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ON H∗(C; k×) FOR FUSION SYSTEMS

MARKUS LINCKELMANN

(communicated by J.P.C. Greenlees)

Abstract
We give a cohomological criterion for the existence and

uniqueness of solutions of the 2-cocycle gluing problem in block
theory. The existence of a solution for the 2-cocycle gluing prob-
lem is further reduced to a property of fusion systems of certain
finite groups associated with the fusion system of a block.

1. Introduction

Given a block b of a finite group G over an algebraically closed field k of charac-
teristic p with defect group P and associated fusion system F , there is, for any F-
centric subgroup Q of P , a canonically determined element αQ ∈ H2(AutF (Q); k×),
by [13, 1.12]. It is conjectured in [14, 4.2] that this family can be glued together
to a class α ∈ H2(Fc; k×) satisfying α|AutF (Q) = αQ for any Q belonging to the
full subcategory Fc of F-centric subgroups of P . We describe a cohomological cri-
terion for the existence and uniqueness of α. This can be formulated more gener-
ally for EI-categories. Following [18, 9.2], an EI-category is a small category C with
the property EndC(X) = AutC(X) for any object X in C. The set [C] of isomor-
phism classes of objects in C then becomes a partially ordered set via [X] 6 [Y ]
if HomC(X,Y ) is non-empty, for X, Y objects in C and [X], [Y ] their respective
isomorphism classes. A morphism ϕ : X → Y in C need not induce a map between
the automorphism groups of X, Y ; the subdivision of C is a tool to address this
issue. This category is defined as follows: The objects of S(C) are faithful func-
tors σ : [m] → C, where m is a non-negative integer and the totally ordered set
[m] = {0 < 1 < · · · < m} is viewed as a category in the obvious way; a morphism
in S(C) from σ to another object τ : [n] → C is a pair (α, µ) consisting of an injective
order-preserving map α : [m] → [n] and an isomorphism of functors µ : σ ∼= τ ◦ α. The
composition of (α, µ) with another morphism (β, ν) from τ to ρ : [r] → C is defined by
(β, ν) ◦ (α, µ) = (β ◦ α, (να) ◦ µ), where να : τ ◦ α ∼= ρ ◦ β ◦ α is induced by precom-
posing ν with α. Loosely speaking, S(C) consists of chains of non-isomorphisms in C.
It is easy to see that (α, µ) induces a group homomorphism AutS(C)(τ) → AutS(C)(σ)
mapping (Id[n], γ) to (Id[m], µ

−1 ◦ (γα) ◦ µ), for any automorphism γ of the functor τ ,
where γα is the induced automorphism of τ ◦ α. Clearly, S(C) is again an EI-category.
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The partially ordered set [S(C)], viewed as topological space, is called the orbit space
of C. We denote by Ab the category of abelian groups.

Theorem 1.1. Let C be a finite EI-category and k an algebraically closed field. For
any positive integer i, there is a canonical functor Ai : [S(C)] → Ab sending
[σ] ∈ [S(C)] to Hi(AutS(C)(σ); k×). If H1([S(C)]; k×) = H2([S(C)]; k×) = 0, then
H1(C; k×) ∼= lim[S(C)](A1), and if also H3([S(C)]; k×) = H4([S(C)]; k×) = 0, then
there is an exact sequence of abelian groups

0 → H1([S(C)];A1) → H2(C; k×) → lim
[S(C)]

(A2) → H2([S(C)];A1) → H3(C; k×).

In particular, the group H2(C; k×) is finite, of order coprime to char(k) if char(k) is
positive.

As mentioned above, the motivation for considering the map

H2(C; k×) → lim
[S(C)]

(A2)

comes from block theory, which is the reason for stating the above theorem for k×,
but it is worth noting that the exact sequence in the theorem holds for any abelian
group instead of k×. In order to be more precise, let b be a block of a finite group
G over an algebraically closed field k of positive characteristic p, let P be a defect
group of b and F an associated fusion system on P . Set C = Fc, the full subcategory
F consisting of all F-centric subgroups of P . Then C is a right ideal in F , and hence
[S(C)] is contractible by [16, 1.1]. In particular, Hi([S(C)]; k×) = 0 for i > 0. Thus
C satisfies the hypotheses of Theorem 1.1. As a consequence of work of Külshammer
and Puig [13, 1.8, 1.12] in conjunction with Dade’s splitting theorem on fusion,
the block b determines for every σ ∈ S(C) a class ασ ∈ H2(AutS(C); k×), and the
family (ασ) of these classes determines an element β in lim[S(C)](A2). Denote by γ
the image of β in H2([S(C)];A1). Then, by Theorem 1.1 above, the gluing prob-
lem [14, 4.2] has a solution if γ = 0, and the solution is unique if H1([S(C)];A1) = 0.
In particular, if H1([S(C)];A1) = H2([S(C)];A1) = 0 then we have an isomorphism
H2(C; k×) ∼= lim[S(C)](A2), and so the gluing problem [14, 4.2] would have a solution
for any block b with fusion system F . This isomorphism holds trivially if F = NF (P )
(which includes the case where P is abelian) and if P is a tame 2-group, in which
case the right side is well known to be zero, and the left side is zero by a result of
S. Park [21]. In general, this isomorphism is relevant for the block theoretic reformu-
lation of Alperin’s weight conjecture in terms of Bredon cohomology in [15, 4.3]. The
purpose of the next result is to reduce the vanishing of H2([S(Fc)];A1) further to
a statement on finite groups. For any finite group G, denote by ∆p(G) the partially
ordered G-set of chains σ = Q0 < Q1 < · · · < Qm of non-trivial p-subgroups Qi of G
and denote by [∆p(G)] the set of G-conjugacy classes of chains in ∆p(G), viewed
as a partially ordered set via taking subchains. Denote by NG : [∆p(G)] → Ab the
covariant functor sending the G-conjugacy class [σ] of the chain σ ∈ ∆p(G) as above
to the abelian group NG([σ]) = Hom(NG(σ); k×), where NG(σ) is the intersection of
the normalisers NG(Qi), 0 6 i 6 m. As before, one checks that this is a well-defined
functor which does not depend, up to unique isomorphism of functors, on the choice
of a representative σ of [σ].
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Theorem 1.2. Let F be a fusion system on a finite p-group P . Suppose that for
any finite group G isomorphic to AutF (Q)/Inn(Q) for some F-centric subgroup Q
of P , we have H1([∆p(G)];NG) = 0. Then H2([S(Fc)];A1) = 0; in particular, the
canonical map H2(Fc; k×) → lim[S(Fc)](A2) is surjective.

Theorem 1.2 will follow from a spectral sequence using a filtration indexed by
isomorphism classes of F-centric subgroups, by making use of the fact that the coho-
mology of A1 may be calculated using normal chains of subgroups of P . After briefly
reviewing some basic facts on functor cohomology in Section 2, we consider regular
EI-categories and prove Theorem 1.1 in Section 3. This is followed by a section prov-
ing Theorem 1.2 and Section 5 on regular functors between EI-categories, which in
turn is used in the last section to show that in order to calculate H∗(C; k×) for a right
ideal C of a fusion system, we may replace C by its image in the orbit category or its
inverse image in a centric linking system.
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2. Background

We collect, mostly from [5, 6, 9, 10, 11, 23, 24], background material on functor
cohomology, which we will use without further comment. See also [25] for a broader
exposition and further references. A right ideal in a category C is a full subcategory
D of C with the property that if ϕ : X → Y is a morphism in C and if X belongs to
D, then Y also belongs to D. For C a small category, denote by Ĉ and Č the categories
of covariant and contravariant functors from C to Ab, respectively. The cohomol-
ogy H∗(C;A), or H∗(Cop;A) of a functor A in Ĉ or Č, respectively, is the graded
abelian group defined as follows: for any non-negative integer n denote by Hn(C;A)
or Hn(Cop;A) the n-th right derived functor of the limit functor limC over C from Ĉ or
Č to Ab, respectively. If A is an abelian group and A the constant covariant functor
on C taking the value A, then we write Hn(C;A) instead of Hn(C;A); similarly for
the contravariant constant functor. It is well known that H∗(C;A) ∼= H∗(Cop;A). If
Φ: C → D is a covariant functor, then we denote by Φ∗ : D̂ → Ĉ the induced restric-
tion functor sending A in Ĉ to A ◦ Φ; we use (abusively) the same notation for the
restriction functor Ď → Č. We denote by Φ∗,Φ! : Ĉ → D̂ the left and right adjoint
(Kan extension functors) of Φ∗, and as before, use the same notation for the cat-
egories Č, Ď. By [24, 1.4.(ii)], [11, 5.3] or [5, Appendix II, Thm. 3.6], there is a
cohomology spectral sequence, called the base change spectral sequence

Ep,q2 = Hp(Dop;RqΦ!(A)) ⇒ Hp+q(Cop;A)

for any A in Č, where RqΦ! is the q-th right derived functor of Φ!. It is well known
(see e.g. [5, Appendix II, §3] for the homology version) that RqΦ! can be computed
explicitly by

RqΦ!(A)(Y ) = Hq((ΦY )op;AY ),

where A is in Č,Y is an object in D, ΦY is the category with objects pairs (X,ϕ)
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with X an object in C and ϕ : Φ(X) → Y a morphism in D. A morphism in ΦY from
(X,ϕ) to (X ′, ϕ′) is a morphism α : X → X ′ in C satisfying ϕ′ ◦ Φ(α) = ϕ, and AY is
the functor obtained by restricting A to ΦY via the forgetful functor ΦY → C sending
(X,ϕ) to X. We will need the base change spectral sequence only for the case where
C is an EI-category and D is a partially ordered set. In that case, for any Y in D, the
category ΦY can be identified with the category C6Y consisting of all objects X in
C such that HomD(Φ(X), Y ) is non-empty. Hence the base change spectral sequence
takes the well-known form

Ep,q2 = Hp(Dop;Y 7→ Hq(C6Y ;A)) ⇒ Hp+q(Cop;A)

for any A in Č, where in the expression Hq(C6Y ;A) the restriction of A to C6Y is
again denoted by A. If Φ! is exact, then the base change spectral sequence collapses.
This happens, in particular, if Φ has a right adjoint Ψ: D → C, for in that case the
right adjoint Φ! of Φ∗ is isomorphic to the exact restriction functor Ψ∗. Thus, if Φ has
a right adjoint, we have H∗(Dop; Φ!(A)) ∼= H∗(Cop;A) for any A in Č (cf. [9, 3.1]).

3. Regular EI-categories and proof of Theorem 1.1

Following [15, 2.1], an EI-category C is called regular if for any two objects X, Y in
C such that HomC(X,Y ) 6= ∅, the group AutC(X) acts regularly (i.e. transitively and
freely) on HomC(X,Y ). Any morphism in a regular EI-category is a monomorphism.
For any EI-category C the subdivision S(C) is regular, and if C is regular, there is a
contravariant functor from C to the category of groups sending an object X to its
automorphism group AutC(X) and a morphism ϕ : X → Y in C to the unique map
AutC(Y ) → AutC(X), which sends σ ∈ AutC(Y ) to the unique ρ ∈ AutC(X) satisfying
ϕ ◦ ρ = σ ◦ ϕ. We use the regularity of C for the existence and uniqueness of ρ (cf. [15,
2.2]). For any EI-category C, the subdivision S(C) comes with canonical functors
from S(C) to C and Cop sending an object σ : [m] → C in S(C) to σ(m) and σ(0),
respectively. If every isomorphism class of C has a unique element, then S(C) is
equivalent to the opposite of the category s(C) defined in [23, §1], and hence [23,
1.5] implies that the canonical functor S(C) → C induces, for any abelian group A,
an isomorphism H∗(S(C);A) ∼= H∗(C;A). For regular EI-categories the appropriate
base change spectral sequence specialises to the following spectral sequence:

Theorem 3.1. Let C be a regular EI-category and A an abelian group. There is a
cohomology spectral sequence

Ep,q2 = Hp([C]op; [X] 7→ Hq(AutC(X);A)) ⇒ Hp+q(C;A).

Proof. Denote by Φ: S(C) → [C]op the canonical functor sending an object
σ : [m] → C in S(C) to the isomorphism class [σ(0)] in [C]. One checks that for any X in
Cop we have S(C)6[X] = S(C>X). Thus the base change spectral sequence associated
with Φ takes the form

Ep,q2 = Hp([C]op; [X] 7→ Hq(S(C>X);A)) ⇒ Hp+q(S(C);A).

As mentioned above, we have Hp+q(S(C);A) ∼= Hp+q(C;A) and Hq(S(C>X);A) ∼=
Hq(C>X ;A). By Lemma 3.3 below, this is isomorphic to Hq(AutC(X);A), whence
the result.
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Lemma 3.2. Let C be a small category, X an object in C and denote by D the full
subcategory of C having X as the unique object. Suppose that for any object Y in C
there is a morphism ιY : X → Y in C such that the map AutC(X) → HomC(X,Y )
sending α ∈ AutC(X) to ιY ◦ α is a bijection. Then the inclusion functor Φ: D → C
has a right adjoint Ψ: C → D.

Proof. Define Ψ on objects by Ψ(Y ) = X for all Y in C. For a morphism ϕ : Y → Z
in C, define the morphism Ψ(ϕ) ∈ AutC(X) = AutD(X) as follows: By the assump-
tions there is a unique β ∈ AutC(X) such that ϕ ◦ ιY = ιZ ◦ β. We set Ψ(ϕ) = β. A
trivial verification shows that this construction is functorial and yields a right adjoint
for Φ.

Lemma 3.3. Let C be a regular EI-category, X an object in C and A an abelian
group. Restriction induces an isomorphism H∗((C>X)op;A) ∼= H∗(AutC(X);A).

Proof. For any object Y in C>X choose a morphism ιY : X → Y . Since C is regular,
composition with ιY induces a bijection AutC(X) ∼= HomC(X,Y ). Thus 3.2 applies,
showing that the inclusion functor {X} → C>X has a right adjoint Ψ. But then the
base change spectral sequence associated with this inclusion functor collapses and
yields the isomorphism as stated.

Proof of Theorem 1.1. We use the notation of 1.1. The spectral sequence 3.1 applied
to the regular EI-category S(C) and the abelian group k× takes the form

Ep,q2 = Hp([S(C)];Aq) ⇒ Hp+q(S(C); k×).

That is, the E2-page has the form

· · · · · · · · · · · · · · · · · ·
H0([S(C)];A2) H1([S(C)];A2) H2([S(C)];A2) H3([S(C)];A2) · · · · · ·
H0([S(C)];A1) H1([S(C)];A1) H2([S(C)];A1) H3([S(C)];A1) · · · · · ·

k× H1([S(C)]; k×) H2([S(C)]; k×) H3([S(C)]; k×) · · · · · · .
This spectral sequence approximates H∗(S(C); k×) ∼= H∗(C; k×). Thus if the groups
H1([S(C)]; k×) and H2([S(C)]; k×) are zero, then there is no differential starting or
ending at the coordinates (0, 1), and hence we get the isomorphism

H1(C; k×) ∼= H0([S(C)];A1) = lim
[S(C)]

(A1)

as stated in 1.1. In addition, suppose now that H3([S(C)]; k×) = H4([S(C)]; k×) = 0.
There is no non-zero differential starting or ending at E1,1

2 = H1([S(C)];A1), and
hence, again since this spectral sequence approximates H∗(C, k×), we get an injec-
tive map H1([S(C)];A1) → H2(C; k×). The cokernel of this map is the kernel of the
differential

E0,2
2 = lim

[S(C)]
(A2) → E2,1

2 = H2([S(C)];A1)

because all differentials starting at (0, 2) from page 3 onwards are zero by the assump-
tions. Since from page 3 onwards there is no non-zero differential ending or starting
at (2, 1) it follows that the cokernel of the last map is a subgroup of H3(C; k×).
This proves the exactness of the sequence stated in 1.1, and as pointed out earlier,
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this part of the argument is valid for any abelian group instead of k×. The groups
A1([σ]) ∼= Hom(AutS(C)(σ), k×) andA2([σ]) = H2(AutS(C)(σ); k×) are finite, of order
coprime to char(k) if char(k) is positive; hence H1([S(C)];A1) and lim[S(C)](A2) are
finite, proving the finiteness of H2(C; k×) with the properties as stated.

4. Proof of Theorem 1.2

The terminology on fusion systems we use follows [17]; in particular, a fusion sys-
tem means a saturated fusion system in the sense of [3]. See [22, §2], [3, Appendix],
or [17, §3] for details regarding normalisers, centralisers and quotients in fusion sys-
tems. For C a right ideal in a fusion system F on a finite p-group P , denote by
S<(C) the full subcategory of all σ : [m] → C in S(C) such that for 0 6 i < j 6 m we
have σ(i) < σ(j), and the morphism σ(i < j) from σ(i) to σ(j) is the inclusion map.
By [16, 4.2], the subcategory S<(C) is equivalent to S(C). We denote by SC(C) the
full subcategory of all σ : [m] → C in S<(C) such that for 0 6 i 6 j 6 m the subgroup
σ(j) is normal in σ(i), or equivalently, such that σ(i) is normal in the maximal sub-
group σ(m) of the chain of subgroups σ. The proof of 1.2 is based on the following
spectral sequence.

Theorem 4.1. Let F be a fusion system on a finite p-group P and C a right ideal
in F . Let {Rq | 0 6 q 6 r} be a set of representatives of the F-isomorphism classes
of subgroups of P belonging to C such that Rq is fully F-normalised for 0 6 q 6 r
and such that |Rq| > |Rq+1| for 1 6 q 6 r. Denote by Cq the right ideal in NF (Rq)/Rq
consisting of all non-trivial subgroups of NP (Rq)/Rq, where 1 6 q 6 r. Let
A : [SC(C)] → Ab be a covariant functor. Then, for 1 6 q 6 r, the functor A induces
a covariant functor N q : [SC(Cq)] → Ab, and there is a spectral sequence

Ep,q1 ⇒ Hp+q([SC(C)];A)

with the following properties:

(i) We have Ep,q1 = Hp+q−1([SC(Cq)];N q) for p+ q > 2 and 1 6 q 6 r.

(ii) We have Ep,q1 = {0} if q < 0, or q > r, or p+ q < 0, we have Ep,01 = {0} for
p 6= 0, and we have E0,0

1 = A([P ]).
(ii) If there is an integer m > 1 such that Hm([SC(Cq)];N q) = {0} for 1 6 q 6 r,

then Hm+1([SC(C)];A) = {0}.
(iv) If A vanishes on all chains of length zero in [SC(C)], then also

Ep,q1 = H0([SC(Cq)];N q)

for p+ q = 1 and 1 6 q 6 r, and Ep,q1 = {0} if p+ q = 0 or q = 0.

We break up the proof in several steps. Let F be a fusion system on a finite
p-group P , where p is a prime, and let C be a right ideal in F . Following the notation
in [16, 4.1], the category SC(C) is the full subcategory of S(C) whose elements can
be denoted as chains

σ = Q0 < Q1 < · · · < Qm

of subgroups Qi of P belonging to C such that Qi is normal in Qm for 0 6 i 6 m.
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Chains of this type were introduced in [12]. Given such a chain

σ = Q0 < Q1 < · · · < Qm

we denote, for any integer i such that 0 6 i 6 m, by σ\i, the chain

σ\i = Q0 < · · ·Qi−1 < Qi+1 < · · · < Qm

obtained from removing Qi. Inclusion of chains yields a canonical morphism σ\i→ σ
in SC(C). For any fully F-normalised subgroup R of P in C, we denote by SRC(C)
the full subcategory of SC(C) consisting of all chains σ = Q0 < Q1 < · · · < Qm with
Q0

∼= R in F and m > 1. We denote by CR the right ideal in NF (R)/R consisting of
all non-trivial subgroups of NP (R)/R. We keep this notation throughout this section.

Lemma 4.2. Let σ = (Q0 < Q1 < · · · < Qm) be a chain in SC(F) and let R be a
fully F-normalised subgroup of P such that R ∼= Q0 in F . Then there is a chain
τ = (R0 < R1 < · · · < Rm) in SC(F) such that τ ∼= σ and R0 = R.

Proof. By standard properties of fusion systems [17, 2.6], there is a morphism

ϕ : NP (Q0) → P

such that ϕ(Q0) = R, because R is fully F-normalised. Taking

τ = ϕ(σ) = (ϕ(Q0) < ϕ(Q1) < · · · < ϕ(Qm))

proves the lemma.

Lemma 4.3. Let σ = (Q0 < Q1 < · · · < Qm) and τ = (R0 < R1 < · · · < Rm) be
chains in SC(F) such that Q = Q0 = R0 is fully F-normalised. Suppose that m > 0.
Then σ ∼= τ in SC(F) if and only if σ\0 ∼= τ\0 in SC(NF (Q)).

Proof. Any isomorphism σ ∼= τ induces an automorphism on Q = Q0 = R0 and
hence an isomorphism σ\0 ∼= τ\0 in SC(NF (Q)). Conversely, any isomorphism σ\0 ∼=
τ\0 in SC(NF (Q)) induces an automorphism on Q, hence an isomorphism σ ∼= τ .

Lemma 4.4. Suppose that F = NF (Q) for some normal subgroup Q of P . Let σ =
(Q0 < Q1 < · · · < Qm) and τ = (R0 < R1 < · · · < Rm) be two chains in SC(F) such
that Q ⊆ Q0 and Q ⊆ R0. Then the chains σ̄ = (Q0/Q < Q1/Q < · · · < Qm/Q) and
τ̄ = (R0/Q < R1/Q < · · · < Rm/Q) belong to the category SC(F/Q), and we have
σ ∼= τ in SC(F) if and only if σ̄ ∼= τ̄ in SC(F/Q).

Proof. Clearly, the chains σ̄, τ̄ are in SC(F/Q), and if σ ∼= τ then σ̄ ∼= τ̄ . Suppose
conversely that we have an isomorphism µ̄ = (µ̄i)06i6m : σ̄ ∼= τ̄ given by a family
of isomorphisms µ̄i : Qi/Q ∼= Ri/Q in F/Q. Then any representative µm of µ̄m is
an isomorphism Qm ∼= Rm which sends Qi to Ri, for 0 6 i 6 m, and hence setting
µi = µm|Qi yields an isomorphism σ ∼= τ .

Proposition 4.5. Let R be a fully F-normalised subgroup of P . The map send-
ing a chain σ = (Q0 < Q1 < · · · < Qm) of positive length m in SRC(C) to the chain
σ̄\0 = (Q1/R < Q2/R < · · · < Qm/R) in SC(CR) induces an isomorphism of posets
[SRC(C)] ∼= [SC(CR)].

Proof. This follows from combining the three previous lemmas.
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Proof of Theorem 4.1. We use the notation from the statement of 4.1. In particular,
{Rq | 0 6 q 6 r} is a system of representatives of the isomorphism classes in C with
all Rq fully F-normalised and ordered in such a way that |Rq| > |Rq+1| for 0 6 q < r.
Note that since C is a right ideal in F this implies, in particular, that R0 = P . By [16,
3.7] applied to the left ideal [SC(C)] in [S(C)], the cohomology of A is that of a cochain
complex of abelian groups CC = CC(A) which is in degree n > 0 equal to

CnC = ⊕[σ]∈[SC(C)],|σ|=nA([σ]).

The differential of this complex is an alternating sum of maps

A([σ] < [τ ]) : A([σ]) → A([τ ]),

where [σ], [τ ] are isomorphism classes of chains σ, τ in SC(C) such that [σ] < [τ ] and
|σ|+ 1 = |τ |. For any integer q such that 0 6 q 6 r we define a full subcategory S(q)

C (C)
of SC(C) as follows: a chain σ = (Q0 < Q1 < · · · < Qm) in SC(C) belongs to S(q)

C (C)
if and only if Q0

∼= Rj for some j > q. The subcategory S(q)
C (C) is in fact a right ideal

in SC(C): if there is a morphism from a chain σ = (Q0 < Q1 < · · · < Qm) in S
(q)
C (C)

to a chain σ′ = (Q′0 < Q′1 < · · · < Q′m′) in SC(C), then, in particular, either Q0
∼= Q′0

or |Q′0| < |Q0|. Since Q0
∼= Rj for some j > q this implies Q′0 ∼= Rj′ for some j′ > j.

Thus σ′ belongs to the category S(q)
C (C) as well. It follows that for 0 6 q 6 r there is

a subcomplex C(q)
C of CC defined by

(C(q)
C )n = ⊕

σ∈[S
(q)
C (C)],|σ|=nA([σ])

for n > 0. Since the category SC(C) is filtered by the subcategories

S
(r)
C (C) ⊆ S

(r−1)
C (C) ⊆ · · · ⊆ S

(0)
C (C) = SC(C)

it follows that the cochain complex CC has a filtration of the form

{0} ⊆ C
(r)
C ⊆ C

(r−1)
C ⊆ · · · ⊆ C

(0)
C = CC.

For notational convenience we set C
(q)
C = 0 for q > r. By [19, 2.6], the spectral

sequence associated by this filtration takes the form

Ep,q1 = Hp+q(C(q)
C /C

(q+1)
C ) ⇒ Hp+q(CC).

The quotient complexes of this filtration are zero unless 0 6 q 6 r, and they vanish
in negative degrees; thus we get Ep,q1 = {0} for q < 0 or q > r or p+ q < 0 as claimed
in (ii). The right side in this spectral sequence is Hp+q(CC) = Hp+q([SC(C)];A)
by [16, 3.7] applied to the left ideal [SC(C)] in [S(C)]. We need to identify Ep,q1 in the
remaining cases. For 1 6 q 6 r we set Dq = SRqC(C), the full subcategory of SC(C)
consisting of all chains σ = (Q0 < Q1 < · · · < Qm) of positive length m such that
Q0

∼= Rq. By convention, D0 is the empty category. That is, on object sets, we have
a disjoint union of full subcategories

S
(q)
C (C) = S

(q+1)
C (C) ∪ Dq ∪ [Rq].

Thus, for 0 6 q 6 r, the quotient complex

C
(q)
C /C

(q+1)
C
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is equal to

(C(q)
C /C

(q+1)
C )n ∼= ⊕[σ]∈[Dq ],|σ|=nA([σ])

for n > 0, and

(C(q)
C /C

(q+1)
C )0 ∼= A([Rq])

with [Rq] viewed as an isomorphism class of chains of length zero. Note that by our
conventions, for q = 0 this quotient complex is concentrated in degree zero, where
it is equal to A([P ]). Thus, in particular, Ep,01 = {0} for p 6= 0 and E0,0

1 = A([P ]),
which completes the proof of (ii). Set Cq = CRq

for 1 6 q 6 r; that is, Cq is the full
subcategory of NF (Rq)/Rq consisting of all non-trivial subgroups of NP (Rq)/Rq;
by convention, C0 is empty. By Proposition 4.5 we have an isomorphism of posets
[Dq] ∼= [SC(CRq

)], where 1 6 q 6 r. This isomorphism induces a functor

N q : [SC(Cq)] → Ab

such that

N q([Q1/Rq < Q2/Rq < · · · < Qm/Rq]) = A([Rq < Q1 < Q2 < · · · < Qm]),

where Q1 < Q2 < · · · < Qm is a chain in SC(NF (Rq)) with Rq < Q1 and m > 1. Note
that the isomorphism of posets [Dq] ∼= [SC(Cq)] sends a chain of positive length m to a
chain of length m− 1; this accounts for the degree shift in the statement of 4.1. Thus
we can reformulate our description of the quotient complex C

(q)
C /C

(q+1)
C as follows:

in degree n > 0 we have

(C(q)
C /C

(q+1)
C )n ∼= ⊕[τ ]∈[SC(Cq)],|τ |=n−1N q([τ ]),

(which by our conventions is zero if q = 0 and n > 0) and the degree zero term is
equal to A([Rq]), as pointed out before. It follows again from the description of the
cohomology of posets associated with subdivisions in [16, §3] that for n > 0 we have

(C(q)
C /C

(q+1)
C )n ∼= CC(N q)n−1,

where CC(N q) is the complex which computes the cohomology of the functor N q

as in [16, 3.1], with Cq instead of C. In other words, (C(q)
C /C

(q+1)
C ) is the mapping

cone of a chain map of the form A([Rq]) → CC(N q), with A([Rq]) viewed as complex
concentrated in degree zero. In particular, we have

Hn(C(q)
C /C

(q+1)
C ) ∼= Hn−1([SC(Cq)];N q)

for n > 2 and 1 6 q 6 r. This completes the proof of (i). Furthermore, if all functors
N q, for 1 6 q 6 r, have vanishing cohomology in a fixed positive degree m, then the
cohomology of CC vanishes in degree m+ 1. Statement (iii) follows. Finally, if A
vanishes on chains of length zero, then

C
(q)
C /C

(q+1)
C = CC(N q)[−1]

where 0 6 q 6 r, and so in this case we see that

Hn(C(q)
C /C

(q+1)
C ) ∼= Hn−1([SC(Cq)];N q)

for all integers n. This completes the proof of (iv).
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Proof of Theorem 1.2. Let F be a fusion system on a finite p-group P , set C = Fc,
and denote by {Rq | 0 6 q 6 r} a system of representatives of the isomorphism classes
in C with all Rq fully F-normalised and ordered in such a way that |Rq| > |Rq+1| for
0 6 q < r. The plan is to apply 4.1 to the functor A1 restricted to SC(C). Note that
by [16, 4.7, 4.11] we have an isomorphism

H∗([S(C)];A1) ∼= H∗([SC(C)];A1),

where we use the same notation A1 for the restriction of A1 to SC(C). Note further
that A1([σ]) = H1(AutS(C)(σ); k×) = Hom(AutS(C); k×) for any σ in S(C). Similarly,
for any finite group G the cohomology of the functor NG on [∆p(G)] is invariant
under restriction to the subset of normal chains in ∆p(G). Moreover, [∆p(G)] is
isomorphic, as partially ordered set, to [S(FS(G))], where S is a Sylow-p-subgroup of
G. By [1, Prop. C], for 0 6 q 6 r, there is a finite group Lq such that Lq has NP (Rq)
as Sylow-p-subgroup, Rq = Op(Lq), CLq

(Rq) = Z(Rq) and NF (Rq) = FRq
(Lq). Thus

NF (Rq)/Rq is the fusion system of the finite group Lq/Rq ∼= AutF (Rq)/Inn(Rq) on
NP (Rq)/Rq. It follows that if Cq is the right ideal in NF (Rq)/Rq, as defined in the
statement of 4.1, then SC(Cq) can be identified with the partially ordered subset of
normal chains in ∆p(Lq/Rq), and the cohomology of the functor NLq/Rq

remains
invariant under restriction to [SC(Cq)], and this restriction coincides with the functor
N q in the statement of 4.1. Thus statement (iii) in 4.1 implies Theorem 1.2.

5. Regular functors

Definition 5.1. Let C, D be EI-categories. A covariant functor Φ: C → D is called
regular if Φ induces an isomorphism [C] ∼= [D], for any two objects X, Y in C the
map from HomC(X,Y ) to HomD(Φ(X),Φ(Y )) induced by Φ is surjective, and for
any two objects X, Y in C such that HomC(X,Y ) is non-empty, the group K(X) =
ker(AutC(X) → AutD(Φ(X)) acts freely on HomC(X,Y ) through composition of mor-
phisms and induces a bijection

HomC(X,Y )/K(X) ∼= HomD(Φ(X),Φ(Y )).

If C → D is an extension of D by a functor Z : Dop → Ab then the structural
functor C → D is regular. Clearly, an EI-category is regular if and only if the canonical
functor C → [C] is regular. The following lemma on lifting commutative diagrams
through regular functors is used below to show that regular functors induce regular
functors on subdivisions.

Lemma 5.2. Let C, D be EI-categories and Φ: C → D a regular functor. If

X
ϕ //

µ

²²

Y

ν

²²
V

ψ
// W
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is a diagram in C such that the diagram in D

Φ(X)
Φ(ϕ) //

Φ(µ)

²²

Φ(Y )

Φ(ν)

²²
Φ(V )

Φ(ψ)
// Φ(W )

is commutative, then there is a unique automorphism ρ ∈ AutC(X) such that Φ(ρ) =
IdΦ(X) and such that the diagram in C

X
ϕ //

µ◦ρ
²²

Y

ν

²²
V

ψ
// W

is commutative.

Proof. The morphisms ν ◦ ϕ and ψ ◦ µ are two morphisms from X to W in C whose
images in the morphism set HomD(Φ(X),Φ(W )) are equal. Since the kernel K(X)
of the map AutC(X) → AutD(Φ(X)) acts freely on HomC(X,Y ), inducing a bijection
HomC(X,W )/K(X) ∼= HomD(Φ(X),Φ(W )), there is a unique ρ ∈ K(X) with the
required property.

Proposition 5.3. Let C, D be EI-categories and Φ: C → D a regular functor. Then
Φ induces a regular functor S(C) → S(D).

Proof. There is an obvious functor S(C) → S(D) sending an object σ : [m] → C in
S(C) to the object Φ ◦ σ : [m] → D in S(D). Set σ̄ = Φ ◦ σ and |σ| = m. Let τ : n→ C
be another object in S(C). We show that the map HomS(C)(σ, τ) → HomS(D)(σ̄, τ̄)
induced by Φ is surjective; we proceed by induction over |σ|. For |σ| = 0 this fol-
lows from the regularity of the functor Φ: C → D. Suppose that |σ| = m is positive;
denote by σ′ the object in S(C) obtained by deleting σ(0). Then |σ′| = m− 1; hence
by induction, the map from HomS(C)(σ′, τ) to HomS(D)(σ̄′, τ̄) is surjective. Using
the previous lemma one sees that the map from HomS(C)(σ, τ) to HomS(D)(σ̄, τ̄) is
surjective as well. The rest is an easy verification.

Lemma 5.4. Let C, D be EI-categories and Φ: C → D a regular functor. Let X be
an object in C and set Y = Φ(X).

(i) The partially ordered set [ΦY ] has [(X, IdY )] as the unique maximal element.
(ii) We have AutΦY (X, IdY ) = ker(AutC(X) → AutD(Y )).

Proof. For (i), let (Z,ψ) be an object in ΦY ; that is, Z is an object in C and
ψ : Φ(Z) → Y is a morphism in D. Since Φ is regular, there is a morphism β : Z → X
such that Φ(β) = ψ = IdY ◦ ψ. Thus β is a morphism in ΦY from (Z,ψ) to (X, IdY ).
In other words, [(Z,ψ)] 6 [(X, IdY )] for any object (Z,ψ) in ΦY . This proves (i), and
(ii) is trivial.
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Lemma 5.5. Let C, D be EI-categories and Φ: C → D a regular functor. Let X be an
object in C and set Y = Φ(X). Suppose that every morphism in C is a monomorphism.

(i) The category ΦY is regular.
(ii) For any object (Z,ψ) in ΦY , we have

AutΦY (Z,ψ) = ker(AutC(Z) → AutD(Φ(Z)).

Proof. Let α, β : (Z,ψ) → (Z ′, ψ′) be two morphisms in ΦY . That is, Z, Z ′ are
objects in C and ψ ∈ HomD(Φ(Z), Y ), ψ′ ∈ HomD(Φ(Z ′), Y ) such that

ψ′ ◦ Φ(α) = ψ = ψ′ ◦ Φ(β).

Since Φ is regular there are morphisms ϕ ∈ HomC(Z,X), ϕ′ ∈ HomC(Z ′, X) such that
Φ(ϕ) = ψ and Φ(ϕ′) = ψ′. Then Φ(ϕ′ ◦ α) = Φ(ϕ) = Φ(ϕ′ ◦ β). The regularity of Φ
implies that there is a unique automorphism γ ∈ AutC(X) such that ϕ′ ◦ α ◦ γ =
ϕ′ ◦ β and such that Φ(γ) = IdY . Since ϕ′ is a monomorphism we get that α ◦ γ = β.
It follows that γ is the unique automorphism of (Z,ψ) in ΦY satisfying α ◦ γ = β. This
proves (i). When applied to the case (Z,ψ) = (Z ′, ψ′) and β = IdZ , this argument
proves (ii).

Theorem 5.6. Let C, D be EI-categories and Φ: C → D a regular functor. Sup-
pose that every morphism in C is a monomorphism. Let A be an abelian group
and for any object X in C denote by K(X) the kernel of the group homomorphism
AutC(X) → AutD(Φ(X)) induced by Φ. Suppose that Hq(K(X);A) = {0} for q > 0
and any object X in C, with respect to the trivial action of K(X) on A. Then Φ
induces an isomorphism H∗(C;A) ∼= H∗(D;A).

Proof. Let Y be an object in D. By 5.5, the category ΦY is regular, and by 5.4, the
partially ordered set [ΦY ] has a unique maximal element. By 3.1 applied to ΦY there
is a spectral sequence of the form

Hp([ΦY ]; [(Z,ψ)] 7→ Hq(AutΦY (Z,ψ);A)) ⇒ Hp+q(ΦY ;A).

Now AutΦY (Z,ψ) = K(Z) by 5.5, and hence the assumptions imply that this spec-
tral sequence collapses to an isomorphism Hp([ΦY ];A) ∼= Hp(ΦY ;A). However, this
group is zero for q positive as [ΦY ] has a unique maximal element. This shows that
RqΦ!(A) = 0 for q positive, and hence the base change spectral sequence of Φ collapses
to an isomorphism H∗(C;A) ∼= H∗(D;A) as stated.

6. Further invariance properties of H∗(C; k×)

Let p be a prime. A fusion systems F of a block with defect group P of a finite
p-solvable group G is, by a result of Puig, always the fusion system of a finite group
L having P as Sylow-p-subgroup such that Q = Op(L) is an F-centric subgroup of P .
The results of this section, besides providing some reduction techniques for calculating
H∗(Fc; k×), imply that H2(Fc; k×) is the p′-part of the Schur multiplier of L in that
case (see 6.6 below). It is well known that any element α in the p′-part of the Schur
multiplier of L arises as a Külshammer-Puig 2-cocycle of the fusion system F at Q in
a suitable block of a finite central p′-extension L̂ of L determined by α. We first show
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the invariance of H∗(Fc; k×) with respect to taking quotients by central p-subgroups.
If F is a fusion system on a finite p-group P and Z is a subgroup of Z(P ), then the
equality F = CF (Z) means that every morphism ϕ : Q→ R in F can be extended to
a morphism ψ : QZ → RZ in F such that ψ|Z = IdZ . If F = CF (Z), then F induces
a fusion system on P/Z, denoted by F/Z. Given a fusion system F on a finite p-group
P , we denote as before by Fc the full subcategory in F of all F-centric subgroups of
P ; this is a right ideal in F . We denote by F̄ the quotient category of F having as
objects the subgroups of P and as morphism sets the orbits AutR(R)\HomF (Q,R)
of the morphism set HomF (Q,R) with respect to the action of the group of inner
automorphisms AutR(R) of R via the composition of group homomorphisms, called
the orbit category of F . Denote by F̄c the image of Fc in F̄ . While all morphisms
in F are monomorphisms, this is no longer true in F̄ ; however, all morphisms in F̄c
are epimorphisms. For the centric linking system L of F we refer to [3, 1.7]. The
following invariance properties are essentially consequences of 5.6.

Proposition 6.1. Let F be a fusion system on a finite p-group P such that F =
CF (Z) for some subgroup Z of Z(P ) and let C be a right ideal in F consisting of
subgroups of P containing Z such that the image C/Z of C in F/Z is contained in
(F/Z)c. Let k be an algebraically closed field of characteristic p. The canonical functor
C → wC/Z is regular and induces an isomorphism H∗(C; k×) ∼= H∗(C/Z; k×).

Proof. Let Q, R be subgroups of P belonging to C. Then Z is contained in Q, R
by the assumptions. The morphism set HomF/Z(Q/Z,R/Z) is the canonical image
of the morphism set HomF (Q,R); in particular, the canonical functor C → C/Z is
surjective on morphisms. This also implies that if Q/Z ∼= R/Z in C/Z then Q ∼= R in
C, and hence we have the isomorphism of posets [C] ∼= [C/Z]. If ϕ,ψ : Q→ R are two
morphisms in C whose images in C/Z are equal, then, in particular, ϕ(Q) = ψ(Q) ⊆ R,
and with the obvious abuse of notation we get an automorphism κ = ψ−1 ◦ ϕ of Q
whose image in C/Z is the identity on Q/Z. Thus κ is the unique element of the group
K(Q) = ker(AutF (Q) → AutF/Z(Q/Z)) satisfying ϕ = ψ ◦ κ. This shows that the
canonical functor C → C/Z is regular. Moreover, the group K(Q) is an abelian p-group
and since k is algebraically closed of characteristic p this implies that Hq(K(Q); k×) =
{0} for all q > 0. Thus 5.6 applies, proving the theorem.

Proposition 6.2. Let F be a fusion system on a finite group P , let C be a right ideal
in Fc and let C̄ be the canonical image of C in the orbit category F̄ . Let k be an
algebraically closed field of characteristic p. The canonical functor C → C̄ induces a
regular functor S(C) → S(C̄) and an isomorphism H∗(C; k×) ∼= H∗(C̄; k×).

Proof. Two subgroups Q, P of P are isomorphic in F if and only if they are iso-
morphic in F̄ . Thus the canonical functor C → C̄ sends non-isomorphisms to non-
isomorphisms; hence it induces a functor S(C) → S(C̄), which in turn induces an
isomorphism of partially ordered sets [S(C)] ∼= [S(C̄)]. Let σ : [m] → C and τ : [n] → C
be objects in S(C) and denote by σ̄, τ̄ their images in S(C̄). Let (α, µ̄) : σ̄ → τ̄ be a
morphism in S(C̄); that is, α : [m] → [n] is an order-preserving map and µ̄ : σ̄ ∼= τ̄ ◦ α
is a natural isomorphism. Explicitly, µ̄ consists of a compatible family of group iso-
morphisms µ̄i : σ̄(i) ∼= τ̄(α(i)); that is, for 0 6 i < m we have µ̄i+1 ◦ σ̄(i < i+ 1) =
τ̄(α(i) < α(i+ 1)) ◦ µ̄i. Since the functor C → C̄ is surjective on morphisms, there are
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group isomorphisms µi : σ(i) → τ(α(i)) in C, but this family need not be a natural
transformation. More precisely, for 0 6 i < m there is a group element vi ∈ τ(α(i))
such that if we denote by ci the inner automorphism of τ(α(i)) given by conju-
gation with vi, we have ci+1 ◦ µi+1 ◦ σ(i < i+ 1) = τ(α(i) < α(i+ 1)) ◦ µi. An easy
inductive argument shows that after replacing µi+1 by ci+1 ◦ µi+1 we get a natu-
ral isomorphism µ : σ ∼= τ ◦ α lifting µ̄, which shows that the functor S(C) → S(C̄)
is surjective on morphisms. Finally, if µ, µ′ are two morphisms in S(C) from σ to
τ , then by the regularity of S(C) there is a unique automorphism β of σ such that
µ′ = µ ◦ β. Thus, if, in addition, the images µ̄, µ̄′ of µ, µ′ in S(C̄) are equal, then
the image β̄ in S(C̄) satisfies µ = µ ◦ β. Since every morphism in S(C̄) is a monomor-
phism this implies that β̄ = Idσ̄, and hence β belongs to the kernel K(σ) of the
canonical map from AutS(C)(σ) to AutS(C̄)(σ̄), which shows that indeed the functor
S(C) → S(C̄) is regular. Moreover, by standard properties of central group exten-
sions, the group K(σ) is a p-group. It follows that Hq(K(σ); k×) = 0 for positive
q. Thus 5.6 implies H∗(S(C); k×) ∼= H∗(S(C̄); k×), whence the stated isomorphism
H∗(C; k×) ∼= H∗(C̄; k×).

Proposition 6.3. Let F be a fusion system on a finite p-group P having a centric
linking system L with structural functor π : L → Fc. Let C be a right ideal in L and
let D be its image in F under π. Let k be an algebraically closed field of characteristic
p. The functor π induces an isomorphism H∗(C; k×) ∼= H∗(D; k×).

Proof. The centric linking system L is an extension of Fc by the centre functor
Z : Fc → Z(p) sending an F-centric subgroup Q of P to its centre Z(Q). Thus π
induces a regular functor C → D and for any F-centric subgroup of P we have K(Q) =
ker(AutL(Q) → AutF (Q)) ∼= Z(Q); hence Hq(K(Q); k×) = {0} for q > 0. Thus 5.6
applies and yields the isomorphism as stated.

Proposition 6.4. Let F be a fusion system on a finite p-group P , let Q be a normal
subgroup of P such that F = NF (Q) and let C = F>Q be the right ideal in F consisting
of all subgroups of P containing Q. Let A be an abelian group. Restriction induces an
isomorphism H∗(C;A) ∼= H∗(AutF (Q);A).

Proof. Let D be the full subcategory of C having Q as unique object and let Φ: D → C
be the inclusion functor. For any subgroup R belonging to C denote by ιR : Q ⊆ R the
inclusion homomorphism. For any morphism ϕ : Q→ R we have ϕ(Q) = Q because
F = NF (Q). Thus composition with the inclusion morphism ιR induces a bijection
AutF (Q) ∼= HomF (Q,R). It follows from 3.2 that Φ has a right adjoint Ψ: C → D.
Then Ψ∗ is right adjoint to Φ∗; in other words, Φ! = Ψ∗ is exact, and hence we have
H∗(D;A) = H∗(C; Ψ∗(A)) = H∗(C;A) by [9, 3.1].

Proposition 6.5. Let F be a fusion system on a finite p-group P , let Q be an F-
centric normal subgroup of P such that F = NF (Q) and let C = F>Q be the right ideal
in F consisting of all subgroups of P containing Q. Let A : F̄c → Ab be a contravari-
ant functor. Restriction induces an isomorphism H∗((F̄c)op;A) ∼= H∗((C̄)op;A).

Proof. The inclusion functor Ψ: C̄ → F̄c has a left adjoint Φ sending R in F̄c to
QR. Indeed, for any morphism ϕ : R→ S in Fc there is a morphism ψ : QR→ QS
in C extending ϕ, and the image of ψ in C̄ is unique since every morphism in F̄c is
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an epimorphism, which shows that there is a canonical functor Φ sending R to QR.
Moreover, for R in Fc and S in C we have HomC̄(QR,S) ∼= HomF̄c(R,S), which shows
that Φ is left adjoint to Ψ. Thus restriction along Ψ induces the stated isomorphism
by [9, 3.1].

Corollary 6.6. Let F be a fusion system on a finite p-group P such that F = NF (Q)
for some F-centric normal subgroup Q of P . Let L be a finite group with P as Sylow-
p-subgroup such that Q = Op(L), CL(Q) = Z(Q) and such that FP (L) = F . Then
H∗(Fc; k×) ∼= H∗(L; k×).

Proof. We have L/Z(Q) ∼= AutF (Q), and hence combining the above results yields

H∗(Fc; k×) ∼= H∗(C; k×) ∼= H∗(AutF (Q); k×) ∼= H∗(L; k×).
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