider the short exact sequence of the étale sheaves
0→ µm → G ×m−−→ G→ 0 and denote by ∂ : H1(X,Gm)→ H2(X,µm) the boundary
map. For a line bundle L over a smooth variety X, let [L] ∈ H1(X,Gm) be its iso-
morphism class. It is known [22] that the rule L 7→ ∂([L]) endows A with a Chern
structure. Thus A is oriented.

1.3.3.
Let A be motivic cohomology [39]: Ap

Z(X) = ⊕∞q=0H
p
Z(X,Z(q)) with the obvious Z/2-

grading. Recall that H2
M(X,Z(1)) = CH1(X) for a smooth X [39]. For a line bundle

L over a smooth variety X, let D(L) ∈ CH1(X) be the associated class divisor. The
rule L 7→ D(L) endows A with a Chern structure in the characteristic zero [39, Cor.
4.12.1] (now it is known in any characteristic). Thus A is oriented.

1.3.4.
Let A be K-cohomology [34, §7, 5.8]: AZ(X) = ⊕∞q=0 ⊕∞p=0 Hp

Z(X, Kq), where K is
the sheaf of K-groups. The summand Hp

Z(X, Kq) belongs to the even (respectively,
the odd) part of AZ(X) if p + q is even (respectively, odd). Recall that the sheaf K1

coincides with the sheaf O∗ of invertible functions. For a line bundle L over a smooth
variety X, let [L] ∈ H1(X, K1) = H1(X, O∗) be the isomorphism class of L. The rule
L 7→ [L] endows A with a Chern structure [14, Th. 8.10] and thus orients A.

1.3.5.
Let k = R and let A = Aev ⊕Aodd with

Aev(X, U) = ⊕∞0 Hp(X(R), U(R);Z/2), and Aodd(X, U) = 0.

Take as a boundary ∂ the usual boundary map for the pair (X(R), U(R)). Clearly, ∂
is grade-preserving with respect to the grading we choose on A. Now the cup-product
makes A a Z/2-graded-commutative ring theory.

For a line bundle L, consider the real line bundle L(R) over the topological
space X(R) and set c(L) = w1(L(R)) ∈ H1(X(R);Z/2Z) ⊂ Aev(X) (the first Stiefel-
Whitney class). Since Pn(R) = RPn is real projective space, the rule L 7→ c(L) endows
A with a Chern structure and thus orients A.

1.3.6. Semi-topological complex and real K-theories [9]
If the ground field k is the field R of reals, then the semi-topological K-theory of real
algebraic varieties KRsemi defined in [9] is an oriented theory as is proved in [9]. For
a real variety X it interpolates between the algebraic K-theory of X and Atiyah’s
Real K-theory of the associated Real space of complex points, X(C).

1.3.7. Orienting the algebraic cobordism theory
This example is considered in 2.9.7 below.
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1.4. The formal group law Fω

Let ω be an orientation of A. Thus A is endowed with the Chern structure
L 7→ cω(L) which corresponds to ω (see 1.2.2 or [25, Thms. 3.35, 3.36]). Following
Novikov, Mischenko [24] and Quillen [33], we associate a formal group law Fω with
ω. This formal group law is defined over the ring Ā := Aev(pt) and gives an expression
of the first Chern class of L1 ⊗ L2 in terms of the first Chern classes of line bundles
L1, L2.

Using [25, Th. 3.9], identify the formal power series in one variable Ā[[u]] with
the ring Aev(P∞) identifying u with cω(O(1)) ∈ Aev(P∞). The two “projections”
pi : P∞ ×P∞ → P∞ induce two pull-back maps pA

i : A(P∞)→ A(P∞ ×P∞). Using
[25, Th. 3.9] again, identify Aev(P∞ ×P∞) with Ā[[u1, u2]] where

ui = p∗i (u) = cω(p∗i (O(1)).

Set

Fω(u1, u2) = cω(p∗1(O(1)⊗ p∗2(O(1))) ∈ Ā[[u1, u2]]. (13)

Proposition 1.15. For any X ∈ Sm and line bundles L1/X, L2/X, one has the
following relation in A(X):

cω(L1 ⊗ L2) = Fω(cω(L1), cω(L2)).

Here the right-hand side is well-defined since the first Chern classes are of even degree
and nilpotent ([25, Lem. 3.29]).

Proposition 1.16. The formal power series Fω ∈ Ā[[u1, u2]] is a commutative for-
mal group law ([11]) with the “inverse element”

Iω(u) = cω(O(−1)) ∈ Aev(P∞) = Ā[[u]].

Definition 1.17. The formal group law Fω is called the formal group law associated
with A endowed with the orientation ω. Its “inverse element” is the series Iω.

1.4.1. Examples
• If A = H∗

M(−,Z(∗)) with first Chern class cH , then one has the relation cH(L1 ⊗
L2) = cH(L1) + cH(L2);

• If A = K-theory with first Chern class defined by cK(L) = [1]− [L∨], then one
has the relation cK(L1 ⊗ L2) = cK(L1) + cK(L2)− cK(L1) · cK(L2);

• Let k = C and A = Ω be complex cobordism theory equipped with the Chern
structure L 7→ cf(L) given by the Conner-Floyd class cf [6, pp. 48–52]. The for-
mal group law FΩ was introduced and used originally in [24]. It is the universal
commutative formal group law as is proved in [33]. The latter means that, for
any commutative ring R and any commutative formal group law in one variable
F over R, there exists a unique ring homomorphism lF : Ω→ R such that the
coefficients of F coincide with the lF -images of the corresponding coefficients
of FΩ. Since FΩ is a universal formal group law its ring of coefficients Ω(pt) is
canonically isomorphic to the Lazard ring L [33].
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2. Trace structures

The character A is reserved below in the text for a ring cohomology theory in the
sense of Agreement 1.7. We use the basic definitions, constructions and results of [25]
taking into account Remark 1.8.

2.1. Trace structures on a ring cohomology theory
Here we define a notion of a trace structure on A. In Theorem 2.5 we claim that

an orientation of A gives rise to a unique trace structure on A respecting a certain
normalization property. On the other hand, a trace structure defines an orientation
and these two constructions are inverse to each other. Let us recall a notion.

Definition 2.1. Let

Ỹ
ĩ−−−−→ X̃

ϕ̃

y
yϕ

Y
i−−−−→ X

be a commutative square of varieties with smooth Y , X, X̃, a closed embedding
i : Y ↪→ X and normal bundles N := NX/Y , Ñ := NX̃/Ỹ . The square is called trans-
versal if it is Cartesian in the category of schemes and if the canonical morphism
Ñ → ϕ̃∗(N) is an isomorphism.

Definition 2.2. Let A be a ring cohomology theory. A trace structure on A is a
rule assigning to each projective morphism of smooth varieties f : Y → X a grade-
preserving two-sided A(X)-module operator

trf : A(Y )→ A(X)

called the trace operator (for f) or the push-forward (for f) and satisfying the fol-
lowing properties:

1. trf◦g = trf ◦ trg for any projective morphisms Z
g→ Y and Y

f→ X of smooth
varieties;

2. for the transversal square from (2.1) the following diagram commutes:

A(Ỹ )
trĩ−−−−→ A(X̃)

ϕ̃A

x
xϕA

A(Y ) tri−−−−→ A(X);

3. for any morphism of smooth varieties f : Y → X the following diagram com-
mutes:

A(Pn × Y )
(id×f)A

←−−−−− A(Pn ×X)

trpY

y
ytrpX

A(Y )
fA

←−−−− A(X),

where pY : Pn × Y → Y and pX : Pn ×X → X are the natural projections;
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4. normalization: for any smooth variety X one has tridX
= idA(X);

5. localization: for any closed imbedding of smooth varieties i : Y ↪→ X and the

inclusion j : X − Y ↪→ X the sequence A(Y ) tri−−→ A(X)
jA

−−→ A(X − Y ) is exact.
This sequence is often called the Gysin sequence below in the text.

The line bundle L(D) associated with an effective divisor D on a smooth variety
X is defined in in 1.1. It has a section vanishing exactly on D.

Remark 2.3. For a ring cohomology theory A, the restriction A|Sm to the category
of smooth varieties is a ring cohomology pretheory in the sense of [27, Def. 1.1.1].
Furthermore, the notion of “trace structure on A” coincides tautologically with the
notion of “integration on A” used in [27]. Moreover, Theorem 2.5 and [25, Th. 3.9]
show that each trace structure on a ring cohomology theory A is a perfect integration
on A in the sense of [27, Def. 1.1.6]. Thus Theorem 2.5 shows that for an oriented
ring cohomology theory A (Definition 1.9) its restriction A|Sm to smooth varieties is
an oriented cohomology pretheory in the sense of [27, Def. 1.1.7].

The notion of “trace structure on A” coincides tautologically with the notion of
“integration on A” used in [26]. Here we prefer to use the term “trace structure”
for the following reasons. Firstly, the term “trace homomorphism” is used in [7] and
in other classical books. Secondly, the term “trace homomorphism” is used in the
cohomological context as well as in the homological context (see [7], [29]).

To get the notion of “trace structure on A” we added to the notion of “integration
on A” from [30] the localization property 5 from Definition 2.2.

Definition 2.4. Let ω be an orientation of A and let L 7→ c(L) be the Chern structure
on A corresponding by [25, Th. 3.36] to ω. One says that a trace structure f 7→ trf

on A respects the orientation ω if for each smooth variety X and each smooth divisor
i : D ↪→ X one has the following relation in A(X):

tri(1) = c(L(D)). (14)

For a trace structure f 7→ trf on A respecting the orientation ω we will often write
trω

f for trf . So the last relation looks now as follows: trω
i (1) = c(L(D)).

Theorem 2.15 below states that if there exists at least one trace structure on A,
then there exist a lot of trace structures. The notation trω

f indicates the fact that the
operator depends on the orientation ω rather than on the theory A itself.

Theorem 2.5. Let A be a ring cohomology theory.
1. Let ω be an orientation on A. Then there exists a unique trace structure f 7→ trf

on A respecting this orientation.
2. Let f 7→ trf be a trace structure on A. Then there exists a unique orientation

ω on A such that the trace structure respects the ω. Moreover, the assignment
L 7→ zA(trz(1)) ∈ Aev(X) is a Chern structure on A and the required orientation
ω is the one corresponding to this Chern structure by [25, Th. 3.35].

3. The correspondences described in items 1 and 2 of this theorem are inverse to
each other.
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Examples illustrating this theorem are given in Subsection 2.9 below. The first
item of the theorem describes the arrow α from the Introduction. The second item
of the theorem describes the compositions δ ◦ γ ◦ β and γ ◦ β from the Introduc-
tion. The arrow β from the Introduction is described rather easily as well. Namely,
for a line bundle L over a smooth variety X, let s : X 7→ P(1⊕ L) be the section
of the projection p : P(1⊕ L)→ X identifying the variety X with the subvariety
P(1) in the projective bundle P(1⊕ L). Let e : L ↪→ P(1⊕ L) be the open inclusion
and let z : X → L be the zero section of L (obviously s = z ◦ e). Identify the group
AP(1)(P(1⊕ L)) with a subgroup of A(P(1⊕ L)) via the support extension operator
from the exact sequence [25, (8)]. Now set t̄h(L) = trs(1) ∈ Aev

P(1)(P(1⊕ L)). Then
the assignment L 7→ th(L) = eA(t̄h(L)) ∈ Aev

X (L) is a Thom structure on A (this is
checked in the proof of item 2 below). Moreover, the corresponding Chern structure,
by [25, Th. 3.5], is the Chern structure from item 2 of Theorem 2.5 (this is also
checked in the proof of item 2.).

The proof of Theorem 2.5 is rather long. It occupies all of Section 2 and is organized
as follows. In the current subsection the uniqueness assertion of item 1 is proved and
item 2 of the theorem is also proved. The proof of the uniqueness assertion of item 1 is
based on the first variant of Riemann-Roch type theorem proved in [27, Cor. 1.1.11].
The proof of the existence assertion is given below in Subsection 2.7 and it requires
a construction of a trace structure.

The construction of a trace structure respecting an orientation is rather long itself
and it takes several subsections. Namely, in Subsection 2.2 trace operators are con-
structed for a closed imbedding of smooth varieties (they are called Gysin opera-
tors). In Subsection 2.3 trace operators are constructed for the case of projections
X ×Pn → X (they are called Quillen’s operators). In Subsection 2.4 properties of
Gysin operators are proved and in Subsection 2.5 properties of Quillen’s operators
are proved except for the compatibility with a section of a trivial projective bundle,
which is proved in Subsection 2.6. Push-forwards for any projective morphism are
constructed in Subsection 2.7. These push-forwards form a trace structure on A as is
stated in Theorem 2.12 from the same subsection.

Proof of the uniqueness assertion of item 1. Let f 7→ trf be a trace structure on A
respecting the orientation ω. For each line bundle p : L→ X and its zero section
z : X → L the line bundle over L associated with the divisor X on L coincides
with the line bundle p∗(L). Thus zA(trz(1)) = zA(c(p∗(L))) = c(z∗(p∗(L))) = c(L)
in A(X). The assignment L 7→ zA(trz(1)) is the Euler structure associated with the
trace structure f 7→ trf on the pretheory A|Sm : Sm→ Ab ([27, §1]). The projective
bundle theorem [25, Th. 3.9] shows that the trace structure f 7→ trf is a perfect
integration on the pretheory A|Sm (in the sense of [27, Def. 1.1.6]).

If f 7→ tr(1)f and f 7→ tr(2)f are two trace structures on A respecting the orientation

ω, then the two Euler structures L 7→ zA(tr(1)z (1)) and L 7→ zA(tr(2)z (1)) coincide with
the Chern structure L 7→ c(L). By [27, Cor. 1.1.11] the two trace structures coincide.
The uniqueness assertion is proved.

Proof of item 2 of Theorem 2.5. We begin with the uniqueness assertion. Assume
that the trace structure f 7→ trf respects two orientations ω and ω′ on A. Prove
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that these two orientations coincide. Let L 7→ c(L) be the Chern structure on A cor-
responding to the orientation ω by [25, Th. 3.36]. For a line bundle L over a smooth
variety X, consider its zero section z : X → L and the projection p : L→ X. The line
bundle L(z(X)) associated with the divisor z(X) on the variety L is isomorphic to
the line bundle p∗(L). Thus one has a chain of relations

zA(trz(1)) = zA(c(L(z(X)))) = zA(c(p∗(L))) = c(z∗(p∗(L))) = c(L).

Similarly, one has the relation zA(trz(1)) = c′(L), where L 7→ c′(L) is the Chern struc-
ture on A corresponding to the orientation ω′ by [25, Th. 3.36]. Thus c′(L) = c(L)
and the relation ω = ω′ follows.

The first aim is to prove that the assignment L 7→ th(L) described just below
Theorem 2.5 is a Thom structure. One has to check the functorial behavior of the
class th(L) and its nondegeneracy. To verify the functorial behavior of this class it
suffices to check the functorial behavior of the class t̄h(L).

If φ : L2 → L1 is a line bundle isomorphism and Φ: P(1⊕ L2)→ P(1⊕ L1) is the
induced map of the projective bundles, then the diagram

A(P(1⊕ L2))
ΦA

←−−−− A(P(1⊕ L1))

trs2

x
xtrs1

A(X) id←−−−− A(X)

commutes because the underlying diagram of varieties is transversal. The support
extension operator AP(1)(P(1⊕ L2))→ A(P(1⊕ L2)) is injective by the exactness of
the short sequence (8) from [25]. Thus ΦA(t̄h(L1)) = t̄h(L2) in AP(1)(P(1⊕ L2)).

Similarly, for a morphism f : X ′ → X with smooth X ′, for L′ = X ′ ×X L′ and for
the induced map Φ: P(1⊕ L′)→ P(1⊕ L), one gets the relation ΦA(t̄h(L)) = t̄h(L′).
The functoriality of the class th(L) is proved.

To prove the nondegeneracy property recall that the Gysin sequence

0→ A(X) trs−−→ A(X ×P1)
jA

−−→ A(X ×P1 −X × {0})→ 0

is exact in the middle term by 2.2, where s : X → X ×P1 is defined by s(x) = (x, 0)
and j : X ×P1 −X × {0} ↪→ X ×P1 is the open inclusion. The operator jA is clearly
surjective and the operator trs is injective because trp ◦ trs = tridX

= idA(X), where
p : X ×P1 → X is the projection. Hence the last five-term sequence is short exact.
Now the exactness of the sequence [25, (8)] shows that the operator trs identifies
A(X) with the subgroup AX×{0}(X ×P1) of the group A(X ×P1).

We claim that the operator trs coincides with (∪ trs(1)) ◦ pA. In fact, for any
element a ∈ A(X), one has trs(1) ∪ pA(a) = trs(sA(pA(a))) = trs(a). Since t̄h(1) =
trs(1), the last observations show that the operator ∪ t̄h(1) : A(X)→ A(X ×P1)
identifies A(X) with the subgroup AX×{0}(X ×P1) of the group A(X ×P1).

Now we are ready to prove the nondegeneracy of property of the Thom class th(L).
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For that consider the commutative diagram

AX×0(X ×A1) eA

←−−−− AX×0(X ×P1)

∪th(1)

x
x∪t̄h(1)

A(X) id←−−−− A(X).

The pull-back map eA is an isomorphism by the excision property. Thus the map
∪ th(1) is an isomorphism as well. The nondegeneracy property of the class th(L) is
proved. Thus the assignment L 7→ th(L) with th(L) = eA(t̄h(L)) ∈ AX(L) is a Thom
structure on A.

Now we show that the assignment L 7→ c(L) described in item 2 is a Chern
structure on A. By Theorem 3.5 from [25] it suffices to check the relation c(L) =
[zA ◦ iA](th(L)), where iA : AX(L)→ A(L) is the support extension operator. To do
this, we consider the transversal diagram

L
e−−−−→ P(1⊕ L)

zA

x
xsA

X
id−−−−→ X

and the corresponding commutative diagram

A(L) eA

←−−−− A(P(1⊕ L))

z

x
xs

A(X) id←−−−− A(X).

Since e ◦ z = s, one gets the relation

zA(trz(1)) = sA(trs(1)).

If īA : AP(1)(P(1⊕ L))→ A(P(1⊕ L)) is the support extension operator, then the
chain of relations

c(L) = zA(trz(1)) = sA(trs(1))

= zA[eA(̄iA(t̄h(L)))]

= zA[iA(eA(t̄h(L)))]

= [zA ◦ iA](th(L))

proves the required relation c(L) = [zA ◦ iA](th(L)). Thus the assignment L 7→ c(L)
is a Chern structure. Moreover, the Thom structure L 7→ th(L) corresponds to the
Chern structure in the sense of [25, Th. 3.5]. The last chain of relations shows as well
that we have the following relation:

c(L) = zA(trz(1)) = sA(trs(1)). (15)

Let ω be the orientation on A corresponding to the Chern structure L 7→ c(L) by
Theorem 3.35 from [25]. We claim that this orientation is the required one. First of
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all the Chern structure L 7→ c(L) corresponds to the orientation ω by Theorem 3.36
from [25].

To check that the trace structure f 7→ trf respects the orientation ω recall that
the assignment L 7→ zA(trz(1)) is the Euler structure on A associated with the trace
structure f 7→ trf [27, 1.1.4]. The relations c(L) = zA(trz(1)) show that it coincides
with the Chern structure L 7→ c(L). The projective bundle theorem [25, Th. 3.9]
states that the trace structure f 7→ trf is perfect in the sense of [27, Def. 1.1.6]. Now
the relation (14) holds by [27, Theorem 1.1.8] and thus the trace structure f 7→ trf

respects the orientation ω. The proof of item 2 is complete.

2.2. Trace operators for closed imbedding
Let A be a ring cohomology theory endowed with an orientation ω and with the

Chern structure L 7→ c(L) which corresponds by [25, Th. 3.36] to ω. Below we give
a construction of trace operators for closed imbeddings. The trace operator to be
constructed for a closed imbedding i will be temporarily (until 2.12) denoted by igys.
The deformation to the normal cone construction (see 1.2.1) plays an important role
here (the deformation to the normal cone construction is a perfect substitute for the
tubular neighborhood in differential topology).

For a closed imbedding i : Y ↪→ X of smooth varieties, define an operator

ith : A(Y )→ AY (X) (16)

as the composition ith : A(Y )
thN

Y−−→ AY (N)
(iA

0 )−1

−−−−→ AY×A1(Xt)
iA
1−→ AY (X), where the

notation for N = NX/Y , iA0 and iA1 is taken from (1.2) and thN
Y is the Thom oper-

ator corresponding to the orientation ω by (Definition 1.9). The operator ith is an
isomorphism (see 1.11). Define the Gysin operator

igys : A(Y )→ A(X) (17)

as the composition igys : A(Y ) ith−−→ AY (X)
jA

−−→ A(X), where jA is the support exten-
sion operator for the pair (X, X − Y ) (see 1.1).

It will be checked below that the operator igys : A(Y )→ A(X) is a two-sided A(X)-
module homomorphism. In particular the composite operator

igys ◦ iA : A(X)→ A(X)

coincides with the operator given by the cup-product with the element igys(1):

igys ◦ iA = ∪igys(1). (18)

The following properties of the Gysin operators will be proved below before The-
orem 2.12 and are useful when proving this theorem:

1. Composition property: One has

igys ◦ jgys = (i ◦ j)gys (19)

for the closed imbedding Z
j

↪→ Y
i

↪→ X of smooth varieties.

2. Base change for Gysin operator: The Gysin operators commute with a
transversal base change; i.e., for a transversal square from Definition 2.1 the
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following diagram commutes:

A(Ỹ )
ĩgys−−−−→ A(X̃)

ϕ̃A

x ϕA

x

A(Y )
igys−−−−→ A(X),

(20)

3. Additivity: Let j1 and j2 be the natural imbeddings of smooth varieties Y1

and Y2 to Y = Y1 q Y2. For a closed imbedding i : Y ↪→ X one has

igys = (i1)gys ◦ jA
1 + (i2)gys ◦ jA

2 , (21)

where ir is the composition i ◦ jr.
4. Identity to identity: For any smooth variety X one has

(idX)gys = idA(X). (22)

5. Gysin sequence exact: For any closed imbedding of smooth varieties
i : Y ↪→ X and the inclusion k : X − Y ↪→ X, the sequence

A(Y )
igys−−→ A(X) kA

−−→ A(X − Y ) (23)

is exact. This sequence is often called the Gysin sequence below in the text.
6. Smooth divisor case: For a smooth divisor i : D ↪→ X one has

igys(1) = c(L(D)) (24)

in A(X) (see 1.1 for notation). There are more properties of the Gysin opera-
tors which are useful themselves and are useful in proving some of the properties
listed above. Recall that A is endowed with the Chern structure L 7→ c(L) cor-
responding to the orientation ω by [25, Th. 3.36] and with the corresponding
higher Chern classes (see [25, Th. 3.27]).

2.2.1.
Let E be a rank n vector bundle over a smooth Y and let s : Y → P(1⊕ E) be
the section of the projective bundle p : P(1⊕ E)→ Y identifying Y with the closed
subvariety P(1) in P(1⊕ E). Then one has

sgys = ∪ t̄h(E) ◦ pA, (25)

where t̄h(E) = cn(p∗(E)⊗ OE(1)).

2.2.2.
Let z : Y → E be the zero section of a vector bundle E/Y . Then the operator zth

coincides with the Thom operator thE
Y .

2.2.3.
Let F/Y be a rank m vector bundle and let s : Y → P(F ) be a section of the natural
projection p : P(F )→ Y . Consider the natural inclusion OF (−1)→ p∗(F ) and let Q
be the factor-bundle p∗(F )/OF (−1). In A(P(F )) one has

sgys(1) = cn−1(OF (1)⊗ p∗s∗Q). (26)
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2.3. Trace operators for the projection X ×Pn → X

Let A be a ring cohomology theory endowed with an orientation ω and therefore
endowed with the corresponding Chern structure [25, Thms. 3.35, 3.36] and with the
corresponding higher Chern classes [25, Th. 3.27]. Below we give a construction of
trace operators for projections. As above, Ā = Aev(pt) is the subring of all the even
degree elements in A(pt).

We give two alternative ways to construct push-forwards for the projections. The
first way is based on the fact that the cobordism ring Ω is the coefficient ring of a
universal formal group law. The second way uses no complicated facts and is based on
residue theory. The push-forward to be constructed for the projection p : X ×Pn →
X will be temporarily (until 2.12) denoted by pquil.

2.3.1. Ω-approach
Consider complex cobordism theory Ω(∗) and the formal group law FΩ (see Exam-
ple 1.4.1) associated with this theory and its canonical Chern class for line bundles
(the Conner-Floyd class) [6]. This law is defined over the ring Ω = Ω(pt). According
to a theorem of Quillen ([33, Th. 2]), FΩ is a universal commutative formal group law
in one variable. This means that for any commutative ring R and any commutative
formal group law in one variable F over R, there exists a unique ring homomorphism
lF : Ω→ R such that the coefficients of F coincide with the lF -images of the corre-
sponding coefficients of FΩ. For the theory A endowed with the orientation ω, denote
by

lω : Ω→ Ā (27)

the homomorphism lF , where F = Fω is the formal group law associated with the
orientation ω on A (see Definition 1.17), and set [Pn]ω = lω([CPn]), where [CPn] is
the class of CPn in Ω.

For the projection p : X ×Pn → X, define the operator

pquil : A(X ×Pn)→ A(X) (28)

as follows. Identify A(X ×Pn) with A(X)[t]/(tn+1) taking t to the element ζ =
c1(O(1)) (see [25, Th. 3.9]), consider the structural morphism f : X → pt and set
pquil to be the unique two-sided A(X)-module operator which takes the element ti to
the element fA([Pn−i]ω) ∈ A(X) for i = 0, 1, . . . , n.

By the very construction, the operator pquil : A(X ×Pn)→ A(X) is a two-sided
A(X)-module homomorphism. In particular, the composite operator

pquil ◦ pA : A(X)→ A(X)

coincides with the operator given by the cup-product with the element pgys(1):

pquil ◦ pA = ∪pquil(1) = ∪fA([Pn−i]ω). (29)

The following properties of the operator pquil can be proved before Theorem 2.12
and are useful when proving this theorem:
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1. Composition property: The following diagram commutes:

A(X ×Pn ×Pm)
(p̃n)quil−−−−−→ A(X ×Pm)

(p̃m)quil

y
y(pm)quil

A(X ×Pn)
(pn)quil−−−−−→ A(X),

where pn : X ×Pn → X, pm : X ×Pm → X, p̃n : X ×Pn ×Pm → X ×Pm

and p̃m : X ×Pn ×Pm → X ×Pn are the natural projections.

2. Base change property: Let ϕ : Y → X be a morphism of smooth varieties and
let ϕ̃ be the base change of ϕ by the natural projection pX : X ×Pn → X. Then
one has the relation (pY )quil ◦ ϕ̃A = ϕA ◦ (pX)quil, where pY : Y ×Pn → Y is
the natural projection.

3. Compatibility with linear imbedding: For a linear imbedding i : Pn → Pm,
the following diagram commutes:

A(X ×Pn)
igys−−−−→ A(X ×Pm)

(pn)quil

y
y(pm)quil

A(X) id−−−−→ A(X),

where pn : X ×Pn → X and pm : X ×Pm → X are the natural projections.

4. Compatibility with Gysin operators: For a closed imbedding of smooth
varieties i : Y ↪→ X, the following diagram commutes:

A(Y ×Pn)
(i×id)gys−−−−−−→ A(X ×Pn)

(pY )quil

y
y(pX)quil

A(Y )
igys−−−−→ A(X),

where pX : X ×Pn → X and pY : Y ×Pn → Y are the natural projections.

5. Compatibility with a section of trivial projective bundles: For a sec-
tion s : X → X ×Pn of the projection p : X ×Pn → X, one has pquil ◦ sgys =
idA(X).

2.3.2. Approach by means of residues

Here we sketch another way to construct push-forwards for the projections. This way
is based on elementary residue theory and uses no complicated facts. Thus it could be
applied in a more general situation. Recall that for a commutative ring R and the ring
of formal power series R[[t]] in one variable t, the ring of Laurent formal power series
is defined as the localization of R[[t]] at the element t: R((t)) = R[[t]]t. Let ΩR[t]/R be
the module of Kähler differentials of R[t] over R. Set Ωcont = ΩR[t]/R ⊗R[t] R[[t]] and
Ωmer = ΩR[t]/R ⊗R[t] R((t)). Since ΩR[t]/R is a rank-one free R[t]-module generated
by the differential form dt, we see that Ωcont (respectively Ωmer) is a rank-one free
R[[t]]-module (respectively a rank-one free R((t))-module) generated by dt. Thus
each element of Ωmer can be uniquely written in the form Σ∞n=−Nantndt for certain
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elements an ∈ R. The residue operator on Ωmer is defined as an operator

Rest=0 : Ωmer → R (30)

which takes a form Σ∞n=−Nantndt ∈ Ωmer to the element a−1 ∈ R. Let ωinv ∈ Ωcont be
the unique normalized FA-invariant differential form (see ([11])). Define the element

[Pn]ω ∈ Ā (31)

as the coefficient at tndt in ωinv(t) of the form ωinv. For the projection p : Pn ×X →
X, we define an operator

pquil : A(Pn ×X) = A(X)[ζ]/(ζn+1)→ A(X) (32)

as the unique two-sided A(X)-module operator such that pquil(ζr) = [Pn−r]ω for each
r = 0, 1, . . . , n. Using the residue operator (30) one can rewrite the operator pquil for
the projection p : Pn ×X → X as follows:

pquil(a) = Rest=0(
h

tn+1
ωinv), (33)

where for an element a ∈ A(Pn ×X) we choose h(t) ∈ A(X)[[t]] to be an arbitrary
formal power series with h(ζ) = a ∈ A(Pn ×X) and as above ζ = c1(O(1)) ∈ A(Pn).
Defined either by (32) or equivalently by (33) the operators pquil are two-sided A(X)-
module operators.

The operators pquil defined by (28) and (33) coincide because, by a theorem of
Mischenko [24], the unique normalized FΩ-invariant differential form coincides with
the form Σ∞n=1[P

n]Ωtndt (it is just the differential form d logΩ).
The operators pquil satisfy properties 1–5 listed above. This is proved in Subsec-

tions 2.5 and 2.6 below in the text. Moreover, the proofs of properties 1–4 in the case
of the residue approach are just the same as the proof of these properties in the case
of the Ω-approach (and do not involve cobordism).

However, if we take (33) as the definition of Quillen’s operators, then the proof of
property 5 is different from the proof of this property in the case of the Ω approach;
in fact it is purely algebraic and shorter (see the proof of Proposition 2.10).

Remark 2.6. One concludes this subsection with the following observation: if E∨ =
⊕Li is the direct sum of line bundles, then one has (compare with [33, Th. 1])

qE =
d∏

i=1

(t−F λi), (34)

where rkE = d, λi = c1(Li).

This relation can be proved but we skip this proof because this observation is never
used in this text.

2.4. Proofs of properties of the Gysin maps
2.4.1. Identity to identity
The relation (22) is obvious because in this case Y = X and Xt = Y ×A1 and N = Y
and thN

Y = id: A(Y )→ A(X).
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2.4.2. Gysin sequence exact
This is clear, because the localization sequence

AY (X)
jA

−−→ A(X) kA

−−→ A(X − Y )

for the pair (X, X − Y ) is exact and the operator ith : A(Y )→ AY (X) is an isomor-
phism and igys = jA ◦ ith.

2.4.3. Two-sided projection formula
In the deformation to the normal cone diagram from Subsection 1.2.1 all morphisms
are morphisms over X. Thus igys is a two-sided A(X)-module operator.

2.4.4. Base change for Gysin property
The base change property for the Gysin maps igys follows from the one for the Thom
maps ith. We will prove it now.

Let N = NX/Y and Ñ = NX̃/Ỹ . Since the square from 2.1 is transversal, the canon-
ical map Ỹ ×Y N → Ñ is an isomorphism. We will identify Ỹ ×Y N and Ñ by means
of this isomorphism and write Φ: Ỹ ×Y N → N for the projection. The functoriality
of the Thom class shows that ΦA(th(N)) = th(Ñ). Therefore the diagram

A(Ỹ )
∪ th(Ñ)−−−−−→ AỸ (Ñ)

ϕ̃A

x ΦA

x

A(Y )
∪ th(N)−−−−−→ AY (N)

(35)

commutes. Since the square from 2.1 is transversal, the map

φ× id : X̃ ×A1 → X ×A1

gives rise to a commutative diagram

Ỹ
z̃−−−−→ Ñ

ĩ0−−−−→ X̃t
ĩ1←−−−− X̃

ϕ̃

y Φ

y ϕt

y ϕ

y
Y

z−−−−→ N
i0−−−−→ Xt

i1←−−−− X

in which the rows coincide with the deformation to the normal cone diagrams for
the pairs (X̃, Ỹ ) and (X, Y ). The commutativity of the last diagram shows that the
diagram consisting of pull-back operators commutes

AỸ (Ñ)
ĩA
0←−−−− AỸ×A1(X̃t)

ĩA
1−−−−→ AỸ (X̃)

ΦA

x ϕA
t

x ϕA

x

AY (N)
iA
0←−−−− AY×A1(Xt)

iA
1−−−−→ AY (X).

Gluing this diagram with the commutative diagram (35), we get the commutativity
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of the diagram

A(Ỹ ) ĩth−−−−→ AỸ (X̃)

ϕ̃A

x ϕA

x
A(Y ) ith−−−−→ AY (X).

The commutativity of the diagram (20) is proved. Property 2 of the Gysin operators
follows.

2.4.5. Proof of property 2.2.2
We consider here the zero section z : Y → E of a constant rank n vector bundle E
and prove the relation zth = thE

Y . It suffices to prove that the composition

AY (E)
(iA

0 )−1

// AY×A1(Et)
iA
1 // AY (E)

is the identity map. For that we construct a morphism q : Et → E such that

• the map q makes Et into a line bundle over E,

• q ◦ i1 = id,

• q ◦ i0 = id, and

• q−1(Y ) = it(Y ×A1) in Et,

where it : Y ×A1 ↪→ Et is the imbedding from the deformation to the normal cone
construction (Subsection 1.2.1).

In this case one gets q−1(Y ) = it(Y ×A1) ⊂ Et. Therefore the relations iA0 =
(qA)−1 = iA1 hold by the strong homotopy invariance property (see [25, 2.2.6]) and
we are done. It remains to construct the desired morphism q : Et → E.

Let F/Y be a vector bundle and let F ′ be the blow-up of F at the zero section.
The variety F ′ coincides with the total space of the line bundle OF (−1) over P(F ).
Let qF : F ′ → P(F ) be the projection of the line bundle to its base P(F ).

If F = E ⊕ 1 for a vector bundle E over Y , then one has the following commutative
diagram:

E′ −−−−→ F ′ ←−−−− F ′ − E′ = Et ←−−−− P(1)×A1 = Y ×A1

qE

y qF

y q

y pr

y
P(E) −−−−→ P(F ) ←−−−− P(F )−P(E) = E ←−−−− P(1) = Y

in which all the vertical arrows are the projections of the line bundles to their bases.
The projection q has two sections s0 and s1. The section s0 is the zero section and

the section s1 is given by x 7→ (x, 1).
Observe that the variety P(F )−P(E) coincides with E, the variety Et coin-

cides with the variety F ′ − E′, and the imbedding i1 : E ↪→ Et coincides with the
section s1 : E ↪→ F ′ − E′. The normal bundle N = NE/Y to Y in E coincides with
the bundle E itself and the imbedding i0 : N ↪→ Et coincides with the section
s0 : E ↪→ F ′ − E′. Finally, the variety Y ×A1 coincides with P(1)×A1 and the
imbedding Y ×A1 ↪→ Et coincides with the imbedding P(1)×A1 ↪→ F ′ − E′.
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Thus the map q : Et → E makes Et into a line bundle over E and satisfies the
relations q ◦ i0 = id = q ◦ i1 and q−1(Y ) = it(Y ×A1). Thus q is the desired map.
The property is proved.

2.4.6. Proof of the relation (25)
Since both sides of the relation (25) are A(Y )-linear, it suffices to check the relation
sth(1) = cn(OF (1)⊗ p∗(E)). Set F = 1⊕ E. Take the zero section z of the vector
bundle E and the section s of the projective bundle P(F ) which identifies Y with the
closed subvariety P(1) in P(F ), and consider the commutative diagram

A(Y ) sth−−−−→ AP(1)(P(F ))

id

y
yeA

A(Y ) zth−−−−→ AY (E),

where e : E → P(1⊕ E) = P(F ) is the open imbedding. As was already proved,
zth = ∪ th(E) and therefore zth(1) = th(E) in AY (E). By the very definition of the
Thom class, one has th(E) = eA(cn(OF (1)⊗ p∗(E))). Since the map eA is an iso-
morphism, one gets the desired relation sth(1) = cn(OF (1)⊗ p∗(E)). The property is
proved.

2.4.7. Section of a projective bundle (26)
Let F/Y be a rank m vector bundle and let s : Y → P(F ) be a section of the natural
projection p : P(F )→ Y . Consider the natural inclusion OF (−1)→ p∗(F ), and let
QF be the factor-bundle p∗(F )/OF (−1) and EF = s∗(QF ). We have to prove the
relation sgys(1) = cm−1(OF (1)⊗ p∗(EF )) in A(P(F )).

Set LF = s∗(OF (−1)). Then one has the obvious exact sequence of vector bundles
on X

0→ LF → F → EF → 0.

If M is a line bundle over X, then replacing F by F ⊗M changes neither P(F ) nor the
vector bundle OF (1)⊗ p∗(EF ). Thus one may assume that LF = 1. Write in that case
E for EF . Note that the above short exact sequence becomes 0→ 1→ F → E → 0.

By the splitting principle [25, Lem. 3.24] we may assume further that F = 1⊕ E.
In this case, the relation sgys(1) = cm−1(OF (1)⊗ p∗(E)) is just the relation (25) which
is proved just above (n = m− 1). The relation (26) is proved.

2.4.8. Proof of the relation (24).
For a smooth divisor i : D ↪→ X one has to check the relation igys(1) = c(L(D)) in
A(X) (see 1.1 for notation). For that consider the commutative diagram

P(1⊕N)
j0−−−−→ X ′

t
j1←−−−− X

s

x It

x
xi

D
k0−−−−→ D ×A1 k1←−−−− D,
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from 1.2.3. Since both squares in this diagram are transversal the following diagram
commutes

A(P(1⊕N))
jA
0←−−−− A(X ′

t)
jA
1−−−−→ A(X)

sgys

x (It)gys

x
xigys

A(D)
kA
0←−−−− A(D ×A1)

kA
1−−−−→ A(D).

Now consider the line bundle Lt = L(D ×A1) over X ′
t (see the notation in 1.1). One

can show that its restriction j∗1 (Lt) to X is isomorphic to L(D). Therefore one has
the relation jA

1 (c(Lt)) = c(L(D)) in A(X). These show that it remains to check the
relation

c(Lt) = (It)gys(1) (36)

in A(X ′
t). To do this, consider once more the line bundle Lt and note that its restric-

tion j∗0 (Lt) to P(1⊕N) is isomorphic to the line bundle O1⊕N (1)⊗ p∗(N). Therefore,

jA
0 (c(Lt)) = c(O1⊕N (1)⊗ p∗(N))

in A(P(1⊕N)). By (25) one has c(O1⊕N (1)⊗ p∗(N)) = sgys(1) in A(P(1⊕N)). Now
the chain of relations in A(P(1⊕N))

jA
0 (c(Lt)) = c(O1⊕N (1)⊗ p∗(N)) = sgys(1) = sgys(kA

0 (1)) = jA
0 ((It)gys(1))

proves that jA
0 (c(Lt)) = jA

0 ((It)gys(1)). Both elements c(Lt) and (It)gys(1) vanish
when restricted to the open subset Vt = X ′ −D ×A1. In fact, this is clear for the
element c(Lt) and this holds for the element (It)gys(1) because the sequence (23) is
a complex. So the relation (36) follows from Corollary 1.14.

The proof of the relation igys(1) = c(L(D)) in A(X) is complete.

2.4.9. Proof of the additivity property (21)
The proof of this property will be given just after three preliminary Lemmas 2.7, 2.8
and 2.9. We begin with the following particular case.

Lemma 2.7. Let s = s1 q s2 : S = S1 q S2 ↪→ T1 q T2 = T be a closed imbedding of
smooth varieties. Let im : S1 ↪→ S and jm : Tm ↪→ T be the open inclusions and let
rm = jm ◦ sm : Sm ↪→ T . Then

sgys = (r1)gys ◦ iA1 + (r2)gys ◦ iA2 .

To prove this lemma consider the isomorphism (jA
1 , jA

2 ) : A(T )→ A(T1)⊕A(T2).
To prove the lemma it suffices to check the following relations:

jA
1 ◦ sgys = jA

1 ◦ (r1)gys ◦ iA1 + jA
1 ◦ (r2)gys ◦ iA2 (37)

jA
2 ◦ sgys = jA

2 ◦ (r1)gys ◦ iA1 + jA
2 ◦ (r2)gys ◦ iA2 . (38)

The transversal square

T1
j1−−−−→ T

s1

x
xs

S1
i1−−−−→ S
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proves the relation jA
1 ◦ sgys = (s1)gys ◦ iA1 . The transversal square

T1
j1−−−−→ T

s1

x
xr1

S1
id−−−−→ S1

proves the relation jA
1 ◦ (r1)gys = (s1)gys. The transversal square

T1
j1−−−−→ Tx

xr2

∅ −−−−→ S2

proves the relation jA
1 ◦ (r2)gys = 0.

Now combining the last three relations one gets the chain of relations

jA
1 ◦ (r1)gys ◦ iA1 + jA

1 ◦ (r2)gys ◦ iA2 = (s1)gys ◦ iA1 = jA
1 ◦ sgys,

which proves the relation (37). The relation (38) is proved in a similar way. The
lemma is proved.

Now suppose we are given varieties V and U = U1 q U2 and a transversal square
of the form

T1 q T2
v−−−−→ V

s=s1qs2

x
xt

S1 q S2
u=u1qu2−−−−−−→ U1 q U2.

Lemma 2.8. Let km : Um ↪→ U be the open inclusion and let tm = t ◦ km : Um ↪→ V .
Then

vA ◦ tgys = vA ◦ [(t1)gys ◦ kA
1 + (t2)gys ◦ kA

2 ].

To prove this lemma observe that the following squares are transversal (m = 1, 2):

T1 q T2
v−−−−→ V

rm

x
xtm

Sm
um−−−−→ Um.

Thus vA ◦ (tm)gys = (rm)gys ◦ uA
m for m = 1, 2 and one gets the following chain of

relations using Lemma 2.7 in the last step:

vA ◦ [(t1)gys ◦ kA
1 + (t2)gys ◦ kA

2 ] = (r1)gys ◦ uA
1 ◦ kA

1 + (r2)gys ◦ uA
2 ◦ kA

2

= (r1)gys ◦ iA1 ◦ uA + (r2)gys ◦ iA2 ◦ uA

= sgys ◦ uA.

Finally, sgys ◦ uA = vA ◦ tgys by the transversality of the diagram considered in the
lemma. The lemma follows.
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Now consider the deformation to the normal cone diagram from Subsection 1.2.1:

P(1⊕N)
j0−−−−→ X ′

t
j1←−−−− X

s

x it

x
xi

Y
k0−−−−→ Y ×A1 k1←−−−− Y.

Since Y = Y1 q Y2, one sees that

Y ×A1 = Y1 ×A1 q Y2 ×A1 and P(1⊕N) = P(1⊕N1)qP(1⊕N2),

where Ni is the normal bundle of X to Yi. Let lm : Ym ×A1 ↪→ Y ×A1 be the inclu-
sion for m = 1, 2 and let imt = it ◦ lm. Since the left-hand side square in the very last
diagram is transversal, Lemma 2.8 gives the following relation:

jA
0 ◦ (it)gys = jA

0 ◦ [(i1t )gys ◦ lA1 + (i2t )gys ◦ lA2 ]. (39)

To complete the proof of the proposition we need the following.

Lemma 2.9. Let jt : X ′
t − Y ×A1 ↪→ X ′

t be the open inclusion. Then jA
t ◦ (it)gys = 0

and jA
t ◦ (imt )gys = 0 for m = 1, 2.

In fact, the first relation follows from the localization property 2.2. The remaining
relations for m = 1, 2 follow from the first one because (imt )gys = (it)gys ◦ (lm)gys.

By this lemma, jA
t ◦ [(it)gys − (i1t )gys ◦ lA1 − (i2t )gys ◦ lA2 ] = 0. By relation (39), one

has the relation jA
0 ◦ [(it)gys − (i1t )gys ◦ lA1 − (i2t )gys ◦ lA2 ] = 0. Thus

[(it)gys − (i1t )gys ◦ lA1 − (i2t )gys ◦ lA2 ] = 0

by Corollary 1.14 and

(it)gys = (i1t )gys ◦ lA1 + (i2t )gys ◦ lA2 .

Since the right-hand side square from the very last diagram is transversal, one gets
the relation

jA
1 ◦ (it)gys = igys ◦ kA

1 .

Since k1 = k11 q k12 : Y1 q Y2 ↪→ Y1 ×A1 q Y2 ×A1, the squares

X ′
t

j1←−−−− X

i
(m)
t

x
xim

Ym ×A1 k1m←−−−− Ym

are transversal. Thus one has the relations

jA
1 ◦ (imt )gys = (im)gys ◦ kA

1m

for m = 1, 2.
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Recall that um : Ym ↪→ Y for m = 1, 2 are the inclusions and im = i ◦ um. Com-
bining the last relations, one gets a chain of relations

igys ◦ kA
1 = jA

1 ◦ (it)gys = jA
1 ◦ [(i1t )gys ◦ lA1 + (i2t )gys ◦ lA2 ]

= (i1)gys ◦ kA
11 ◦ lA1 + (i2)gys ◦ kA

12 ◦ lA2

= (i1)gys ◦ uA
1 ◦ kA

1 + (i2)gys ◦ uA
2 ◦ kA

1 ,

which proves the following one:

igys ◦ kA
1 = [(i1)gys ◦ uA

1 + (i2)gys ◦ uA
2 ] ◦ kA

1 .

Since the operator kA
1 is an isomorphism the additivity relation (21) follows.

2.4.10. Proof of the relation (19)

We begin by proving the following generalization of the relation (24). Namely, let
Y = ∩n

i=1Di be a transversal intersection of n smooth divisors Dr (r = 1, 2, . . . , n) in
X. Writing i : Y ↪→ X for the closed imbedding, one has

igys(1) = cn(⊕n
r=1Lr), (40)

where Lr = L(Dr) for (r = 1, 2, . . . , n). To prove this relation consider the commuta-
tive diagram

P(1⊕N)
j0−−−−→ X ′

t
j1←−−−− X

s

x It

x
xi

Y
k0−−−−→ Y ×A1 k1←−−−− Y

from 1.2.3 for the imbedding i : Y ↪→ X. Observe that the normal bundle N = NX/Y

to Y in X is the direct sum of the line bundles Lr|Y . Let (Dr)′t be the proper
preimage of the divisor Dr ×A1 under the blow-up map σ : X ′

t → X ×A1. Clearly
the subvariety Y ×A1 in X ′

t is a complete intersection of the smooth divisors (Dr)′t.
Furthermore, the divisor (Dr)′t intersects the divisor P(1⊕N) transversally in X ′

t

and their intersection coincides with the smooth divisor Pr = P(1⊕ Er) in P(1⊕N),
where Er is a direct summand of N which is the direct sum of all Ls|Y except for
Lr|Y . Clearly the line bundle L(Pr) on P(1⊕N) is isomorphic to the line bundle
p∗(Lr|Y )⊗ O1⊕N (1). Thus cn(p∗(N)⊗ O1⊕N (1)) coincides with the cup-product of
classes c1(p∗(Lr|Y )⊗ O1⊕N (1)).

Now consider the line bundle (Lr)t = L((Dr)′t) over X ′
t (see the notation in 1.1).

The line bundle j∗0 ((Lr)t) over P(1⊕N) is isomorphic to the line bundle L(Pr)
and thus it is isomorphic to the line bundle O1⊕N (1)⊗ p∗(Lr|Y ). The line bundle
j∗1 ((Lr)t) over X is isomorphic to Lr. Therefore one has the relation jA

0 (c1((Lr)t)) =
c1(O1⊕N (1)⊗ p∗(Lr|Y )) in A(P(1⊕N)) and the relation jA

1 (c1((Lr)t)) = c1(Lr) in
A(X). Recall that by (25) sgys(1) = cn(O1⊕N (1)⊗ p∗(N) and thus

sgys(1) = ∪n
r=1c1(O1⊕N (1)⊗ p∗(Lr|Y )).
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As an intermediate step in the proof of the relation (40) we need to check the
relation

∪n
r=1c1((Lr)t) = Igys(1) (41)

in A(X ′
t).

To prove this relation observe that both elements vanish when restricted to the
open subset Vt = X ′

t − Y ×A1. In fact, for every integer r, the class c1((Lr)t) van-
ishes on the complement to the divisor (Dr)′t and thus this class comes from the
group A(Dr)′t(X

′
t) via the support extension operator. Therefore the cup-product of

the elements c1((Lr)t) comes from the group AY×A1(X ′
t) via the support extension

operator. Whence this cup-product vanishes on Vt. The element (It)gys(1) comes from
the group AY×A1(X ′

t) via the support extension operator by the very definition of
the Gysin operator. Therefore both elements ∪n

r=1c1((Lr)t) and (It)gys(1) vanish on
Vt by the localization property 1.1. Now the relation (41) is proved as follows. The
chain of relations in A(P(1⊕N))

jA
0 (∪n

r=1c1((Lr)t)) = ∪n
r=1c1(O1⊕N (1)⊗ p∗(Lr|Y ))

= sgys(1) = sgys(kA
0 (1)) = jA

0 ((It)gys(1))

proves that jA
0 (∪n

r=1c1((Lr)t)) = jA
0 ((It)gys(1)). Since both elements ∪n

r=1c1((Lr)t)
and (It)gys(1) vanish when restricted to the open subset Vt, the relation (41) follows
from Corollary 1.14. The chain of relations in A(X)

∪n
r=1c1(Lr) = jA

1 (∪n
r=1c1((Lr)t)) = jA

1 ((It)gys(1)) = igys(kA
0 (1)) = igys(1)

completes the proof of the relation (40).
The next step in the proof of the composition property is to prove the follow-

ing relation. Let Y be a smooth variety and let N ⊂M be an imbedding of vector
bundles on Y such that the quotient F := M/N is a vector bundle as well. Suppose
F is of a constant rank, say d. Let l : P(1⊕N) ↪→ P(1⊕M) be the obvious closed
imbedding and let p : P(1⊕M)→ Y be the projection. Then in A(P(1⊕M)) one
has the relation

lgys(1) = cd(p∗(F )⊗ O1⊕M (1)). (42)

In fact, by the splitting principle [25, Lemma 3.24], we may assume that the vec-
tor bundle F splits into a direct sum of line bundles F = ⊕m

r=1Lr. Let Fr be a di-
rect summand of F which is the direct sum of all line bundles Ls except for Lr.
Let Mr ⊂M be the preimage of Fr under the canonical projection M → F . Let
Dr = P(1⊕Mr) be the divisor on P(1⊕M). Clearly the subvariety P(1⊕N) in
P(1⊕M) is the transversal intersection of the smooth divisors Dr. Furthermore, the
line bundle L(Dr) on P(1⊕M) is isomorphic to the line bundle p∗(Lr)⊗ O1⊕M (1).
The relation (40) shows that one has a chain of relations in A(P(1⊕M))

lgys(1) = ∪d
r=1c1(L(Dr)) = ∪d

r=1c1(p∗(Lr)⊗ O1⊕M (1))

= cd((⊕d
r=1p

∗(Lr))⊗ O1⊕M (1)) = cd(p∗(F )⊗ O1⊕M (1)).

The relation (42) is proved.
Now we are ready to prove the composition property in one particular case. Let
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sN : Y → P(1⊕N) be the section of the projective bundle pN : P(1⊕N)→ Y iden-
tifying Y with the closed subvariety P(1). Let s = l ◦ sE : Y → P(1⊕M). Clearly s is
a section of the projection p : P(1⊕M)→ Y identifying Y with the closed subvariety
P(1). Assume that the variety Y is irreducible. We claim that

sgys = lgys ◦ (sN )gys. (43)

In fact, both sides are two-sided A(Y )-module operators. Thus to prove this relation
it suffices to prove that sgys(1) = lgys(sN )gys(1). Since Y is irreducible, all vector
bundles on Y are of constant rank. Let n = rk(N). The relations (25) and (42) give
rise to a chain of relations in A(P(1⊕M))

lgys[(sN )gys(1)] = lgys[cn(p∗N (N)⊗ O1⊕N (1))]

= lgys[lA(cn(p∗(N)⊗ O1⊕M (1)))]
= lgys(1) ∪ cn(p∗(N)⊗ O1⊕M (1))
= cd(p∗(F )⊗ O1⊕M (1)) ∪ cn(p∗(N)⊗ O1⊕M (1))
= cd+n(p∗(M)⊗ O1⊕M (1)) = sgys(1),

which proves the relation (43).
Now we are ready to prove the composition property. For that consider closed

imbedding of smooth varieties j : Z ↪→ Y and i : Y ↪→ X. By the additivity property
of the Gysin operators (21) one may assume that the variety Z is irreducible. Consider
the diagram from 1.2.3 for the closed imbedding j ◦ i : Z ↪→ X:

P(1⊕NX/Z)
j0−−−−→ X ′

t
j1←−−−− X

s

x (I◦J)t

x
xi◦j

Z
k0−−−−→ Z ×A1 k1←−−−− Z.

The proper preimage Y ′
t of Y ×A1 under the blow-up map σ : X ′

t → X ×A1 and
the projective bundle P(1⊕NY/Z) fit in this diagram making a big commutative
diagram with transversal squares

P(1⊕NX/Z) i0−−−−→ X ′
t

i1←−−−− X
xl

xlt

xi

P(1⊕NY/Z)
iY
0−−−−→ Y ′

t

iY
1←−−−− Y

xsY

xJt

xj

Z
k0−−−−→ Z ×A1 k1←−−−− Z,

in which the bottom and the middle rows form the deformation to the normal cone
diagram for the closed imbedding j : Z ↪→ Y , and l ◦ sY = s, lt ◦ Jt = (I ◦ J)t. Using
the transversality of the left-hand side squares in the last diagram, one gets a chain
of relations

(lgys ◦ (sY )gys) ◦ kA
0 = lgys ◦ (iY0 )A ◦ (Jt)gys = iA0 ◦ (lt)gys ◦ (Jt)gys
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and
sgys ◦ kA

0 = iA0 ◦ ((I ◦ J)t)gys = iA0 ◦ (lt ◦ Jt)gys.

We already proved the relation

lgys ◦ (sY )gys = sgys : A(Z)→ A(P(1⊕NX/Z)).

Thus one has the relation

iA0 ◦ [(lt ◦ Jt)gys − (lt)gys ◦ (Jt)gys] = 0.

Observe that for Vt = X ′
t − Z ×A1 and the open inclusion jt : Vt ↪→ X ′

t the composi-
tions jA

t ◦ (lt ◦ Jt)gys and jA
t ◦ (lt)gys ◦ (Jt)gys vanish. Now Corollary 1.14 implies the

relation
(lt ◦ Jt)gys − (lt)gys ◦ (Jt)gys = 0.

The transversality of the two right-hand side squares from the last diagram gives rise
to the chain of relations

(i ◦ j)gys ◦ kA
1 = iA1 ◦ (lt ◦ Jt)gys = iA1 ◦ (lt)gys ◦ (Jt)gys

= (igys ◦ (iY1 )A) ◦ (Jt)gys = igys ◦ (jgys ◦ kA
1 )

= (igys ◦ jgys) ◦ kA
1 .

The operator kA
1 is an isomorphism by the homotopy invariance property. The re-

quired relation
(i ◦ j)gys = igys ◦ jgys

follows.

2.5. Proofs of properties of Quillen’s maps (pX)quil.
In this subsection we prove the properties of Quillen’s operators stated in Sub-

section 2.3. The projection formula (29) holds by the very definition of the operator
(pX)quil. The base change property 2 is obvious.

To prove property 1 observe that all the maps in the diagram are two-sided A(X)-
module maps. Thus it suffices to check the relations

((pm)quil ◦ (p̃n)quil)(ζi
1 ⊗ ζj

2) = ((pn)quil ◦ (p̃m)quil)(ζi
1 ⊗ ζj

2),

where ζ1 ∈ A(X ×Pn ×Pm) is the pull-back of the element c1(O(1)) ∈ A(Pn) under
the projection X ×Pn ×Pm → Pn and ζ2 ∈ A(X ×Pn ×Pm) is the pull-back
of the element c1(O(1)) ∈ A(Pm) under the projection X ×Pn ×Pm → Pm. Let
f : X → pt be the structural morphism. Both sides of the relation coincide with the
element fA([Pn−i]ω ∪ [Pm−j ]ω) ∈ A(X) as follows from the projection formula (29)
and the base change property 2. Property 1 is proved.

Now we prove the linear imbedding property 3. It suffices to check the case n =
m− 1 because of the compatibility of the Gysin homomorphisms with the composition
of a closed imbedding (19). Since all of the homomorphisms in the considered diagram
are two-sided A(X)-module maps, one may assume that X = pt. Let

ζm = c1(O(1)) ∈ A(Pm) and ζn = c1(O(1)) ∈ A(Pn).

The projection formula for the Gysin maps (18) and the relation (24) prove the



386 IVAN PANIN

relations igys(ζr
n) = ζr+1

m in A(Pm). Now the chain of relations

(pm)quil(igys(ζr
n)) = (pm)quil(ζr+1

m ) = [Pm−r−1]ω = [Pn−r]ω = (pn)quil(ζr
n)

completes the proof of property 3.
Now we prove property 4. Consider the deformation to the normal cone dia-

gram 1.2.3 for the closed imbeddings i : Y ↪→ X and i : Pn × Y ↪→ Pn ×X. Glue
them together in the following diagram in which all the vertical arrows are of the
form

pquil : A(Pn × S)→ A(S)

for various varieties S:

A(Pn ×P(1⊕N))

p
P(1⊕N)
quil

²²

A(Pn ×X ′
t)

jA
1P X //

p
X′t
quil

²²

jA
0P Xoo A(Pn ×X)

pX
quil

²²
A(P(1⊕N)) A(X ′

t)
jA
1X //jA

0Xoo A(X)

A(Pn × Y )

pY
quil

²²

sP
gys

AA¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
A(Pn × Y ×A1)

IP t
gys

AA¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

kA
1P Y

//

pY t
quil

²²

kA
0P Y

oo A(Pn × Y )

iP
gys

CC̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨̈
¨̈

¨

pY
quil

²²
A(Y )

sgys

AA¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤
A(Y ×A1)

It
gys

AA¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤ kA
1Y //kA

0Yoo A(Y ).

igys

CC©©©©©©©©©©©©©©©©©©©©©©©©

What we need to prove is that the parallelogram on the right-hand side commutes;
i.e. we need to prove the relation igys ◦ pY

quil = pX
quil ◦ iPgys. We first prove that the

parallelogram on the left-hand side commutes. Then using Corollary 1.14 we check
that the parallelogram in the middle commutes. And finally we conclude that the
parallelogram on the right-hand side commutes.

We begin with recalling the following notation. For a rank n vector bundle E over
a variety S and the projective bundle p : P(1⊕ E)→ S over S, set

t̄h(E) = cn(p∗(E)⊗ OE(1)) ∈ A(P(1⊕ E)).

To check the commutativity of the left-hand parallelogram, i.e. to check the rela-
tion sgys ◦ pY

quil = p
P(1⊕N)
quil ◦ sP

gys, recall that sgys = ∪t̄h(N) ◦ (pY )A with N equal
to the normal bundle NX/Y and sP

gys = ∪t̄h(NPn×X/Pn×Y ) ◦ (idPn × pY )A. Clearly,
NPn×X/Pn×Y = (pY )∗(NX/Y ). Let q : P(1⊕N)→ Y be the projection. Then for any
a ∈ A(Pn × Y ) one has a chain of relations (here we write P for pP(1⊕N))

Pquil[(id× q)A(a) ∪ (PA(t̄h(N))] = Pquil[((id× q)A(a))] ∪ t̄h(N)

= qA(pY
quil(a)) ∪ t̄h(N),

which proves the relation sgys ◦ pY
quil = Pquil ◦ sP

gys.
Recall that It : Y ×A1 ↪→ X ′

t and IPt : Pn × Y ×A1 ↪→ Pn ×X ′
t are the closed

imbeddings for the deformation to the normal cone diagram 1.2.3 for the closed
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imbeddings Y ↪→ X and Pn × Y ↪→ Pn ×X respectively. Now we prove the relation
(It)gys ◦ pY t

quil = p
X′

t

quil ◦ IPt
gys. To do this, we first use the base change property for Gysin

and Quillen operators to get a chain of relations

iA0 ◦ (It)gys ◦ pY t
quil = sgys ◦ kA

0Y ◦ pY t
quil = sgys ◦ pY

quil ◦ kA
0PY

= Pquil ◦ sP
gys ◦ kA

0PY = Pquil ◦ jA
0PX ◦ IPt

gys

= iA0 ◦ p
X′

t

quil ◦ IPt
gys.

Let Vt = X ′
t − Y ×A1

t and jt : Vt ↪→ X ′
t be the open inclusion. Clearly,

jA
t ◦ (It)gys ◦ pY t

quil = 0 and jA
t ◦ p

X′
t

quil ◦ IPt
gys = 0.

Now Corollary 1.14 implies the relation (It)gys ◦ pY t
quil = p

X′
t

quil ◦ IPt
gys.

We are ready to prove the required relation igys ◦ pY
quil = pX

quil ◦ iPgys. To do this,
consider the closed imbeddings

j1X : X ↪→ X ′
t and j1PX : Pn ×X ↪→ Pn ×X ′

t

from the deformation to the normal cone construction 1.2.3 for the closed imbeddings
Y ↪→ X and Pn × Y ↪→ Pn ×X, respectively. Using the base change property for
Gysin and Quillen operators we get a chain of relations

igys ◦ pY
quil ◦ kA

1PY = igys ◦ kA
1Y ◦ pY t

quil

= jA
1X ◦ (It)gys ◦ pY t

quil = jA
1X ◦ p

X′
t

quil ◦ IPt
gys

= pX
quil ◦ jA

1PX ◦ IPt
gys = pX

quil ◦ iPgys ◦ kA
1PY .

The operator kA
1PY is an isomorphism by the homotopy invariance property. Thus we

get the required relation igys ◦ pY
quil = pX

quil ◦ iPgys. Property 4 is proved.
The proof of property 5 is postponed to the next subsection.

2.6. Proof of property 5 of Quillen’s operator
Let X be a smooth variety, p : X ×Pn → X be the projection and s : X → X ×Pn

be a section of the projection p. One has to prove the relation

pquil ◦ sgys = idA(X). (44)

Since both operators sgys and pquil are two-sided A(X)-module homomorphisms,
it suffices to check the relation in A(X)

pquil(sgys(1)) = 1. (45)

Since s is a section of p it has the form (idX , f) for a morphism f : X → Pn. Consider
two diagrams

Pn ×Pn f×id←−−−− X ×Pn

p1

y
yp

Pn f←−−−− X,
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and

Pn ×Pn f×id←−−−− X ×Pn

∆

x
xs

Pn f←−−−− X,

where ∆ is the diagonal imbedding. The last diagram is Cartesian and transversal.
So one has sgys ◦ fA = (f × id)A ◦∆gys. In particular, one has the relation

sgys(1) = (f × id)A(∆gys(1)). (46)

Now this relation, the base change property 3 of trace operators 2.2 and the propo-
sition stated just below give a chain of relations

pquil(sgys(1)) = pquil((f × id)A(∆gys(1))) = fA((p1)quil(∆gys(1))) = fA(1) = 1.

It remains to prove the following:

Proposition 2.10. One has the relation (p1)quil(∆gys(1)) = 1 in the group A(Pn).

Proof using the residue approach. In this proof we assume that Quillen’s operators
pquil are defined via (33). Consider a rank n vector bundle Q over Pn defined via the
short exact sequence of vector bundles 0→ O(−1)→ 1n+1 → Q→ 0. To compute
(p1)quil(∆gys(1)) in terms of (33) observe first that

∆gys(1) = cn(p∗1(O(1))⊗ p∗2(Q)) ∈ A(Pn ×Pn). (47)

In fact this is just the relation (26) for the cases Y = Pn, E = 1n+1, s = ∆, p = p1.
To proceed further one needs to find a formal power series h(t) ∈ Aev(Pn)[[t]] such
that h(ζ) = ∆gys(1), where as usual ζ = c1(O(1)) ∈ A(Pn).

For that consider the two projections

q1 : P∞ ×Pn → P∞ and q2 : P∞ ×Pn → Pn,

and the projection pr : Pn ×Pn → Pn for r = 1, 2. Set R = Aev(Pn) and identify
the formal power series in one variable R[[t]] with the ring Aev(P∞ ×Pn) taking
the variable t to the element c1(q∗1(O(1))). This identification induces a ring iso-
morphism R[[t]]/(tn+1) and Aev(Pn ×Pn) which takes the variable t to the element
c1(p∗1(O(1))). Now if i : Pn ↪→ P∞ is the inclusion then under the mentioned identifi-
cations, the ring morphism (i× id)A : Aev(P∞ ×Pn)→ Aev(Pn ×Pn) becomes the
reduction morphism R[[t]]→ R[[t]]/(tn+1). Let Fω be the formal group law associated
with the Chern structure on A and let λ = c1(O(1)) ∈ R. For brevity write t−Fω λ
for the element Fω(t, Iω(λ)) ∈ R[[t]]. If R((t)) is the localization of R[[t]] with respect
to the element t, then R[[t]] ⊂ R((t)), the element t−Fω λ is a unit in R((t)) and we
claim that

cn(q∗1(O(1)⊗ q∗2(Q))) = tn+1/(t−Fω λ) ∈ R[[t]]. (48)

This relation shows that the series h(t) = tn+1/(t−Fω λ) belongs to R[[t]]. Further-
more, since (i× id)A(cn(q∗1(O(1))⊗ q∗2(Q))) = cn(p∗1(O(1))⊗ p∗2(Q)) in A(P∞ ×Pn)
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the series h(t) satisfies the relation

h(ζ) = ∆gys(1) ∈ A(Pn ×Pn). (49)

This is the crucial point to finish the proof of the proposition but first we check the
relation (48).

For that consider the short exact sequence of vector bundles

0→ O(−1)→ 1n+1 → Q→ 0

over Pn. Then the short exact sequence of vector bundles

0→ q∗1(O(1))⊗ q∗2(O(−1))→ q∗1(O(1))⊗ q∗2(1n+1)→ q∗1(O(1))⊗ q∗2(Q)→ 0

on P∞ ×Pn and the Cartan formulae for the total Chern class give rise to the relation
in A(P∞ ×Pn)

c1(q∗1(O(1))⊗ q∗2(O(−1))) ∪ cn(q∗1(O(1))⊗ q∗2(Q)) = cn+1(q∗1(O(1))⊗ q∗2(1n+1)).

With the notation fixed above one can rewrite the last relation in terms of the formal
group law Fω and its “inverse element” Iω (see 1.17) as follows:

Fω(t, Iω(λ)) ∪ cn(q∗1(O(1))⊗ q∗2(Q)) = tn+1.

Since Fω(t, Iω(λ)) = t−Fω λ, the relation (48) is proved.
Now with the relation (49) in hand and with pquil defined via (33) one computes

(p1)quil(∆gys(1)) ∈ R as follows:

(p1)quil(∆gys(1)) = Rest=0(
h(t)
tn+1

ωinv) = Rest=0(
ωinv

t−FA
λ

) ∈ R.

So to prove the proposition it remains to prove the following

Lemma 2.11. Let S be a commutative ring, let F = F (t1, t2) ∈ S[[t1, t2]] be a com-
mutative formal group law, and let ω ∈ ΩS[t]/S ⊗S[t] S[[t]] be the unique normalized
F -invariant differential form. Let R = S[u]/(un+1) and let λ = ū ∈ R, where ū is the
element u modulo the ideal (un+1). Then one has the relation in the ring R:

1 = Rest=0(
ωinv

t−F λ
). (50)

The proof of this claim proceeds as follows. If two formal group laws F1 and F2

over S are isomorphic and the relation (50) holds for one of them, then it also holds
for the other one. It is straightforward to check the relation (50) for the case of the
additive formal group law F = t1 + t2, because in this case the normalized invariant
differential form is the form dt and t−F λ = t− λ. If S contains the field of rational
numbers Q, then F (t1, t2) is isomorphic to the additive formal group law t1 + t2. Thus
the relation (50) holds in this case for F (t1, t2). There exists a universal formal group
law Fun. It is defined over the Lazar ring L. Since the ring LQ = L⊗Z Q contains Q
the relation (50) holds for the formal group law Fun ⊗Q over the ring LQ. Since L is
a polynomial ring over Z it is contained in the ring LQ. Thus the relation (50) holds
for the formal group law Fun.

If the relation (50) holds for a formal group law F ′ over a ring S′, then for each
ring homomorphism f : S′ → S the required relation holds for the scalar extension
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F = F ′ ⊗S′ S of the formal group law F ′ by means of f . Since we already know that
the relation holds for the universal formal group law Fun, one concludes that it does
hold for the given formal group law F over the ring S from the claim. In fact, there
exists a ring homomorphism f : L→ S such that F (t1, t2) = Fun ⊗L S, where S is
considered as an L-algebra by means of f .

The claim is proved, which completes the proof of Proposition 2.10. Thus we get
a purely algebraic proof of property 5 of Quillen’s operators pquil.

Proof of Proposition 2.10 using the Ω-approach. In this proof we assume that Quil-
len’s operators pquil are defined via (28). Let Ω(∗) be complex cobordism theory (on
the category of CW-complexes). As above, let Ω = Ω(pt) be the coefficient ring of
the theory Ω(∗). If E is a complex vector bundle of rank n over a space T , then we
let cΩ

i (E) ∈ Ω2i(T ) (i = 1, . . . , n) be the Chern classes of E in the sense of Conner-
Floyd [6]. For a projective morphism f : S → T of smooth algebraic varieties, we let
fΩ : Ω(S(C))→ Ω(T (C)) be the Gysin homomorphism [34, 1.2 and 1.4] (if S and T are
irreducible of dimensions m and n respectively, then this homomorphism changes the
degree by 2(m− n)). It respects composition: if g : Q→ S is a morphism of smooth
complex algebraic varieties, then fΩ ◦ gΩ = (f ◦ g)Ω. For the identity map id: S → S,
the map idΩ is the identity. Complex cobordism theory satisfies the projective bundle
theorem: Ω[t]/(tn+1) = Ω(CPn) (here t is identified with cΩ

1 (O(1))).
Let Ā = Aev(pt) and let lω : Ω→ Ā be the ring homomorphism (27) induced by

the orientation ω on A (see 2.3.1). For a smooth variety X we will consider below in
this proof the ring Aev(X) as an Ω-algebra through the homomorphism lω.

Let lnω : Ω(CPn)→ Aev(Pn) be the only Ω-algebra homomorphism which takes the
class cΩ

1 (O(1)) to the class c1(O(1)). Then the diagram

Ω(CPn)
lnω−−−−→ Aev(Pn)

pΩ

y
ypquil

Ω lω−−−−→ Ā

commutes. In fact, one has a chain of relations (see (28) and [33])

lω(pΩ(cΩ
1 (O(1))i)) = lω([CPn−i]Ω)

= [Pn−1]ω = pquil(c1(O(1))i) = pquil(lnω(cΩ
1 (O(1))i)).

The projective bundle theorem and the projection formulas complete the proof of the
commutativity. The projective bundle theorem for complex cobordism shows that the
cup-product identifies the Ω-algebras Ω(CPn)⊗Ω Ω(CPn) and Ω(CPn × CPn). The
projective bundle theorem for the theory A shows that the cup-product identifies the
Ω-algebras Aev(Pn)⊗Ā Aev(Pn) and Aev(Pn ×Pn). Now if p1 : CPn × CPn → CPn

is the projection onto the first factor, then the diagram

Ω(CPn × CPn)
ln,n
ω−−−−→ Aev(Pn ×Pn)

(p1)Ω

y
y(p1)quil

Ω(CPn)
lnω−−−−→ Aev(Pn),
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commutes, where ln,n
ω = lnω ⊗ lnω. This is proved exactly as the commutativity of the

previous diagram using the projection formulas in both theories and the projective
bundle theorem.

Let ∆: CPn → CPn × CPn be the diagonal and let ∆: Pn → Pn ×Pn be the
diagonal as well (the same symbol is used for both imbeddings). We claim that the
following relation holds in Aev(Pn ×Pn):

ln,n
ω (∆Ω(1)) = ∆gys(1). (51)

Assuming for a moment this relation, one gets a chain of relations

1 = lnω(1) = lnω((p1)Ω(∆Ω(1))) = (p1)quil(ln,n
ω (∆Ω(1))) = (p1)quil(∆gys(1))

which proves Proposition 2.10. It remains to prove the relation (51).
For that we need the three other relations stated just below. Let Q be a rank n

vector bundle over Pn defined by the short exact sequence

0→ O(−1)→ 1n+1 → Q→ 0

and let QC be a rank n algebraic vector bundle over CPn defined by the short exact
sequence

0→ O(−1)→ Cn+1 → QC → 0.

We claim the following three relations:

∆gys(1) = cn(p∗1(O(1))⊗ p∗2(Q)) ∈ Aev(Pn ×Pn), (52)

∆Ω(1) = cΩ
n (p∗1(O(1))⊗ p∗2(QC)) ∈ Ω(CPn × CPn), (53)

ln,n
ω (cΩ

n (p∗1(O(1))⊗ p∗2(QC))) = cn(p∗1(O(1))⊗ p∗2(Q)) ∈ Aev(Pn ×Pn). (54)

Assuming for a minute the last three relations, one gets a chain of relations

∆gys(1) = cn(p∗1(O(1))⊗ p∗2(Q)) = ln,n
ω (cΩ

n (p∗1(O(1))⊗ p∗2(QC))) = ln,n
ω (∆Ω(1))

which proves the relation (51).
It remains to prove relations (52), (53), (54). The relation (52) is a particular case

of (26) which is proved in 2.4.7. In fact, take Y = Pn, E = 1n+1, s = ∆, p = p1.
Exactly the same argument works for complex cobordism Ω(∗) which proves the

relation (53).
To prove the last relation consider the line bundle O(1) over P∞ and consider on

P∞ ×Pn the short exact sequence of vector bundles

0→ q∗1(O(1))⊗ q∗2(O(−1))→ q∗1(O(1))⊗ q∗2(1n+1)→ q∗1(O(1))⊗ q∗2(Q)→ 0,

where q1 and q2 are the projections of P∞ ×Pn onto the first and the second factors,
respectively. This exact sequence and the Cartan formula for the total Chern class
gives rise to the relation in A(P∞ ×Pn)

c1(q∗1(O(1))⊗ q∗2(O(−1))) ∪ cn(q∗1(O(1))⊗ q∗2(Q)) = cn+1(q∗1(O(1))⊗ q∗2(1n+1)).

Now setting t1 = c1(q∗1(O(1))) and t2 = c1(q∗2(O(1))) one can rewrite the last relation
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in terms of the formal group law Fω and its “inverse element” Iω (see 1.17) as follows:

Fω(t1, Iω(t2)) ∪ cn(q∗1(O(1))⊗ q∗2(Q)) = tn+1
1 . (55)

Similarly one gets the following relation in Ω(CP∞ × CPn):

FΩ(tΩ1 , IΩ(tΩ2 )) ∪ cΩ
n (q∗1(O(1))⊗ q∗2(QC)) = (tΩ1 )n+1.

Here q1 and q2 are the projections of CP∞ × CPn onto the first and to the second
factors, respectively, and FΩ and IΩ are the formal group law and its “inverse element”
for complex cobordism 2.3.1. Applying the homomorphism

l∞,n
ω = l∞ω ⊗ lnω : Ω(CP∞ × CPn)→ Aev(P∞ ×Pn)

to the last relation in Ω(CP∞ × CPn), one gets in the group Aev(P∞ ×Pn) the
relation

Fω(t1, Iω(t2)) ∪ l∞,n
ω (cΩ

n (q∗1(O(1))⊗ q∗2(QC))) = tn+1
1 . (56)

Observe that the element Fω(t1, Iω(t2)) = t1 −Fω t2 is a non-zero-divisor in the ring
Aev(P∞ ×Pn) = Aev[t2][[t1]]/(tn+1

2 ). Thus the relations (55) and (56) prove that

l∞,n
ω (cΩ

n (q∗1(O(1))⊗ q∗2(QC))) = cn(q∗1(O(1))⊗ q∗2(Q)).

Now consider a commutative diagram

Ω(CP∞ × CPn)
l∞,n
ω−−−−→ A(P∞ ×Pn)

(i×id)Ω
y

y(i×id)A

Ω(CPn × CPn)
ln,n
ω−−−−→ A(Pn ×Pn)

in which the vertical arrows are the pull-backs induced by the obvious imbedding.
Since

(i× id)Ω(cΩ
n (q∗1(O(1))⊗ q∗2(QC))) = cΩ

n (p∗1(O(1))⊗ p∗2(QC))

and

(i× id)A(cn(q∗1(O(1))⊗ q∗2(Q))) = cn(p∗1(O(1))⊗ p∗2(Q)), (57)

the commutativity of the last diagram proves the desired relation (54)

ln,n
ω (cΩ

n (p∗1(O(1))⊗ p∗2(QC))) = cn(p∗1(O(1))⊗ p∗2(Q)).

Proposition 2.10 is proved.
The proof of property 5 of Quillen’s operators pquil is complete.

2.7. Construction of a trace structure
Let A be a ring cohomology theory endowed with an orientation ω and with the

Chern structure L 7→ c(L) corresponding by [25, Th. 3.36] to ω. The main aim of this
subsection is to construct a trace structure required by Theorem 2.5. We will use the
Gysin operators igys for closed imbeddings defined by (17) and the Quillen operators
pquil for projections defined by (28) or which are equivalently defined by (33).

Let f : Y → X be a projective morphism of smooth varieties. One can present
f as a composition of a closed imbedding i : Y ↪→ X ×Pn and the projection



ORIENTED COHOMOLOGY THEORIES II 393

p : X ×Pn → X; i.e. f = p ◦ i. Define now an operator trf : A(Y )→ A(X) by the
formula trf = pquil ◦ igys.

Theorem 2.12. The operator trf does not depend on the particular choice of a
decomposition of the morphism f in the form f = p ◦ i, where i : Y ↪→ X ×Pn is
a closed imbedding and p : X ×Pn → X is the projection.

Moreover, the assignment f 7→ trf is a trace structure on A required by Theo-
rem 2.5. Finally, for a closed imbedding i : S ↪→ T of smooth varieties, the operator
tri coincides with the Gysin operator igys, and for the projection p : T ×Pn → T the
operator trp coincides with the Quillen operator pquil.

Proof. For a projective morphism f : Y → X we first check that the map trf does
not depend on the particular choice of the decomposition of f .

Let f = p′ ◦ i′ be another decomposition of f , where i′ : Y ↪→ X ×Pm is a closed
imbedding and p′ : X ×Pm → X is the projection. We have to check the relation

pquil ◦ igys = p′quil ◦ i′gys. (58)

For that consider the commutative diagram

X X ×Pm
p′oo

Y
I //

f

²²

f

OO

X ×Pn ×Pm

pn

²²

pm

OO

X X ×Pn,
poo

where I is the unique imbedding such that pm ◦ I = i′ and pn ◦ I = i.
Recall that pquil ◦ pn,quil = p′quil ◦ pm,quil by property 1 from 2.3.1. Now clearly it

suffices to check two relations:

• pm,quil ◦ Igys = i′gys, and

• pn,quil ◦ Igys = igys.

Both of these relations are particular cases of the relation from the following claim.

Lemma 2.13. Consider a commutative diagram

Y
j̃−−−−→ T ×Pk

id

y
yp

Y
j−−−−→ T

with closed imbeddings j and j̃. One has the following relation: pquil ◦ j̃gys = jgys.



394 IVAN PANIN

Proof of claim. To prove this claim consider the commutative diagram

Y ×Pk J−−−−→ T ×Pk

q

y
yp

Y
j−−−−→ T

with J = j × id, and consider a section s : Y → Y ×Pk of the projection q such that
J ◦ s = j̃.

The relations j̃gys = Jgys ◦ sgys (see (19)), pquil ◦ Jgys = jgys ◦ qgys (see property 4
of 2.3.1) and qquil ◦ sgys = idA(Y ) give a chain of relations

pquil ◦ j̃gys = pquil ◦ (Jgys ◦ sgys) = (pquil ◦ Jgys) ◦ sgys

= (jgys ◦ qquil) ◦ sgys = jgys ◦ (qquil ◦ sgys) = jgys.

The claim is proved which completes the proof of the relation (58). Thus the operator
trf is well-defined.

The next goal is to prove the relation trf ◦ trg = trf◦g. For that consider the com-
mutative diagram

Z
j //

g

((PPPPPPPPPPPPPPP Y ×Pm I //

pm

²²

X ×Pn ×Pm

qn

²²
Y

i //

f
**TTTTTTTTTTTTTTTTTTTT X ×Pn

pn

²²
X

with a smooth variety Z, a closed imbedding j, a closed imbedding i with I = i× id
and the projection qn : X ×Pn ×Pm → X ×Pn.

By the very definition one has relations trf = pn,quil ◦ igys and trg = pm,quil ◦ jgys.
Thus one has a chain of relations

trf ◦ trg = pn,quil ◦ (igys ◦ pm,quil) ◦ jgys

= pn,quil ◦ (qn,quil ◦ Igys) ◦ jgys

= (pn,quil ◦ qn,quil) ◦ (I ◦ j)gys.

Now consider a closed imbedding k : Pn ×Pm ↪→ PN , the projection pN : X ×PN →
X and the commutative diagram

Z
I◦j //

f◦g
))RRRRRRRRRRRRRRRRRR X ×Pn ×Pm id×k //

pn◦qn

²²

X ×PN .

pN

ttjjjjjjjjjjjjjjjjjj

X

Since

trf◦g = pN,quil ◦ ((id× k) ◦ I ◦ j)gys = pN,quil ◦ (id× k)gys ◦ (I ◦ j)gys,

it remains to prove
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Lemma 2.14. The following relation holds:

pN,quil ◦ (id× k)gys = pn,quil ◦ qn,quil. (59)

Proof of claim. First observe that each of the homomorphisms pN,quil, (id× k)gys,
pn,quil and pm,n,quil is A(X)-linear. Thus by the projective bundle theorem it suffices
to prove the claim in the case X = pt.

First consider the projections qn : Pn ×Pm → Pn and qm : Pn ×Pm → Pm and
consider the commutative diagram

Pn ×Pm ×PN

qm,N

²²
Pn ×Pm

k2

44jjjjjjjjjjjjjjjj k1 //

k
**TTTTTTTTTTTTTTTTTT Pm ×PN

qN

²²
PN

with the obvious projections qm,N , qN and with the closed imbeddings k1 = (qm, k)
and k2 = (id, k). Claim 2.13 gives a chain of relations

kgys = qN,quil ◦ k1,gys = qN,quil ◦ qm,N,quil ◦ k2,gys. (60)

Now consider one more commutative diagram

Pn ×Pm

qm

²²

Pn ×Pm ×PN
qn,mo o

qm,N

²²
Pm

pm

²²

Pm ×PN
q̄moo

qN

²²
pt PN ,

pNoo

where q̄m is the projection. It gives rise to the chain of relations

pN,quil ◦ qN,quil ◦ qm,N,quil = pm,quil ◦ q̄m,quil ◦ qm,N,quil

= pm,quil ◦ qm,quil ◦ qn,m,quil

(61)

Thus one gets the following relation

pN,quil ◦ kgys = pm,quil ◦ qm,quil ◦ (qn,m,quil ◦ k2,gys). (62)

To complete the proof of the claim, it remains to check the relation

id = qn,m,quil ◦ k2,gys

because pm,quil ◦ qm,quil = pn,quil ◦ qn,quil by property 1 from 2.3.1.
To prove the relation id = qn,m,quil ◦ k2,gys observe that the map k2 is a section

of the projection qn,m. Therefore this relation is just a particular case of property 5
from 2.3.1.

The claim is proved. Thus we checked the relation trf◦g = trf ◦ trg. The relation
tri = igys holds for a closed imbedding i : Y ↪→ X by the very construction of the map
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tri. The relation trp = pquil holds as well by the very construction of the map trp for
the projection p : X ×Pn → X.

To complete the proof of the theorem, it remains to check properties 2–5 of the
trace structure (see Definition 2.2) and to prove the relation tri(1) = c(L(D)) for a
smooth divisor i : D ↪→ X. Property 2 coincides with property 2 from Subsection 2.2.
Property 3 coincides with property 2 of the maps pquil from 2.3.1. Property 4 is
obvious. Property 5 is obvious as well. In fact, the localization sequence

AY (X) kA

−−→ A(X)
jA

−−→ A(X − Y )

is exact (kA is the support extension operator), igys = kA ◦ ith and the operator
ith : A(Y )→ AY (X) defined by (16) is an isomorphism. The relation tri(1) = c(L(D))
in A(X) is exactly the relation (24) for the Gysin map igys which is already proved
in Subsection 2.4.

2.8. Proof of Assertions 1 and 2 of Theorem 2.5
Let A be a ring cohomology theory. Let ω be an orientation of the theory A. A trace

structure respecting the orientation ω is constructed in Theorem 2.12. The uniqueness
of a trace structure respecting the orientation ω is proved in Subsection 2.1. Assertion
1 of Theorem 2.5 is proved.

Now we prove the third assertion of the theorem. Let ω be the orientation of A from
item 1 of the theorem. Let f 7→ trf be the trace structure on A from the same item 1.
Let ω′ be the orientation of A corresponding to the trace structure by item 2 of the
theorem. The trace structure f 7→ trf respects the orientation ω and the orientation
ω′. Thus ω = ω′ by item 2 of the theorem.

Now let f 7→ trf be a trace structure on A, let ω be the orientation of A corre-
sponding to the trace structure by item (2) of the theorem, and let f 7→ trω

f be the
trace structure respecting the orientation ω as is described in item 1 of the theorem.
Both trace structures f 7→ trf and f 7→ trω

f respect the orientation ω. Hence they
coincide by item 1 of the theorem.

This completes the proof of Theorem 2.5.

2.9. Examples of trace structures
Here we consider oriented ring cohomology theories from 1.3. For each such theory

A we identify the trace structure on A given by Theorem 2.5 with a well-known trace
structure on A. In the very end of the subsection we consider motivic cohomology,
semi-topological complex and real K-theories [9], and algebraic cobordism.

2.9.1.
Algebraic K-theory can also be made to satisfy Definition 1.1. To do this, we use, for
instance, K-groups with support, Kn(X on Z) (n > 0), of [41]. So set An(X, U) =
K−n(X on Z), where Z = X − U . Further, set A(X, U) = ⊕∞n=0A

n(X,U). The defi-
nition of ∂ and the exactness of the localization sequence are contained in [41, Th.
5.1] (except for the surjectivity of the restriction A0(X)→ A0(U)). If X is quasi-
projective, then K(X on X) coincides with Quillen’s K-groups KQ

n (X), by [41, 3.9,
3.10]. This proves in particular the homotopy invariance of An(X) for smooth X.
The excision property for A follows from [41, 3.19]. It remains now to check the
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surjectivity of the restriction A0(X)→ A0(U). Clearly, A0(X) = KQ
0 (X) coincides

with the Grothendieck group of vector bundles on X. Since X is smooth, the desired
surjectivity follows from [5, §8, Prop. 7]. Thus (A, ∂) satisfies Definition 1.1.

Set AZ(X) = Aev
Z (X)⊕Aodd

Z (X), where Aev
Z (X) = ⊕+∞

p=0K
2p(X on Z), Aodd

Z (X) =
⊕+∞

p=0K
2p+1(X on Z). The idea of how to construct pairings

AZ(X)×AS(X)→ AZ∩S(X)

based on the tensor product of perfect complexes is described in [41, 3.15, (3.15.4)].
The fact that the theory A is indeed a ring cohomology theory is checked in [38,
Th. 2.1.1].

The rule L→ c(L) = [1]− [L∨] endows A with a Chern structure and thus orients
A (Property 2 of Definition 1.12 follows from [34, §8, Th. 2.1]). Let f 7→ trf be the
corresponding trace structure on A by Theorem 2.5.

The push-forwards f∗ : K∗(Y )→ K∗(X) from [41, 3.16.4] form a trace structure
on A because they satisfy conditions 1–5 of Definition 2.2. In fact, f∗ is a two-
sided K∗(X)-module map by [41, Prop. 3.17]. Condition 1 is satisfied by [41, 3.16.4].
Condition 2 is satisfied by [41, 3.18] because, for the transversal square Definition 2.1,
the morphisms ϕ and i are Tor-independent over X. Condition 3 is also satisfied
by [41, 3.18] because the projection pX is flat. Clearly condition 4 is satisfied. Finally,
condition 5 is satisfied by [41, 5.1].

The K0-groups are just the Grothendieck K-groups of coherent sheaves [41, 3.9,
3.10]. The restrictions of the push-forwards f∗ to the K0-groups coincide with the one
defined by Grothendieck [5] via the higher direct images of coherent sheaves. Thus,
for a smooth divisor i : D ↪→ X, one has (following notation 1.1)

i∗(1) = [i∗(OD)] = [OX ]− [OX(−D)] = [1]− [L(D)∨] = c(L(D)) ∈ K0(X).

Now Theorem 2.5 shows that the trace structure given by f 7→ f∗ coincides with the
one given by f 7→ trf .

2.9.2.
Let m be an integer prime to char(k). Let A be the étale cohomology theory A∗Z(X) =
⊕+∞

p=0A
p
Z(X), where Ap

Z(X) = ⊕+∞
q=−∞Hp

Z(X,µ⊗q
m ). Set Aev

Z (X) = ⊕+∞
p=0A

2p
Z (X) and

Aodd
Z (X) = ⊕+∞

p=0A
2p+1
Z (X). The cup-products described in [22, Ch. V, §1, 1.17] make

A a ring cohomology theory. Consider the short exact sequence of the étale sheaves
0→ µm → G ×m−−→ G→ 0 and denote by ∂ : H1(X,Gm)→ H2(X,µm) the boundary
map. For a line bundle L over a smooth variety X, let [L] ∈ H1(X,Gm) be its iso-
morphism class. It is known [22] that the rule L 7→ c(L) := ∂([L]) endows A with a
Chern structure and thus orients A. Let f 7→ trf be the trace structure on A given
by Theorem 2.5.

Now we will describe a well-known trace structure on A and show that it coincides
with f 7→ trf . For that take a projective morphism f : Y → X of smooth varieties.
Let DY (respectively DX) be the derived category of bounded above complexes of
étale sheaves on Y (respectively on X). Let Rf∗ : DY → DX be the total derived
functor of the direct image functor f∗. Since f is projective there exists a right adjoint
Rf ! : DX → DY to Rf∗ constructed in [8, §3.1]. Let α : Z→ Rf∗(Z) be the map
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adjoint to the identity map Z→ f∗(Z) = Z. Assuming that Y and X are irreducible,
set d = dim(X)− dim(Y ) and consider the map

f! : Hp(Y, µ⊗q
m )→ Hp+2d(X,µ⊗q+d

m )

defined by the composite

Hp(Y, µ⊗q
m ) = HomDY

(Z, µ⊗q
m [p])

∼= HomDY
(Z, Rf !(µ⊗q+d

m [p + 2d]))

→ HomDX
(Rf∗(Z), µ⊗q+d

m [p + 2d])
α∗−−→ HomDX

(Z, µ⊗q+d
m [p + 2d])

= Hp+2d(X, µ⊗q+d
m ).

If Y and X are reducible, then define the map f! : A(Y )→ A(X) by components.
Using [8] one can show that the assignment f 7→ f! is a trace structure on X. It is
known [8] that for a smooth divisor i : D ↪→ X one has i!(1) = c(L(D)) in H2(X,µm).
Now Theorem 2.5 shows that the trace structure given by f 7→ f! coincides with the
one given by f 7→ trf .

2.9.3.
Let A be K-cohomology [34, §7, 5.8] AZ(X) = ⊕∞q=0 ⊕∞p=0 Hp

Z(X, Kq), where K is
the sheaf of K-groups. To get the group Aev

Z (X) (resp. Aodd
Z (X)) take all of the

summands with even (resp. odd) p + q; thus AZ(X) = Aev
Z (X)⊕Aodd

Z (X). Follow-
ing [14, Def. 8.1], consider a product structure on A induced by the pairing of
sheaves Kp ⊗Kq → Kp+q. This product structure makes A a ring cohomology theory
by [14, Def. 8.1]. For a line bundle L over a smooth variety X let [L] ∈ H1(X, K1) =
H1(X, O∗) be the isomorphism class of L. The rule L 7→ [L] endows A with a Chern
structure [14, Th. 8.10] and thus orients A. Let f 7→ trf be the trace structure on A
given by Theorem 2.5. For a projective morphism f : Y → X of smooth irreducible
varieties with d = dim(X)− dim(Y ) the trace map trf : A(Y )→ A(X) shifts the
degree of the K-cohomology as follows:

Hp(Y, Kq)→ Hp+d(X, Kq+d).

The push-forwards f∗ : H∗(Y, K∗)→ H∗(X, K∗) from [14, Thms. 7.18, 7.22] form
a trace structure on A because they satisfy conditions 1–5 of Definition 2.2. The
groups Hi(X, Ki) are just the Chow groups CHi(X) by a theorem of Quillen [34, §7].
Moreover, it is proved in [14, §§ 7, 8] that under this identification for a projective
morphism f : Y → X of smooth varieties, the push-forward

f∗ : ⊕Hi(Y, Ki)→ ⊕Hi(X, Ki)

coincides with the classical push-forward f∗ : ⊕ CHi(Y )→ ⊕CHi(X) (see, for in-
stance, [10]). Thus for a smooth divisor i : D ↪→ X one has

i∗(1) = [L(D)] = c(L(D)) ∈ H1(X, K1) = CH1(X).

Now Theorem 2.5 shows that the trace structure given by f 7→ f∗ coincides with the
one given by f 7→ trf .
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2.9.4.
Let k = R, and let A = Aev ⊕Aodd with

Aev(X, U) = ⊕∞0 Hp(X(R), U(R);Z/2) and Aodd(X,U) = 0.

Take as a boundary ∂ the usual boundary map for the pair (X(R), U(R)). Clearly ∂
is grade-preserving with respect to the grading we chose on A. Now the cup-product
makes A a Z/2-graded-commutative ring theory.

For a line bundle L, consider the real line bundle L(R) over the topological
space X(R) and set c1(L) = w1(L(R)) ∈ H1(X(R);Z/2Z) ⊂ Aev(X) (the first Stiefel-
Whitney class). Since Pn(R) = RPn is real projective space, the rule L 7→ c1(L)
endows A with a Chern structure and thus orients A.

2.9.5.
Let A be motivic cohomology [39]: Ap

Z(X) = ⊕∞q=0H
p
Z(X,Z(q)). To get a Z/2-grading,

set

Aev
Z (X) = ⊕+∞

−∞A2p
Z (X) and Aev

Z (X) = ⊕+∞
−∞A2p+1

Z (X).

Recall that H2
M(X,Z(1)) = CH1(X) for a smooth X [39]. For a line bundle L over

a smooth variety X let D(L) ∈ CH1(X) be the associated class divisor. The rule
L 7→ D(L) endows A with a Chern structure. In fact, conditions 1 and 3 of 1.12 are
satisfied. To check condition 2 consider the homomorphism from item 2 of 1.12

(1, ξ) : H∗(X,Z(q))⊕H∗−2(X,Z(q − 1))→ H∗(X ×P1,Z(q)) (63)

for the motivic cohomology case. It is known that the map (63) is an isomorphism
(see [39, Cor. 4.12.1] for the characteristic zero case and [45, 4.10] for the general
case). Thus A is oriented and equipped with a trace structure f 7→ trf given by
Theorem 2.5.

For a projective morphism f : Y → X of smooth irreducible varieties with d =
dim(X)− dim(Y ), the trace map trf : A(Y )→ A(X) shifts the twist and the degree
of the motivic cohomology as follows:

Hp(Y,Z(q))→ Hp+2d(X,Z(q + d)).

For a projective space p : Pn → pt and the class

ζ = c(O(1)) ∈ H2(Pn,Z(1)) = Pic(Pn),

one has trp(ζi) = 1 for i = n and trp(ζi) = 0 otherwise.
For a closed imbedding i : Y → X there is a Gysin map i∗ : A(Y )→ A(X) defined

in [39, 4.9]. Clearly the maps i∗ and tri should coincide. It would be nice to check
this.

2.9.6. Semi-topological complex and real K-theories [9]
If the ground field k is the field R of reals, then the semi-topological K-theory of
real algebraic varieties KRsemi defined in [9] is an oriented theory as is proved in [9].
Thus it is equipped with the corresponding trace structure. For a real variety X it
interpolates between the algebraic K-theory of X and Atiyah’s Real K-theory of the
associated Real space of complex points, X(C).
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2.9.7. Orienting algebraic cobordism theory
In this example the notation in [28, §2.1] is used. In particular, T is the motivic
pointed space A1/(A1 − {0}). The symmetric ring T -spectrum MGL as in [28, §2.1]
determines a ring cohomology theory. One can check that for any elements a ∈
MGLp,r

Z (X) and b ∈MGLq,s
Z (X), one has a ∪ b = (−1)pqb ∪ a. So setting Aev

Z (X) =
⊕p,rMGL2p,r

Z (X) and Aodd
Z (X) = ⊕p,rMGL2p+1,r

Z (X), we get a Z/2-graded-commu-
tative ring theory

(X,X − Z) 7→ Aev
Z (X)⊕Aodd

Z (X).

For an arbitrary symmetric T -spectrum E = (E0, E1, . . .) there is a canonical ele-
ment in E2n,n(En) represented by the map

(∗, . . . , ∗, En, En ∧ T, . . .)→ (E0, E1, . . . , En, . . .)

of T -spectra. Taking E =MGL we get in that way an element [u1] ∈MGL2,1(MGL1)
(see [28, Ex. 1.4]). By the very definition, MGL1 = Th(T(1)) and T(1) is the tauto-
logical line bundle O(−1) over the space Gr(1) = P∞. Now set

th = [u1] ∈MGL2,1(MGL1) = MGL2,1
P∞(O(−1)).

Consider the fiber A1 of T(1) over the point g1 ∈ Gr(1) as in [28, §2.1] and the Thom
space A1/(A1 − {0}) of that fibre. The restriction of the element th to this Thom space
A1/(A1 − {0}) = Th(A1) coincides with the T -suspension σ ∈MGL2,1(Th(A1)) =
MGL2,1

{0}(A
1) of the unit 1 ∈MGL0,0(pt). Thus the element th is a Thom element

in the sense of [30, Def. 3.5.1].

The inclusion i : A1 ↪→ P1 induces an isomorphismMGL2,1
{0}(P

1) i∗−→MGL2,1
{0}(A

1).

Let σ̄ ∈MGL2,1
{0}(P

1) be such that i∗(σ̄) = σ ∈MGL2,1
{0}(A

1) = MGL2,1(Th(A1)). Let
z : P∞ → O(−1) be the zero section and let c = zMGL(th) ∈MGL2,1(P∞). As is
proved in [31, Prop. 6.5.1], the element c satisfies the relation

c|P1 = −σ̄ ∈MGL2,1(P1),

so c is a Chern element in the sense of [30, Def. 3.5.1]. The element c gives rise to a
unique Chern structure L 7→ c(L) on MGL such that c(O(−1)) = c ∈MGL2,1(P∞)
(see [30, Th. 3.5.2] for the statement and [28, §1.3.7] or [37, Th. 3] for the proof). This
Chern structure defines by [25, Th. 3.35] the orientation ω of the algebraic cobordism
theoryMGL. Let f 7→ trω

f be the corresponding trace structure by Theorem 2.5. Since
the Chern class has bidegree (2, 1), the trace operator shifts bidegrees. Namely, if
f : Y → X is a projective morphism of smooth irreducible varieties and d = dim X −
dim Y , then one has

trω
f : MGLp,q(Y )→MGLp+2d,q+d(X).

For the chosen orientation ω, one has the relation

th = thω(O(−1)) ∈MGL2,1
P∞(O(−1)).

2.9.8. Relation to the Levine-Morel cobordism ΩLM

Let ΩLM := ⊕∞p=−∞Ωp be the Levine-Morel cobordism functor [19]. For an oriented
ring cohomology theory (A, ω) the trace structure f 7→ trω

f on A determines a struc-
ture of an oriented Borel-Moore theory on A|Sm in the sense of [19]. So there is a
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unique morphism of oriented Borel-Moore theories

ϕω : ΩLM → A|Sm

taking an element [Y
f−→ X] ∈ ΩLM(X) to trω

f (1) ∈ A(X). This morphism respects the
push-forwards. This morphism respects the pull-backs provided that char(k) = 0. In
fact, this follows from the transversality lemma [20, Prop. 3.3.1] and properties 2 and
3 of a trace structure (Definition 2.2). So, in the case that char(k) = 0, the morphism
ϕω is a ring morphism of the oriented cohomology pretheories (in the sense of [27,
Definition 1.1.7]). Applying this observation to the algebraic cobordism theory of
Voevodsky oriented as in 2.9.7, we get an oriented ring morphism

ϕ : ΩLM → ⊕p MGL2p,p|Sm.

It is proved in a recent preprint of M. Levine that ϕ is an isomorphism under the
assumption that char(k) = 0.

2.10. All possible trace structures on an orientable theory A

In this section we consider an orientable cohomology theory A and identify the set
of all trace structures on it with the set of all local parameters of the ring Aev(P∞)
(Theorem 2.15). One should consider this theorem as the main result of the article.
To state this theorem recall that an element π ∈ Aev(P∞) is called a local parameter
of the ring Aev(P∞) if it satisfies the two conditions:

1. its restriction to a rational point vanishes, and

2. the ring homomorphism Aev(pt)[[t]]→ Aev(P∞) sending the variable t to the
element π is an isomorphism.

Theorem 2.15 (All trace structures). The assignment from item 2 of Theorem 2.5,
associating to each trace structure on A the Chern class c(O(1)) ∈ Aev(P∞), is a
bijection

c : Trace Structures on A → local parameters of Aev(P∞)

from the set of all trace structures on A to the set of all local parameters of the ring
Aev(P∞).

Proof. Consider the assignment from item 2 of Theorem 2.5 which associates to a
trace structure f 7→ trf on A the Chern structure L 7→ c(L) = zA(trz(1)). By The-
orem 2.5 and [25, Th. 3.36], this assignment is a bijection of the set of all trace
structures on A with the set of all Chern structures on A. To prove the theorem it
remains to check that the assignment

c : Chern structures → local parameters of Aev(P∞),

which takes a Chern structure L 7→ c(L) to the element c(O(1)) ∈ Aev(P∞), is bijec-
tive.

To prove the injectivity of c consider two Chern structures L 7→ c(1)(L) and
L 7→ c(2)(L) on A and assume that c(1)(O(1)) = c(2)(O(1)). By [25, Claim 3.23], for
each variety X and each line bundle L over X, there exists a finite-dimensional vector
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space V and a diagram of the form

X
p←− X ′ f−→ P(V )

in which X ′ is a torsor under a vector bundle over X and the morphism f is such
that the line bundles p∗(L) and f∗(OV (1)) are isomorphic. The pull-back operator
p∗ : A(X)→ A(X ′) is an isomorphism by the strong homotopy invariance of the the-
ory A [25, 2.2.6]. Now c(1)(L) = c(2)(L) by the functoriality of the classes c(1) and
c(2).

To prove the surjectivity of c choose a Chern structure L 7→ c(L) on A. Then the
element π = c(O(1)) is a local parameter of Aev(P∞) by [25, Th. 3.9]. Let πnew ∈
Aev(P∞) be one more local parameter. Let g(t) ∈ Aev(pt)[[t]] be a formal power
series such that g(π) = πnew in A(P∞). Now consider an assignment L 7→ cnew(L) :=
g(c(L)). Clearly it is a Chern structure on A and cnew(O(1)) = g(π) = πnew in A(P∞).
The theorem is proved.

In Remark 2.16 below we describe explicitly the bijection

c−1 : local parameters of Aev(P∞)→ Trace structures on A

inverse to the bijection c from Theorem 2.15. For that let πnew ∈ Aev(P∞) be a
local parameter, let g(t) be the series from the proof of Theorem 2.15 and let r(t) =
g(t)/t ∈ A(pt)ev[[t]]. Clearly r(t) is a unit in A(pt)ev[[t]]. Let r−1(t) be its multiplica-
tive inverse. For a vector bundle E over a variety X, let r(E), r−1(E) ∈ A(X)ev be
the invariants from [27, Prop. 2.2.3]. Recall that r(E)r−1(E) = 1.

Remark 2.16. For a projective morphism of varieties f : Y → X, let TY and TX be
the tangent bundles to Y and X respectively. Set

trnew
f = (∪r(TX)) ◦ trf ◦ (∪r−1(TY )) : A(Y )→ A(X). (64)

Then the assignment f 7→ trnew
f is a new trace structure on A and the corresponding

Chern structure is given by cnew(L) = c(L) ∪ r(L) [27, Th. 2.3.2]. Now

cnew(O(1)) = c(O(1)) ∪ r(O(1)) = π ∪ r(π) = g(π) = πnew

in A(P∞). Thus the assignment c−1 takes the local parameter πnew to the trace
structure f 7→ trnew

f on A.
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