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A HOMOTOPICAL ALGEBRA OF GRAPHS
RELATED TO ZETA SERIES
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(communicated by J. Daniel Christensen)

Abstract
The purpose of this paper is to develop a homotopical alge-

bra for graphs, relevant to the zeta series and the spectra of
finite graphs. More precisely, we define a Quillen model struc-
ture in a category of graphs (directed and possibly infinite, with
loops and multiple arcs allowed). The weak equivalences for this
model structure are the Acyclics (graph morphisms which pre-
serve cycles). The cofibrations and fibrations for the model are
determined from the class of Whiskerings (graph morphisms
produced by grafting trees). Our model structure seems to fit
well with the importance of acyclic directed graphs in many
applications.

1. Introduction

In this paper we develop a notion of homotopy within graphs, and demonstrate
its relevance to the study of the zeta series and the spectrum of a finite graph. We
will work throughout with a particular category of graphs, described in Section 2
below. Our graphs will be directed and possibly infinite, with loops and multiple arcs
allowed.

Let us explain what we mean by homotopy here.
We are not concerned with the geometric realization of graphs as one-dimensional

topological spaces. Since one-dimensional CW complexes are homotopic to disjoint
unions of joins of circles, the usual invariants from algebraic topology cannot see much
of the structure of a graph in this way. In any case, directed graphs are definitely not
just part of topology (they are perhaps more related to new areas of directed topology,
as in Fajstrup and Rosický [5]).

Homotopy originally referred to topological deformation of structure. But Quillen’s
remarkable notes on homotopical algebra [14] gave abstract axioms for working with
concepts of homotopy in rather general categories. When these axioms are satisfied
in a category, we say that we have given a “model structure” there. Quillen’s axioms
have led to new insights and developments in settings such as chain complexes and
homological algebra, simplicial sets, topos theory, and small categories (including
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monoids, groups, groupoids, and posets). References include Cisinski [1], Dwyer and
Spalinski [3], Hovey [6], Joyal and Tierney [7], Thomason [17], and many others. Also,
recent proofs of the Bloch-Kato and Milnor conjectures are based upon development
of a homotopical algebra for schemes; see Morel and Voevodsky [13].

A central part of giving a model structure in a category is the specification of which
morphisms in the category are to be called “weak equivalences”. In most applications,
the weak equivalences are defined to be those morphisms which preserve some inter-
esting invariant, such as homotopy type for topology, homology for chain complexes,
geometric realization for simplicial sets, and nerve or topos of presheafs for small
categories.

In our model structure we use the cycle structure of directed graphs to determine
our weak equivalences. More precisely, we take as our weak equivalences the “acyclic”
graph morphisms, which neither create nor destroy cycles. We hope that our model
structure fits well with the role that acyclic directed graphs play in applications such
as computer algorithms, analysis of the internet, random walks and Markov chains,
and representations of quivers.

In Section 2 we set up our category Gph of graphs. In Section 3 we give background
on weak factorization systems in general, and establish an example with classes of
graph morphisms which we call Whiskerings and Surjectings. In Section 4 we give
axioms for model structures in general, and define our model structure on Gph.
In Section 5 we associate to each finite directed graph X a zeta series ZX(u). We
show that if f : X → Y is an acyclic graph morphism, then ZX(u) = ZY (u) and the
eigenvalues of the adjacency matrices of X and Y agree “up to zero eigenvalues”. The
paper ends with an appendix on the history of zeta series.
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2. A category of graphs

Let us establish precisely the objects and morphisms for our category Gph of
graphs. For our purposes, a graph is a data structure X = (X0, X1, s, t) with a set
X0 of nodes, a set X1 of arcs, and a pair of functions s, t : X1 → X0 which specify
the source and target nodes of each arc. We may say that a ∈ X1 is an arc from node
s(a) to node t(a). A graph morphism f : X → Y is a pair of functions f1 : X1 → Y1

and f0 : X0 → Y0 such that s ◦ f1 = f0 ◦ s and t ◦ f1 = f0 ◦ t.
Let D denote the graph with one node and no arcs. Let A denote the graph with

one arc and two nodes (its source and target). Then the set of nodes of a graph X
can be identified with the set of graph morphisms from D to X, and the set of arcs
of X can be identified with the set of graph morphisms from A to X.
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There is a stimulating discussion in Lawvere [10] of Gph as the category of
presheafs on the small category with objects 0 and 1 and two non-identity mor-
phisms from 0 to 1. It follows that Gph is a topos, and thus a category with many
nice geometric and algebraic and logical properties; see Mac Lane and Moerdijk [12],
for instance. We just call attention to a few aspects here.

The category Gph has all products, and all coproducts (sums); it also has pull-backs
(fiber products) and pushouts. Also, products distribute over coproducts, etc. As in
any presheaf category, these categorical constructions are performed “elementwise”,
where a graph has two types of elements, the nodes and the arcs. For instance, the
empty product (terminal object) 1 is the graph with one node and one arc (which is
a loop), and the empty coproduct (initial object) 0 is the graph with no nodes and
no arcs.

The category Gph has geometric aspects; for instance, it is a cartesian closed
category like a good category of “spaces”. The category Gph also has logical aspects;
for instance, there is a graph Ω which acts as generalized truth-values for graphs, in
that graph morphisms X → Ω classify sub-graphs of X (see Session 32 in Lawvere
and Schanuel [11]).

3. Two classes of graph morphisms, and a weak factorization
system

The path graph Pn has nodes {i : 0 6 i 6 n} and arcs {(i− 1, i) : 1 6 i 6 n}, with
s((i− 1, i)) = i− 1 and t((i− 1, i)) = i. Note that P0 = D and P1 = A. A path in a
graph X is just a graph morphism α : Pn → X for some non-negative integer n; we
define s(α) = α(0) and t(α) = α(n). If a is an arc in X such that t(α) = s(a), then
we define αa : Pn+1 → X, the concatenation of α and a.

Let us introduce some useful shorthand for arcs in a graph X. For any node x in
a graph X, let X(x, ∗) denote the set of those arcs in X which have source x, and let
X(∗, x) denote the set of arcs with target x. Note that a graph morphism f : X → Y
induces a function f : X(x, ∗) → Y (f(x), ∗), etc.

Here is our first class of graph morphisms.

Definition 3.1. A graph morphism f : X → Y is Surjecting if

f : X(x, ∗) → Y (f(x), ∗)
is a surjective function for all x ∈ X0.

A discrete graph is one with no arcs. We say that a node x is a root of the graph
X if X(∗, x) is empty. Let R(X) denote the set of roots in X, viewed as a discrete
subgraph of X. A rooted tree is a graph T with one root r such that, for each node x
in T , there is a unique (directed) path in T from r to x. For example, the path graph
Pn is a rooted tree; and so is the infinite path P∞ whose nodes are the set of non-
negative integers and whose arcs are the set of ordered-pairs (i− 1, i) of non-negative
integers, with s((i− 1, i)) = i− 1 and t((i− 1, i)) = i.

For any node x in a graph X, we can define a rooted tree TxX, the tree of paths
in X leaving x. The nodes in TxX are the finite paths in X with source x (note that
x is considered as a path of length 0 in X); the arcs in TxX are the triples (α, a, αa)
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where αa is the concatenation of path α and arc a in X; and s(α, a, αa) = α and
t(α, a, αa) = αa. There are natural graph morphisms TxX → X given by α 7→ t(α)
and (α, a, αa) 7→ a.

A rooted forest F is a coproduct of rooted trees. If F is a forest with roots
R(F ), then we may form a new graph XF as the pushout of the graph morphisms
r : R(F ) → F and f : R(F ) → X; we say that XF is formed by attaching the forest F
to X along R. For instance, if r is a root in a tree T and x is any node in a graph
X, then XT is formed by attaching the tree T to X at the node x (along the graph
morphisms r : D → T and x : D → X).

Definition 3.2. A graph morphism f : X → Y is a Whiskering if Y is formed by
attaching some rooted forest to X.

For example, the graph morphism s : D → A is a Whiskering, where s exhibits
the “dot” graph D as the source subgraph of the “arrow” graph A. Also, every
isomorphism is a Whiskering, and R(F ) → F is a Whiskering if F is a rooted forest.

Our goal in this section is to demonstrate some remarkable factorization properties
of Surjectings and Whiskerings. Here is the conceptual background.

Definition 3.3. Let ` : X → Y and r : A → B be morphisms in a category S. We say
that ` † r when, for all f and g, if

X

`

²²

f
// A

r

²²

Y
g

// B

commutes, then

X

`

²²

f
// A

r

²²

Y
g

//

h

>>~~~~~~~
B

commutes for some h. We say that h is a filler for the commutative diagram. We
may also say that h lifts g along r, or that h drops (“extends”) f along `. Given two
classes L and R of morphisms, we say L † R when we have ` † r for every ` ∈ L and
every r ∈ R. Given a class F of morphisms we may define

F† = {r : f † r,∀f ∈ F} and †F = {` : ` † f, ∀f ∈ F}.
Definition 3.4. A weak factorization system in S is given by two classes L and R
such that L† = R and L = †R and such that, for any morphism c in S, there exist
` ∈ L and r ∈ R with c = r ◦ `.

The notion of a weak factorization system has become a part of homotopical alge-
bra; see Section 4.

The following three propositions combine to show that Surjectings and Whiskerings
give a weak factorization system in Gph. Our Proposition 3.5 was inspired by an
argument in Enochs and Herzog [4].
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Proposition 3.5. Any graph morphism f : X → Y factors as a Whiskering followed
by a Surjecting.

Proof. Recall that for each node y in Y we have the tree TyY of paths in Y leav-
ing y. From f we construct the rooted forest F =

∑
x∈X0

Tf(x)Y , with roots R = X0

considered as a discrete subgraph of X. The pushout of R → F along the subgraph
inclusion R → X defines a Whiskering w : X → XF . We have g : F → Y as a coprod-
uct of the morphisms Tf(x)Y → Y , and since f : X → Y and g : F → Y agree on R,
they determine a unique graph morphism p : XF → Y . Note that f = p ◦ w.

Let us show that p is a Surjecting. For any node z in XF we must show that
p : XF (z, ∗) → Y (p(z), ∗) is surjective. But z is either a node x or a path in Y with
source f(x), for some x ∈ X0.

In the first case, we have p : XF (x, ∗) → Y (f(x), ∗) with

XF (x, ∗) = X(x, ∗) ∪ Tf(x)Y (f(x), ∗),
and Tf(x)Y (f(x), ∗) → Y (f(x), ∗) is a bijection.

In the second case, we have p : XF (α, ∗) → Y (p(α), ∗) with

XF (α, ∗) = Tf(x)Y (α, ∗) = Y (t(α), ∗) = Y (p(α), ∗).
In either case, p : XF (z, ∗) → Y (p(z), ∗) is surjective.

Proposition 3.6. Whiskering † Surjecting.

Proof. Let f : Z → Y be Surjecting. First we show lifting of rooted trees. More pre-
cisely, if T is a rooted tree with root x and we have the following commutative
diagram

D

x

²²

z // Z

f

²²

T
g

// Y,

then there is a filler h : T → Z. This follows by induction on the length of path from
the root to nodes of T , as follows. Suppose that we have extended h to paths of length
n and let αa be a path of length n + 1 in T . Let x′ = t(α). Then f(h(x′)) = g(x′),
g(a) ∈ Y (g(x′), ∗) and f : Z(h(x′), ∗) → Y (g(x′), ∗) is a surjective function, so there
exists an arc a′ ∈ Z(h(x′), ∗) so that f(a′) = g(a). We extend h to αa by h(a) = a′.

More generally, consider any commutative diagram

X

w

²²

g′
// Z

f

²²

XF
g

// Y

with w a Whiskering given by

R(F )

²²

i // X

w

²²

F
j

// XF .
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We want to define a filler h : XF → Z, by extending g′ along every tree T in F . This
is possible since the square is commutative and f is Surjecting.

Proposition 3.7. (Whiskering, Surjecting) is a weak factorization system.

Proof. By the preceding proposition we have

Whiskering ⊆ †Surjecting and Surjecting ⊆ Whiskering†.

If f : X → Y is not in Surjecting, then there exists some x ∈ X0 and some a ∈
Y (f(x), ∗) which is not in the image of X(x, ∗) → Y (f(x), ∗). Consider the Whisker-
ing s : D → A and the commutative diagram

D

D

²²

x // X

f

²²

A
a // Y

for which there is no filler. This shows that f /∈ Surjecting implies f /∈ Whiskering†.
It follows that Whiskering† = Surjecting. We will show that f /∈ Whiskering implies
f /∈ †Surjecting, by factoring. Suppose that f : X → Y with f /∈ Whiskering; then
f = p ◦ w with some Whiskering w : X → XF and some Surjecting p : XF → Y .
Consider the commutative diagram

X

f

²²

w // XF

p

²²

Y
id // Y.

If this had a filler h : Y → XF , then we would have p ◦ h = id. This would exhibit
f as a “morphism retract” of w (a retract in the morphism category). But we show
in the next lemma that this would give us the desired contradiction, finishing our
proof.

Lemma 3.8. Whiskerings are stable with respect to morphism retract.

Proof. First we show that any retract of a rooted tree is a rooted tree. If T is a rooted
tree with root x0 and we have the following commutative diagram with r ◦ s = idT ′

D

x

²²

id // D

x0

²²

id // D

x

²²

T ′
s // T

r // T ′,

then T ′ is a rooted tree with root x. This is clear since, for any node x′ in T ′, the
unique path α from x0 to s(x′) gives r ◦ α a path from x to r(s(x′)) = x′, and there
can be no other path in T ′ from x to x′.
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More generally, consider any commutative diagram

X

f

²²

s′ // Z

w

²²

r′ // X

f

²²

Y
s // ZF

r // Y

such that w is a Whiskering, r ◦ s = idY and r′ ◦ s′ = idX . The fact that r ◦ s = idY

implies that s is injective on nodes and arcs. Also w is injective on nodes and arcs
since it is a Whiskering. This implies that f is injective on nodes and arcs, since the
first square is commutative.

We will describe a rooted forest F ′ with roots R′ a discrete subgraph of X, such
that Y = XF ′ .

The Whiskering w is given by a rooted forest F whose roots R form a discrete
subgraph of Z. Let R′ = R ∩X as subgraphs of Z. Then R′ is a discrete subgraph
of X. For each x ∈ R′, consider the tree T in the forest F with root x0 = s(x). Then
r(T ) is a retract of T , so r(T ) is a tree with root x = r(x0). Let F ′ =

∑
x∈R′ r(T ).

Then Y = XF ′ , and we are done.

4. A Quillen model structure on the category of graphs

Suppose that S is a category with finite limits and finite colimits. Then Quillen’s
notion [14] of “model category” can be expressed via the following axioms (which we
learned from Section 7 of Joyal and Tierney [8]).

Definition 4.1. A model structure on S is a triple (C,W,F) of classes of morphisms
in S that satisfies:
(1) “three for two”: if two of the three morphisms a, b, a ◦ b belong to W, then so

does the third;
(2) the pair (C,F) is a weak factorization system (where C = C ∩W);
(3) the pair (C,F) is a weak factorization system (where F = W ∩F).

The morphisms in W are called weak equivalences. The morphisms in C are called
cofibrations, and the morphisms in C are called acyclic cofibrations. The morphisms
in F are called fibrations, and the morphisms in F are called acyclic fibrations.

Note that, according to Hovey [6, p. 28], “It tends to be quite difficult to prove
that a category admits a model structure. The axioms are always hard to check.”

Recall from Section 3 that the path graph Pn has nodes {0, . . . , n}. For n > 0, the
cycle graph Cn is the graph produced by identifying the nodes 0 and n of Pn. We
have C0 = P0 = D, the graph with one node and no arcs; and C1 is the graph with
one node, and one arc with source equal to target. Let Cn(X) denote the set of graph
morphisms from Cn to X; we may call this the set of n-cycles in X.

Definition 4.2. A graph morphism f : X → Y is Acyclic when

Cn(f) : Cn(X) → Cn(Y )

is bijective for all n > 0.
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Here we exclude n = 0, since we do not want to require that f0 : X0 → Y0 is a
bijection.

The Acyclics contain the Whiskerings, and many other useful graph morphisms.
Now we are ready to define the morphism classes W and C and F for our Quillen

model structure on Gph.

Definition 4.3. LetW be the Acyclics. Let F be the Surjectings, so that F = W ∩F
must be the Acyclic Surjectings. Let C be †F .

In the next few propositions we show directly that this does indeed define a model
structure on Gph. We use the following facts, which are easy to verify directly from
the definition C = †F :
(1) Every composition of graph morphisms in C is in C.
(2) Every Whiskering is in C.
(3) For any set I and n > 0, if Ai → Bi is in C for all i ∈ I, then

∑
i∈I Ai →

∑
i∈I Bi

is in C.
(4) For any set I and n > 0, the graph morphism i : 0 → I ×Cn is in C.
(5) For any set I, the graph morphism j : I ×Cn → Cn is in C.

In (4) and (5) we view the set I as a discrete graph and we view the graph I ×Cn as
a sum of copies of Cn. Let in denote i : 0 → Cn and let jn denote j : Cn + Cn → Cn.

Proposition 4.4. The Acyclics satisfy the “three for two” property.

Proof. This is easy, since Acyclics are defined functorially. Consider h = f ◦ g. Then
Cn(h) = Cn(f) ◦ Cn(g) for all n. But the class of bijective functions in the category
of sets satisfies the “three for two” property.

Proposition 4.5. (C,F) is a weak factorization system in Gph.

Proof. We have already shown in Section 3 that (Whiskering, Surjecting) is a weak
factorization system in Gph. Let us show that the class of Whiskerings is equal to
C = C ∩W. Every Whiskering is in C. Suppose f ∈ C. By Proposition 3.5 we have
f = p ◦ w with p ∈ F , so the diagram

X

f

²²

w // Z

p

²²

Y
id // Y

has a filler h : Y → Z with h ◦ f = w and p ◦ h = idY . It follows that

X

f

²²

id // X

w

²²

id // X

f

²²

Y
h // ZF

p
// Y

commutes, making f a retract of the Whiskering w. Thus f is a Whiskering, by
Lemma 3.8.
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Proposition 4.6. Every graph morphism g factors as g = f ◦ c with

c ∈ C and f ∈ F .

Proof. Given any graph morphism g : X → Y , we factor g in three steps.
First, we let C be the disjoint union of a copy of Cn for each element of Cn(Y ) which

is not in the image of Cn(g) : Cn(X) → Cn(Y ). Let h : C → Y be the graph mor-
phism which sends each summand cycle of C to its image in Y . Let X ′ = X + C, let
g′ : X → X ′ denote the inclusion X → X + C, and let f ′ : X ′ → Y denote the graph
morphism X + C → Y determined by g : X → Y and h : C → Y . Then g = f ′ ◦ g′,
and g′ ∈ C, and Cn(f ′) : Cn(X ′) → Cn(Y ) is surjective for all n > 0.

Next, we let J = {(c, n) : c ∈ Cn(Y )}, with j :
∑

J Ic ×Cn →
∑

J Cn, where
Ic is the preimage of c for the function Cn(f ′) : Cn(X ′) → Cn(Y ). Also let k :

∑
J Ic ×

Cn → X ′ be the graph morphism which sends each summand cycle to the corre-
sponding cycle in X ′, and let ` :

∑
J Cn → Y be the graph morphism which sends

each summand cycle to the corresponding cycle in Y . Let g′′ : X ′ → X ′′ denote the
pushout of j along k. Let f ′′ : X ′′ → Y be the pushout graph morphism induced by
` and f ′. Then g′′ ∈ C and f ′ = f ′′ ◦ g′′, and Cn(f ′′) : Cn(X ′′) → Cn(Y ) is bijective
for all n > 0, so that f ′′ ∈ W .

Finally, we factor f ′′ = f ′′′ ◦ g′′′ with Whiskering g′′′ : X ′′ → X ′′′ and Surjecting
f ′′′ : X ′′′ → Y , as in Section 3. Then g′′′ ∈ C and f ′′′ ∈ W ∩ F .

Thus, g = c ◦ f with c = g′′′ ◦ g′′ ◦ g′ in C, and f = f ′′′ in F .

Proposition 4.7. (C,F) is a weak factorization system in Gph.

Proof. We have C = †F , by definition. This shows also that F ⊆ C†. It remains only to
show that C† ⊆ F . But this is easy. Consider the Whiskering s : D → A from Section
3, and the graph morphisms in : 0 → Cn, jn : Cn + Cn → Cn as in (4) and (5) above.
These are all in C, since each can be lifted against any graph morphism in F . But if
g /∈ F , then we can show failure of lifting for either s or some in or jn.

Corollary 4.8. Our morphism classesW and C and F provide a Quillen model struc-
ture for the category Gph.

The above proofs show how the graph morphisms s : D → A, together with in : 0 →
Cn and jn : Cn + Cn → Cn, for n > 0, generate our class C of cofibrations. This
situation is a special case of a general principle in presheaf categories; see Proposition
7.5 in Joyal and Tierney [8], for instance.

5. Zeta series and almost isospectral graphs

Ihara zeta functions of graphs are usually discussed in a setting of “unoriented”
or “symmetric” graphs; see Kotani and Sunada [9], for instance. We need a version
suitable for directed graphs (in this section we may refer to objects of our category
Gph as directed graphs, for emphasis). There is a nice treatment of zeta series of finite
directed graphs in Section 2 of Kotani and Sunada [9]; we will follow them here, but
with our own terminology.
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Definition 5.1. A finite graph is one with finitely many nodes and arcs. The zeta
series of a finite directed graph X is the formal power series

Z(u) = exp
( ∞∑

m=1

cm
um

m

)
,

where cm = |Cm(X)| for m > 0.

See the appendix for some motivation for this definition, including how it relates
to an Euler product expansion in terms of “primes”.

Example 5.2. If X is the graph with one node and n arcs, then cm = nm and
∞∑

m=1

cm
um

m
=

∞∑
m=1

nmum

m
= − log(1− nu) so that Z(u) =

1
1− nu

.

Definition 5.3. Let X be a finite graph. Let RX0 denote the real vector space with
basis the nodes of X. The adjacency operator A for X is the linear transformation
A : RX0 → RX0 determined by

A(x) =
∑

a∈X(x,∗)
t(a)

for x ∈ X0. The characteristic polynomial of X is defined as a(x) = det(xI −A), the
characteristic polynomial of the adjacency operator A for X. If X has n nodes, then
a(x) is a monic polynomial of degree n, and the reversed characteristic polynomial of
X is defined to be una(u−1) = det(I − uA).

Note that the reversed characteristic polynomial of a finite graph X has constant
term 1, and is thus a unit in the ring of formal power series with integer coefficients.

If we totally order the nodes of X, then the adjacency operator is represented by
the square matrix A with entry Aj,i equal to the number of arcs in X from the ith

node to the jth node. It follows that cm = |Cm(X)| is the trace of the matrix Am.

Proposition 5.4. If X is a finite graph with n nodes and Z(u) is the zeta series of
X, then

Z(u) = det(I − uA)−1 =
1

una(u−1)
.

Proof. Let A be any endomorphism of an n-dimensional real vector space V . We have
det(I − uA) = un det(u−1I −A), which proves the second equality. The first equality
follows from

exp
( ∞∑

m=1

Trace(Am)
um

m

)
= det(1− uA)−1.

One can check this linear algebra identity by induction on the dimension of V , since
both sides are multiplicative for short exact sequences of vector spaces endowed
with endomorphisms. Or, when V has a basis of eigenvectors for A with eigenval-
ues λ1, . . . , λn, the identity follows from − log(1− x) =

∑
k

xk

k and

exp
( ∞∑

m=1

n∑

i=1

λm
i

um

m

)
=

n∏

i=1

exp(− log(1− λiu) =
n∏

i=1

1
1− λiu

= det(I − uA)−1.
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Example 5.5 (continued). If X is the graph with one node and n arcs, then a(x) =
x− n and u1a(u−1) = 1− nu, which agrees with Z(u) = 1

1−nu .

Proposition 5.6. If X and Y are finite graphs and f : X → Y is an acyclic mor-
phism, then ZX = ZY .

Proof. This is clear from the definition, since |Cm(X)| = |Cm(Y )| for all m > 0.

Definition 5.7. The eigenvalues of the adjacency operator for X may be called the
spectrum of X (even though the adjacency operator is not necessarily a diagonalizable
operator). We say that two finite graphs X and Y are isospectral if they have the
same characteristic polynomial. We say that X and Y are almost isospectral if they
have the same reversed characteristic polynomial.

Loosely speaking, X and Y are almost isospectral if and only if they have the same
non-zero eigenvalues.

Corollary 5.8. If X and Y are finite graphs with ZX = ZY , then X and Y are
almost isospectral.

Proof. This follows immediately from the preceding two propositions.

Appendix A. An appendix on the zeta series and its Euler
product expansion

Here is a little history, based on Thomas [16], of how our zeta series for finite
directed graphs relate to the famous zeta functions from number theory.

The zeta function of Euler and Riemann.
Let p range over the prime numbers. Then

ζ(s) =
∑

n

1
ns

=
∏
p

(1− 1
ps

)−1.

Dedekind’s zeta function for algebraic number fields.
Let A be the ring of integers in an algebraic number field K (so K is a finite

extension over the field Q of rational numbers). Let N(I) = |A/I| for any non-zero
ideal in A. Then

ζ(s) =
∑

I

1
N(I)s

=
∏

P

(1−N(P )−s)−1,

where I ranges over the non-zero principal ideals in A and P ranges over the prime
ideals in A.

A zeta function for algebraic function fields.
Let A be the ring of integers in an algebraic function field (so K is a finite extension

over the field Fq(x) of rational functions with coefficients in the field Fq with q
elements). But here N(I) = |A/I| = qν(I) for any non-zero ideal in A, where ν(I) is
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the dimension of A/I as a finite-dimensional vector space over Fq, so that

ζ(s) = Z(u)|u=q−s for Z(u) =
∏

P

(1− uν(P ))−1.

The zeta function for a projective variety over a finite field from Weil [18] is a com-
pleted version of this.

The form of zeta series that we use in Section 5 seems ultimately based on the
following observation. If A is an endomorphism of a finite-dimensional vector space
over a field of characteristic zero, then the knowledge of the trace of An for all n is
equivalent to the knowledge of the reversed characteristic polynomial of A, as we see
from the identity

det(1− uA)−1 = exp
( ∞∑

n=1

Trace(An)
un

n

)
,

used in the proof of Proposition 5.4.
If A is a matrix expressing a function τ : S → S with S finite, then the trace of An

counts the number of fixed points of τn. This is one of the ideas behind the Lefschetz
fixed point theorem, the Weil zeta function used in the Weil conjectures, and other
dynamical zeta functions such as the Selberg zeta function in Riemannian geometry
and the Ihara zeta function (see Ruelle [15] for instance).

In our setting of graphs, we merely use that if A is the adjacency matrix of a finite
graph X, then the trace of An counts the number of cycles of length n in X. This
leads to the following Euler product expansion, analogous to the one for algebraic
function fields.

The cycle graph Cn has nodes i for 0 6 i < n. If m divides n then we have a graph
morphism π : Cn → Cm given by sending node i to node i mod m.

Definition A.1. A cycle c : Ckm → X is a k-multiple if c = c′ ◦ π for some cycle
c′ : Cm → X. A prime cycle of length n in X is a cycle c : Cn → X which is not a
k-multiple for any k > 1. Let us say that two cycles c, c′ : Cn → X are shift equivalent
if c′ = c ◦ τ i for some i, where τ i : Cn → Cn is the shift morphism sending node j to
node j + i mod n. Let us say that a prime P in X is an equivalence class of prime
cycles in X, and that ν(P ) is the length of the prime P .

This makes sense, since shift equivalence is an equivalence relation on Cn(X), and
on prime cycles of length n in X.

Proposition A.2. The Euler product expansion for the zeta function of a finite graph
is given by

Z(u) =
∏

P

(1− uν(P ))−1,

where P ranges over all primes in X and ν(P ) is the length of P .
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Proof. Let c̄k be the number of primes P of length k. Then cm =
∑
{k:k|m} kc̄k and

we have

log
∏

P

(1− uν(P ))−1 =
∑

P

∞∑

k=1

uk|p|

k
=

∞∑

k=1

∞∑

`=1

∑

ν(P )=`

uk`

k

=
∞∑

k=1

∞∑

`=1

c̄`
uk`

k
=

∞∑
m=1

1
m

∑

`|m
`c̄`u

m =
∞∑

m=1

cm
um

m
,

which is log Z(u). Here equality one and equality four follow from

− log(1− uv) =
∑

k

ukv

k
and m = k` ⇐⇒ `

m
=

1
k

.

Example A.3 (Example 5.2 (continued)). For X the graph with one node and two
arcs, we must have

1
1− 2u

= (1− u)−2(1− u2)−1(1− u3)−2 · · · =
∏

(1− uk)−c̄k .

This is related to the cyclotomic (necklace) identity; see Dress and Siebeneicher [2],
for instance.
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