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ON THE EXISTENCE OF A v32
2 -SELF MAP ON M(1, 4)

AT THE PRIME 2

M. BEHRENS, M. HILL, M.J. HOPKINS and M. MAHOWALD

(communicated by Donald M. Davis)

Abstract
Let M(1) be the mod 2 Moore spectrum. J.F. Adams proved

that M(1) admits a minimal v1-self map v4
1 : Σ8M(1) →M(1).

Let M(1, 4) be the cofiber of this self-map. The purpose of this
paper is to prove that M(1, 4) admits a minimal v2-self map of
the form v32

2 : Σ192M(1, 4) →M(1, 4). The existence of this map
implies the existence of many 192-periodic families of elements
in the stable homotopy groups of spheres.
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1. Introduction

Fix a prime p. The p-component of the stable homotopy groups of spheres admits a
filtration called the chromatic filtration. Elements in the nth layer of this filtration fit
into infinite vn-periodic families. Theoretically, this process is well understood, thanks
to the Nilpotence and Periodicity Theorems of Devinatz, Hopkins, and Smith [HS98,
DHS88].

It is difficult in practice, however, to explicitly identify vn-periodic elements, and to
determine their periods. One useful technique is to inductively form cofiber sequences:

S
pi0

−−→ S →M(i0),

Σ2i1(p−1)M(i0)
v

i1
1−−→M(i0) →M(i0, i1),

...

Σ2in(pn−1)M(i0, . . . , in−1)
vin

n−−→M(i0, . . . , in−1) →M(i0, . . . , in).

The maps vi
k are vk-self maps. The Periodicity Theorem guarantees their existence for

large i. The reader is warned that there are potentially many non-homotopic vi
k-self

maps, so the homotopy types of the spectra M(i0, . . . , in) are not determined merely
from the sequence (i0, . . . , in).

It is challenging to determine the minimal sequence (i0, i1, . . . , in). This mini-
mal sequence determines the periods of the primary constituents of the vn-periodic
families in the stable homotopy groups of spheres. We refer the reader to [Rav86,
Ch. 5.5], [Rav92], and [Beh07] for a more detailed discussion.

We give a brief synopsis of what is known concerning the minimal sequence of
integers (i0, . . . , in) so that the spectrum M(i0, . . . , in) exists at a given prime p.
For p > 3, it is known that the complex M(1, 1) is minimal [Ada66], for p > 5,
the complex M(1, 1, 1) is minimal [Smi70], and for p > 7, the complex M(1, 1, 1, 1)
is minimal [Tod71]. For p = 2, the complex M(1, 4) is minimal [Ada66], and for
p = 3, the complex M(1, 1, 9) is minimal [BP04].

In [DM81], it was argued that the complex M(1, 4, 8) is minimal at the prime 2,
i.e., that there is a v2-self map:

Σ48M(1, 4)
v8
2−→M(1, 4).

The result is incorrect: the image of v8
2 in the Adams-Novikov spectral sequence for

tmf is not a permanent cycle [HM, Bau08]. In fact the first multiple of v2 which
is a permanent cycle in this spectral sequence is v32

2 . The purpose of this paper is to
prove the following theorem:

Theorem 1.1. There is a v32
2 -self map

v : Σ192M(1, 4) →M(1, 4).

Corollary 1.2. At the prime 2, the complex M(1, 4, 32) is minimal.
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Remark 1.3. A v32
2 -self map is, by definition, a map v whose induced map

v∗ : K(2)∗M(1, 4) → K(2)∗M(1, 4)

is given by multiplication by v32
2 . In particular, the map v, and all of its iterates, must

be essential. Since there is a map of ring spectra

tmf → K(2)

under which the periodicity generator v32
2 ∈ π192(tmf 2) maps to v32

2 ∈ π192K(2), to
prove Theorem 1.1, it suffices to prove that there exists a self-map v such that

v∗ : tmf ∗M(1, 4) → tmf ∗M(1, 4)

is given by multiplication by v32
2 .

Remark 1.4. The fourth author reports that methods similar to those described in
this paper show that the spectra A1 and M(2, 4) also admit v32

2 -self maps. Here, A1

is a spectrum whose cohomology is a free module of rank 1 over the subalgebra A(1)
of the Steenrod algebra (see [DM81]).

The self-map of Theorem 1.1 produces many v32
2 -periodic infinite families of ele-

ments in the stable homotopy groups of spheres. These families are discussed in detail
in [HM]. In fact, all of the results of [DM81] and [Mah81] concerning v2-periodic
families are valid with v8

2 replaced by v32
2 .

Organization of the paper

In Section 2, we reduce Theorem 1.1 to showing that there exists a homotopy
element

v ∈ π192(M(1, 4) ∧DM(1))

with Hurewitz image v32
2 ∈ tmf 192(M(1, 4) ∧DM(1)). Here, DM(1) is the Spanier-

Whitehead dual of the spectrum M(1).

In Section 3 we construct modified Adams spectral sequences (MASSs) of the form

Exts,t
A∗

(F2,H(1, 4) ⊗DH(1, 4)) ⇒ πt−s(M(1, 4) ∧DM(1, 4)), (1.5)

Exts,t
A∗

(F2,H(1, 4) ⊗H∗(X)) ⇒ πt−s(M(1, 4) ∧X), (1.6)

where A∗ is the dual Steenrod algebra,H(1, 4) andDH(1, 4) are objects in the derived
category of A∗-comodules, and ExtA∗

is a group of homomorphisms in the derived
category. We show that (1.5) is a spectral sequence of algebras, and that (1.6) is a
spectral sequence of modules over (1.5).

In Section 4 we prove that there exists an element

v8
2 ∈ Ext8,56

A∗

(F2,H(1, 4) ⊗DH(1, 4)).

In Section 5, we give a general overview of the theory of generalized Brown-Gitler
A∗-comodules Mi(j). We describe a spectral sequence which computes ExtA∗

in terms
of ExtA(i) of tensor products of these comodules. The case of interest is where i = 2,
and the spectral sequence is an algebraic version of the tmf -resolution.
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In Section 6 we compute

Ext∗,∗
A(2)∗

(H(1, 4) ⊗M2(1)⊗k)

for k 6 3.
In Section 7 we establish vanishing lines for the Ext groups appearing in the alge-

braic tmf -resolution. These vanishing lines imply that the only targets of a potential
differential supported by v32

2 are detected in the algebraic tmf -resolution by the Ext
groups computed in Section 6.

In Section 8, we completely compute the MASS for tmf ∧M(1, 4).
In Section 9, we show that in the MASS for M(1, 4) ∧DM(1, 4), the differential

d2(v
8
2) is central. This allows us to deduce that d2(v

16
2 ) = 0. We then argue that the

differential d3(v
16
2 ) is central, which implies that d3(v

32
2 ) = 0. We just need to show

that v32
2 is a permanent cycle.

In Section 10, we show that κ̄6 is killed in the E3-term of the MASS for M(1, 4) ∧
DM(1, 4).

In Section 11, we prove the main theorem. We identify possible targets of dr(v
32
2 )

in the MASS for M(1, 4) ∧DM(1) using the results of Sections 6 and 7, and then
eliminate these possibilities using the differentials computed in Sections 8 and 10.

Conventions
In this paper we shall always be implicitly working in the stable homotopy category

localized at the prime 2. All homology and cohomology groups in this paper are
implicitly taken with F2 coefficients.
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2. Generalized Moore spectra

Let M(1) be the mod 2 Moore spectrum. There are many v1-self-maps

Σ8M(1) →M(1),

however, low dimensional calculations indicate that there is precisely one with Adams
filtration 4. We shall call this map v4

1 , and its cofiber will be denoted M(1, 4).
It is useful to regard the desired self-map v of Theorem 1.1 as an element of the

homotopy group π192(M(1, 4) ∧DM(1, 4)). The proof of the theorem is simplified by
the following splitting result:

Proposition 2.1 (Davis-Mahowald [DM81, Lem. 3.2]). The projection

M(1, 4) ∧DM(1, 4) →M(1, 4) ∧DM(1)

is a split surjection.
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Corollary 2.2. An element x ∈ πk(M(1, 4)) extends to a self-map

x̃ : ΣkM(1, 4) →M(1, 4)

if and only if 2x = 0.

To prove Theorem 1.1, it therefore suffices to construct an appropriate element
v′ ∈ π192(M(1, 4) ∧DM(1)).

3. Modified Adams spectral sequences

For a graded Hopf algebra Γ over a field k, let DΓ denote the derived category of
Γ-comodules. For objects M and N of DΓ, we define groups

Exts,t
Γ (M,N) = DΓ(ΣtM,N [s])

as a group of maps in the derived category. Here ΣtM denotes the t-fold shift with
respect to the internal grading of M , and N [s] denotes the s-fold shift with respect to
the triangulated structure of DΓ. This reduces to the usual definition of ExtΓ when
M and N are Γ-comodules. We shall frequently use the abbreviation

Ext∗,∗
Γ (M) := Ext∗,∗

Γ (k,M).

For a left Γ-comodule M and a right Γ-comodule N , let C∗(N,Γ,M) denote the
reduced cobar complex with

Cs(N,Γ,M) = N ⊗ Γ
⊗s

⊗M.

Here, Γ is the cokernel of the unit k → Γ. Then C∗(Γ,Γ,M) is an injective resolution
for M in the category of Γ-comodules, and

Exts,t
Γ (M) = Hs(C∗(k,Γ,M))t.

We refer the reader to [Rav86, Appendix 1] for details.

Let A∗ denote the dual Steenrod algebra. Let H(1) = H∗(M(1)) be the homology
of the mod 2 Moore spectrum. There is a triangle in DA∗

:

ΣF2[−1]
h0−→ F2 → H(1) → ΣF2. (3.1)

Let v4
1 : Σ12H(1)[−4] → H(1) be the unique non-zero element of Ext4,12

A∗

(H(1),H(1)),
which detects the v1-self map of M(1) in Adams filtration 4. Let H(1, 4) denote the
cofiber

Σ12H(1)[−4]
v4
1−→ H(1) → H(1, 4) → Σ12H(1)[−3].

Let

DM(1, 4) = F (M(1, 4), S) ≃ Σ−10M(1, 4)

denote the Spanier-Whitehead dual of M(1, 4), and let

DH(1, 4) = HomF2
(H(1, 4),F2) ∼= Σ−13H(1, 4)[3]

denote the corresponding object in DA∗
.
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Proposition 3.2. Let X be a finite complex. Then there are modified Adams spectral
sequences (MASSs) of the form:

Es,t
2 (M(1, 4) ∧X) = Exts,t

A∗

(H(1, 4) ⊗H∗(X)) ⇒ πt−s(M(1, 4) ∧X),

Es,t
2 (M(1, 4) ∧DM(1, 4)) = Exts,t

A∗

(H(1, 4) ⊗DH(1, 4))

⇒ πt−s(M(1, 4) ∧DM(1, 4)).

Proof. Consider the canonical Adams resolution of M(1):

M(1) M(1)0

��

M(1)1oo

��

M(1)2

��

oo · · · ,oo

K(1)0 K(1)1 K(1)2

where

M(1)i = H
∧i

∧M(1),

K(1)i = H ∧H
∧i

∧M(1).

Here H denotes the Eilenberg-MacLane spectrum HF2, and H denotes the fiber of
the unit S → H. Since the self-map v4

1 : Σ8M(1) →M(1) has Adams filtration 4,
there exists a lift:

M(1)4

��
Σ8M(1)

fv4
1

99

v4
1

// M(1).

The lift ṽ4
1 induces a map of Adams resolutions:

Σ8M(1)0

v4
1

��

· · · Σ8M(1)0

(fv4
1
)0

��

Σ8M(1)1oo

(fv4
1
)1

��

· · ·oo

M(1)0 · · ·oo M(1)4oo M(1)5oo · · · ,oo

(3.3)

where the maps (ṽ4
1)i are given by

(ṽ4
1)i : Σ8M(1)i = Σ8H

∧i
∧M(1)

1∧fv4
1−−−→ H

∧i
∧H

∧4
∧M(1) = M(1)i+4.

The mapping cones of the vertical maps of (3.3)

Σ8M(1)i−4
(fv4

1
)i

−−−→M(1)i →M(1, 4)i
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form a resolution:

M(1, 4) M(1, 4)0

��

M(1, 4)1oo

��

M(1, 4)2oo

��

· · · .oo

K(1, 4)0 K(1, 4)1 K(1, 4)2

Smashing this resolution with X, we obtain a spectral sequence

Es,t
1 (M(1, 4) ∧X) = πt−s(K(1, 4)s ∧X) ⇒ πt−s(M(1, 4) ∧X). (3.4)

By the 3 × 3 Lemma, the cofibers K(1, 4)i fit into cofiber sequences

Σ8K(1)i−4
(v4

1
)i

−−−→ K(1)i → K(1, 4)i. (3.5)

Here we take K(1)i−4 = ∗ if i < 4, and (v4
1)i is the map induced by smashing (ṽ4

1)i

with H.
Using the A∗-comodule structure of H(1) together with the fact that the composite

S8 →֒ Σ8M(1)
v4
1−→M(1)

has Adams filtration 4, one may easily check that the map

Σ12H(1) = Σ12π∗K(1)0
(v4

1
)0

−−−→ Σ4π∗K(1)4 = C4(F2, A∗,H(1))

is injective. It follows that the maps

Σ12Ci−4(F2, A∗,H(1)) = Σ8+iπ∗K(1)i−4
(v4

1
)i

−−−→ Σiπ∗K(1)i = Ci(F2, A∗,H(1))

are injective for all i. We conclude that the cofiber sequences (3.5) give rise to short
exact sequences

0 → Σ12Ci−4(F2, A∗,H(1) ⊗H∗X)
(v4

1
)i

−−−→ Ci(F2, A∗,H(1) ⊗H∗X)

→ Σiπ∗(K(1, 4)i ∧X) → 0.

In the derived category DA∗
we have a map of triangles:

Σ12C∗−4(A∗, A∗,H(1))

≃

��

(v4
1
)∗

// C∗(A∗, A∗,H(1))

≃

��

// Q(1, 4)∗

≃

��
Σ12H(1)[−4]

v4
1

// H(1) // H(1, 4),

where Q(1, 4)i is the cokernel of the inclusion

Σ12Ci−4(A∗, A∗,H(1))
(v4

1
)i

−−−→ Ci(A∗, A∗,H(1)).

Since we have isomorphisms of cochain complexes

π∗(K(1, 4)∗ ∧X) ∼= HomA∗
(F2, Q(1, 4)∗ ⊗H∗X),
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we deduce that the E2-term of the spectral sequence (3.4) is given by

Es,t
2 (M(1, 4) ∧X) = Exts,t

A∗

(H(1, 4) ⊗H∗X).

Consider the Adams resolution for the Spanier-Whitehead dual DM(1):

DM(1) DM(1)0

��

DM(1)1oo

��

DM(1)2

��

oo · · · ,oo

KD(1)0 KD(1)1 KD(1)2

where

DM(1)i = F (M(1),H
∧i

),

KD(1)i = F (M(1),H ∧H
∧i

).

Define maps (Dṽ4
1)i to be the composites

(Dṽ4
1)i : DM(1)i = F (M(1),H

∧i
)

u
−→ F (H

∧4
∧M(1),H

∧i+4
)

(fv4
1
)∗

−−−→ F (Σ8M(1),H
∧i+4

) = Σ−8DM(1)i+4,

where u is the unit of the adjunction. These maps assemble to give a map of Adams
resolutions:

DM(1)0

Dv4
1

��

· · · DM(1)0

(Dfv4
1
)0

��

M(1)1oo

(Dfv4
1
)1

��

· · ·oo

Σ−8DM(1)0 · · ·oo Σ−8DM(1)4oo Σ−8DM(1)5oo · · · .oo

Letting DM(1, 4)i denote the homotopy fibers of the vertical maps of (3):

DM(1, 4)i → DM(1)i

(Dfv4
1
)i

−−−−→ Σ−8DM(1)i+4,

we obtain a modified Adams resolution of DM(1, 4):

DM(1, 4) DM(1, 4)−4

��

DM(1, 4)−3
oo

��

DM(1, 4)−2

��

oo · · ·oo

KD(1, 4)−4 KD(1, 4)−3 KD(1, 4)−2

and a corresponding modified Adams spectral sequence

Es,t
2 (DM(1, 4)) = Exts,t

A∗

(DH(1, 4)) ⇒ πt−s(DM(1, 4)).

By taking iterated mapping cylinders, we may assume that the maps

M(1, 4)i+1 →M(1, 4)i,

DM(1, 4)i+1 → DM(1, 4)i
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are inclusions of subcomplexes. Taking the smash product of resolutions [BMMS86,
Ch. IV, Def. 4.2]

{(M(1, 4) ∧DM(1, 4))i} = {M(1, 4)i} ∧ {DM(1, 4)i}

gives the spectral sequence

Exts,t
A∗

(H(1, 4) ⊗DH(1, 4)) ⇒ πt−s(M(1, 4) ∧DM(1, 4)).

Proposition 3.6. The modified Adams spectral sequence {Er(M(1, 4) ∧DM(1, 4))}
is a spectral sequence of algebras, and the spectral sequence {Er(M(1, 4) ∧X)} is a
spectral sequence of modules over {Er(M(1, 4) ∧DM(1, 4))}.

Proof. The canonical Adams resolution for the sphere spectrum is given by {H
∧i
}.

The canonical evaluation maps

DM(1, 4)i ∧M(1, 4)j

= (DM(1)i ×(Dfv4
1
)i

(Σ−8DM(1)i+4)
I) ∧ (M(1)j ∪(fv4

1
)j
CΣ8M(1)j−4 → H

∧i+j

induce maps of modified Adams resolutions

{(M(1, 4)∧DM(1, 4))i} ∧ {(M(1, 4) ∧DM(1, 4))i}

= {M(1, 4)i} ∧ {(DM(1, 4) ∧M(1, 4))i} ∧ {DM(1, 4)i}

→ {M(1, 4)i} ∧ {H
∧i
} ∧ {DM(1, 4)i}

= {(M(1, 4) ∧DM(1, 4))i},

{(M(1, 4)∧DM(1, 4))i} ∧ {M(1, 4)i ∧X}

= {M(1, 4)i} ∧ {(DM(1, 4) ∧M(1, 4))i} ∧ {H
∧i

∧X}

→ {M(1, 4)i} ∧ {H
∧i
} ∧ {H

∧i
∧X}

= {M(1, 4)i ∧X}.

These maps induce the desired pairings on the corresponding MASSs.

4. v8

2
-periodicity in ExtA∗

A similar (but easier) argument to Proposition 2.1 proves the following lemma:

Lemma 4.1. The morphism

H(1, 4) ∧DH(1, 4) → H(1, 4) ∧DH(1)

is a split surjection.

Corollary 4.2. An element x ∈ Exts,t
A∗

(H(1, 4)) lifts to give an element

x̃ ∈ ExtA∗
(H(1, 4) ⊗DH(1, 4))

if an only if h0x = 0.

A computation of ExtA(2)∗(H(1, 4)) appears in Figure 8.1. Note that it is v8
2-

periodic.
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Proposition 4.3. There exists an element

ṽ8
2 ∈ Ext8,56

A∗

(H(1, 4) ⊗DH(1, 4)),

which maps to the element v8
2 ∈ Ext8,56

A(2)∗
(H(1, 4)) under the composite

Ext∗,∗
A∗

(H(1, 4) ⊗DH(1, 4)) → Ext∗,∗
A∗

(H(1, 4)) → ExtA(2)∗(H(1, 4)).

Proof. In the May spectral sequence for ExtA(2)∗(F2), the element v8
2 is detected by

b43,0. Using Nakamura’s formula [Nak72], and the calculations of [Tan70], we see
that in the May spectral sequence for ExtA∗

(F2), there are differentials:

d8(b
4
3,0) = b42,0h5,

d4(b
2
2,0h5) = h4

0h3h5.

In the May spectral sequence, v4
1 multiplication corresponds to multiplication by b22,0.

It follows that an element of Ext8,56
A∗

(H(1, 4)) which maps to

v8
2 ∈ Ext8,56

A(2)∗
(H(1, 4))

must have image h3
0h3h5 under the composite

Ext8,56
A∗

(H(1, 4))
δ

v4
1−−→ Ext5,44

A∗

(H(1))
δv0−−→ Ext5,43

A∗

(F2).

Since the element h3
0h3h5 ∈ Ext5,43

A∗

(F2) is killed by h0 multiplication, it lifts to an

element h3
0h3h5[1] ∈ Ext5,44

A∗

(H(1)). Consider the exact sequence

Ext8,56
A∗

(H(1)) → Ext8,56
A∗

(H(1, 4)) → Ext5,44
A∗

(H(1))
v4
1−→ Ext9,56

A∗

(H(1)).

A computer calculation of Ext∗,∗
A∗

(H(1)) using Bruner’s programs [Bru93] reveals
that:

1. Ext9,56
A∗

(H(1)) = 0,

2. Every element x ∈ Ext5,44
A∗

(H(1)) satisfies h0x = 0,

3. Every element y ∈ Ext9,57
A∗

(H(1)) satisfies y = h0z for some z ∈ Ext8,56
A∗

(H(1)).

These three facts allow us to deduce that there exists an element w ∈ Ext8,56
A∗

(H(1, 4))

which maps to h3
0h3h5[1], and for which we have h0w = 0. By Corollary 4.2, the

element w lifts to the desired element ṽ8
2 in Ext8,56

A∗

(H(1, 4) ⊗DH(1, 4)).

We shall abusively refer to the element ṽ8
2 ∈ Ext8,56

A∗

(H(1, 4) ⊗DH(1, 4)) as v8
2 .

5. Brown-Gitler comodules

Definitions
Let A(i)∗ denote the quotient of the dual Steenrod algebra dual to the subalgebra

A(i) of the Steenrod algebra. There is an isomorphism

A(i)∗ ∼= Fp[ξ̄1, ξ̄2, ξ̄3 . . . , ξ̄i+1]/(ξ̄
2i+1

1 , ξ̄2
i

2 , ξ̄
2i−1

3 , . . . , ξ̄2i+1).
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Here, ξ̄i denotes the conjugate of ξi. We define a filtration on A∗ which induces a
filtration on the A∗-subcomodule

(A�A(i))∗ = A∗2A(i)∗F2
∼= F2[ξ̄

2i+1

1 , ξ̄2
i

2 , . . . , ξ̄
2
i+1, ξ̄i+2, . . .].

Our filtration is an increasing filtration of algebras given on generators by |ξ̄j | =
2j−1. In particular, every element of (A�A(i))∗ has filtration divisible by 2i+1. The
Brown-Gitler comodule Ni(j) is the subspace of (A�A(i))∗ spanned by all elements
of filtration less than or equal to 2i+1j. Using the coproduct formula

ψ(ξ̄k) =
∑

k1+k2=k

ξ̄k1
⊗ ξ̄2

k1

k2
, (5.1)

the submoduleNi(j) is easily seen to be an A∗-subcomodule. Thus we have an increas-
ing sequence of A∗-comodules:

F2
∼= Ni(0) ⊂ Ni(1) ⊂ Ni(2) ⊂ · · · ⊂ (A�A(i))∗.

Define a map of ungraded rings

φi : (A�A(i))∗ → (A�A(i− 1))∗

whose effect on generators is given by:

φi(ξ̄
2l

k ) =

{
ξ̄2

l

k−1, k > 1,

1, k = 1.

Lemma 5.2. The map φi is a map of ungraded A(i)∗-comodules.

Proof. As an A(i)∗-comodule algebra, (A�A(i))∗ is generated by the elements

{ξ̄2
i+1

1 , ξ̄2
i

2 , . . .}.

It therefore suffices to check that φi commutes with the coaction on on these gener-
ators. This is easily checked using the coproduct formula (5.1) and the relations in
A(i)∗.

LetMi(j) denote the subspace of (A�A(i))∗ spanned by the monomials of filtration
exactly 2i+1j.

Lemma 5.3. The map φi maps the subspace Mi(j) isomorphically onto the A∗-
subcomodule Ni−1(j) ⊂ (A�A(i− 1))∗.

Proof. The subspace of Mi(j) spanned by monomials of the form ξ̄2
i+1s

1 x, where x

is a monomial involving ξ̄2
l

k for k > 1, is mapped isomorphically onto the subspace
Mi−1(j − s) ⊂ Ni−1(j).

Using Lemma 5.2, we have the following corollaries:

Corollary 5.4. The subspace Mi(j) ⊂ (A�A(i))∗ is an A(i)∗-subcomodule.

Corollary 5.5. There is an isomorphism of (graded) A(i)∗-comodules

Mi(j) ∼= Σ2i+1jNi−1(j).
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Corollary 5.6. There is a splitting of A(i)∗-comodules

(A�A(i))∗ ∼=
⊕

j>0

Mi(j).

Remark 5.7. The comodule N−1(j) (respectively N0(j), N1(j)) is isomorphic as an
A∗-comodule to the homology of the jth Z/2 (respectively integral, bo) Brown-Gitler
spectrum. It is not known in general if the comodules Ni(j) are realizable for i > 1.

Algebraic resolutions
We now describe an algebraic analog of an Adams resolution. For i = −1 (respec-

tively i = 0, 1, 2), this algebraic resolution will correspond to the HF2 (respectively
HZ, bo, tmf ) Adams resolution.

Let X be an object of the derived category DA∗
. We define Ti(X)• to be the

following cosimplicial object:

(A�A(i))∗ ⊗X u⊗1 //
1⊗u // (A�A(i))⊗2

∗ ⊗X
u⊗1⊗1 //
1⊗u⊗1 //
1⊗1⊗u //

(A�A(i))⊗3
∗ ⊗X

//
//
//
//
· · ·

Here, u is the unit

F2 → (A�A(i))∗.

Since (A�A(i))∗ is an algebra, the canonical map

X → Tot(T i(X)•)

is a quasi-isomorphism (see, for instance, [Wei94, Prop. 8.6.8]). We therefore have a
Bousfield-Kan spectral sequence

Es,t,n
1 = Exts,t

A∗

((A�A(i))∗ ⊗ (A�A(i))
⊗n

∗ ⊗X[−n]) ⇒ Exts,t
A∗

(X), (5.8)

where

(A�A(i))∗ = coker
(
F2

u
−→ (A�A(i))∗

)
.

The E1-term can be simplified using a change of rings isomorphism, together with
the splitting of Corollary 5.6:

Es,t,n
1 = Exts,t

A∗

((A�A(i))∗ ⊗ (A�A(i))
⊗n

∗ ⊗X[−n])

∼= Exts,t

A(i)∗
((A�A(i))

⊗n

∗ ⊗X[−n])

∼=
⊕

j1,...,jn>1

Exts,t

A(i)∗
(Mi(j1) ⊗ · · · ⊗Mi(jn) ⊗X[−n]).

We shall call this spectral sequence (5.8) the A�A(i)-resolution for X. In this paper
we are only be interested in the case where i = 2. In this case, we shall refer to the
A�A(2)-resolution as the algebraic tmf -resolution.

Lemma 5.9. Let R be a monoid in the derived category DA∗
. Then the A�A(i)-

resolution for R is a spectral sequence of algebras. If M is an R-module, then the
A�A(i)-resolution for M is a spectral sequence of modules over the A�A(i)-resolution
for R.
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6. Ext computations

In this section we describe Exts,t

A(2)∗
(M) for various objects M ∈ DA(2)∗ . We first

explain the computations, and then describe the methodology used to produce these
computations. Charts displaying these Ext groups can be found in the following
figures:

Figure 6.1: Ext∗,∗
A(2)∗

(F2) and Ext∗,∗
A(2)∗

(M2(1)),

Figure 6.2: Ext∗,∗
A(2)∗

(M2(1)⊗2) and Ext∗,∗
A(2)∗

(M2(1)⊗3),

Figure 6.3: Ext∗,∗
A(2)∗

(M2(1) ⊗H(1)) and Ext∗,∗
A(2)∗

(M2(1)⊗2 ⊗H(1)),

Figure 6.4: Ext∗,∗
A(2)∗

(M2(1)⊗3 ⊗H(1)) and Ext∗,∗
A(2)∗

(M2(1) ⊗H(1, 4)),

Figure 6.5: Ext∗,∗
A(2)∗

(M2(1)⊗2 ⊗H(1, 4)) and Ext∗,∗
A(2)∗

(M2(1)⊗3 ⊗H(1, 4)).

In each of these charts, the indexing has been modified to put the bottom generator
of M2(1)⊗k in internal degree 0. The meaning of the notation in each of these charts
is explained below.

ExtA(2)∗(F2)

All of the elements are c4 = v4
1-periodic, and v8

2-periodic. Exactly one v4
1 mul-

tiple of each element is displayed with the • replaced by a ◦. Observe the wedge
pattern beginning in t− s = 35. This pattern is infinite, propagated horizontally by
h2,1-multiplication and vertically by v1-multiplication. Here, h2,1 is the name of the
generator in the May spectral sequence of bidegree (t− s, s) = (5, 1), and h4

2,1 = g.

ExtA(2)∗(M2(1)⊗k), for k = 1,2,3

Every element is v8
2-periodic. However, unlike ExtA(2)∗(F2), not every element

of these Ext groups is v4
1-periodic. Rather, it is the case that either an element

x ∈ ExtA(2)∗(M2(1)⊗k) satisfies v4
1x = 0, or it is v4

1-periodic. Each of the v4
1-periodic

elements fit into families which look like shifted and truncated copies of ExtA(1)∗(F2),
and are labeled with a ◦. We have only included the beginning of these v4

1-periodic
patterns in the chart. The other generators are labeled with a •. A 2 indicates a
polynomial algebra F2[h2,1].

ExtA(2)∗(M2(1)⊗k ⊗ H(1)), for k = 1,2,3

The notation in these charts is identical to that in the charts for ExtA(2)∗(M2(1)⊗k)
with the exception that the v4

1-periodic patterns are truncated shifted copies of
ExtA(1)∗(H(1)).

ExtA(2)∗(M2(1)⊗k ⊗ H(1,4)), for k = 1,2,3

Because we have taken the cofiber of v4
1 , none of the elements are v4

1 periodic in
these charts. The generators of the first v8

2-periodic pattern are denoted with a • or a
2, where again a 2 denotes a polynomial algebra on h2,1. In these charts, however, it
is not the case that every element is v8

2-periodic: some elements in the first lightening
flash in the 0-stem fail to be v8

2-periodic. We have conveyed this information by
displaying the elements in the next v8

2-pattern with ◦. With the exception of these
first few generators, all of the other generators are v8

2-periodic.
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Methodology

We explain how these charts were produced. The computation of ExtA(2)∗(F2) is
well-known (see, for instance, [DM82]). The A(2)∗ comodule M2(1) can be described
by the following diagram of generators:

8

12

14
15

Here, the dual action of the Steenrod algebra is encoded with a straight line denoting
Sq1∗, a curved line denoting Sq2∗, and the bracket denoting Sq4∗. A computation of
ExtA(2)∗(M2(1)) can be found in [DM82]. The computation of ExtA(2)∗(M2(1)⊗2)
was obtained from ExtA(2)∗(M2(1)) by inductively working up the skeletal filtration of
the second factor ofM2(1). The computation of ExtA(2)∗(M2(1)⊗3) was then obtained
from ExtA(2)∗(M2(1)⊗2) by inductively working up the skeletal filtration of the third
factor of M2(1). Along the way, because H(1) occurs as a subcomodule of M2(1), we
have computed ExtA(2)∗(M2(1)⊗k ⊗H(1)) for k = 1, 2. We then use the long exact
sequence induced by the triangle (3.1) to obtain ExtA(2)∗(M2(1)⊗3 ⊗H(1)).

Each of these manual computations was independently verified by R.R. Bruner’s
computer program for computing Ext [Bru93]. This computer program constructs
minimal resolutions of modules over the subalgebra A(2). We also used the computer
program to gain complete understanding of v4

1-periodicity in these Ext groups, as we
now explain. Note that there is an element

v1 ∈ Ext1,3
A(2)∗

(H(1) ⊗H∗Cη),

where Cη is the cofiber of η ∈ πs
1. We used Bruner’s programs to compute minimal

resolutions for

ExtA(2)∗(M2(1)⊗k ⊗H(1) ⊗H∗Cη), k = 1, 2, 3,

and read off all of the v1-multiplicative structure in these Ext groups from the min-
imal resolutions. We then used an η-Bockstein spectral sequence to recover the v4

1-
multiplicative structure on

ExtA(2)∗(M2(1)⊗k ⊗H(1)), k = 1, 2, 3.

From this, the computation of

ExtA(2)∗(M2(1)⊗k ⊗H(1, 4)), k = 1, 2, 3

was easily determined by the long exact sequence arising from the triangle (3).
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7. Reducing the computation to M2(1)⊗k for k 6 3

Inductive short exact sequences
We will construct some short exact sequences that relate the various Brown-Gitler

comodules N1(j). We have an isomorphism

(A(2)�A(1))∗ ∼= Λ[ξ̄41 , ξ̄
2
2 , ξ̄3].

Observe that there is an isomorphism of F2-vector spaces

τ : (A�A(1))∗
∼=
−→ (A�A(2))∗ ⊗ (A(2)�A(1))∗

given on the monomial basis by

τ(ξ̄8i1+4ǫ1
1 ξ̄4i2+2ǫ2

2 ξ̄2i3+ǫ3
3 ξ̄i4

4 · · · ) = ξ̄8i1
1 ξ̄4i2

2 ξ̄2i3
3 ξ̄i4

4 · · · ⊗ ξ̄4ǫ1
1 ξ̄2ǫ2

2 ξ̄ǫ3
3

for ij > 0 and ǫj = 0, 1. The map τ is not an isomorphism of A(2)∗-comodules. For
instance, in (A�A(1))∗ we have the coaction

ψ(ξ̄41 ξ̄
2
2) = ξ̄41 ξ̄

2
2 ⊗ 1 + ξ̄41 ⊗ ξ̄22 + ξ̄22 ⊗ ξ̄41 + 1 ⊗ ξ̄41 ξ̄

2
2 + ξ̄61 ⊗ ξ̄41 + ξ̄21 ⊗ ξ̄81

whereas in (A�A(2))∗ ⊗ (A�A(1))∗ we have

ψ(1 ⊗ ξ̄41 ξ̄
2
2) = ξ̄41 ξ̄

2
2 ⊗ 1 ⊗ 1 + ξ̄41 ⊗ 1 ⊗ ξ̄22 + ξ̄22 ⊗ 1 ⊗ ξ̄41 + 1 ⊗ 1 ⊗ ξ̄41 ξ̄

2
2 + ξ̄61 ⊗ 1 ⊗ ξ̄41 .

However, there is a decreasing filtration

(A�A(1))∗ = F 0(A�A(1))∗ ⊃ F 1(A�A(1))∗ ⊃ · · ·

of A(2)∗-comodules such that τ induces an isomorphism of the associated graded
A(2)∗-comodules

τ : E0(A�A(1))∗
∼=
−→ (A�A(2))∗ ⊗ (A(2)�A(1))∗.

The decreasing filtration is given as follows: under the isomorphism

(A�A(2))∗ ∼=
⊕

k

M2(k)

of A(2)∗-comodules given by Corollary 5.6, we define

F j(A�A(1))∗ := τ−1




( ∞⊕

k=j

M2(k)
)
⊗ (A(2)�A(1))∗


 .

Using the coproduct formula (5.1) this is easily verified to be a decreasing filtration
by A(2)∗-comodules — the coaction preserves or raises the filtration.

Consider the quotients

Qj(A�A(1))∗ := (A�A(1))∗/F
j+1(A�A(1))∗.

The map τ induces isomorphisms of F2-vector spaces

τ : Qj(A�A(1))∗
∼=
−→ N2(j) ⊗ (A(2)�A(1))∗.

Furthermore, the filtration {F k(A�A(1))∗} projects to a finite decreasing filtration of
Qj(A�A(1))∗ by A(2)∗-comodules, such that τ induces an isomorphism of associated
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graded A(2)∗-comodules

τ : E0Qj(A�A(1))∗
∼=
−→ N2(j) ⊗ (A(2)�A(1))∗. (7.1)

Lemma 7.2. There is a short exact sequence of A(2)∗-comodules:

0 → Σ8jN1(j) ⊗N1(1) → N1(2j + 1) → Qj−1(A�A(1))∗ → 0.

Lemma 7.3. There is an exact sequence of A(2)∗-comodules:

0 → Σ8jN1(j) → N1(2j) → Qj−1(A�A(1))∗ → Σ8j+9N1(j − 1) → 0.

Proof of Lemma 7.2. Since the elements of (A(2)�A(1))∗ have Brown-Gitler filtra-
tion at most 12, the image of the composite

N2(j − 1) ⊗ (A(2)�A(1))∗ →֒ (A�A(2))∗ ⊗ (A(2)�A(1))∗
τ−1

−−→ (A�A(1))∗

lies in N1(2j + 1), giving a surjection of A(2)∗-comodules

ρ : N1(2j + 1) ։ Qj−1(A�A(1))∗.

As F2-vector spaces, we have

τ(N1(2j + 1)) = N2(j − 1) ⊗ (A(2)�A(1))∗ ⊕M2(j) ⊗N1(1),

where the Brown-Gitler comodule N1(1) is identified as the A(2)∗-subcomodule

N1(1) = F2{1, ξ̄
4
1 , ξ̄

2
2 , ξ̄3} ⊂ (A(2)�A(1))∗.

We deduce that the kernel of ρ is

M2(j) ⊗N1(1) ∼= Σ8jN1(j) ⊗N1(1).

Proof of Lemma 7.3. As an F2-vector space, the image of N1(2j) in (A�A(2))∗ ⊗
(A(2)�A(1))∗ under the isomorphism τ is given by

τ(N1(2j)) ∼=




N2(j − 2) ⊗ (A(2)�A(1))∗
⊕

M2(j − 1) ⊗ F2{1, ξ̄
4
1 , ξ̄

2
2 , ξ̄3, ξ̄

4
1 ξ̄

2
2 , ξ̄

4
1 ξ̄3, ξ̄

2
2 ξ̄3}

⊕
M2(j) ⊗ F2{1}



.

Thus, at least on the level of F2-vector spaces, we have an exact sequence

0 →M2(j) ⊗ F2{1}
α
−→ N1(2j)

β
−→ Qj−1(A�A(1))∗

γ
−→M2(j − 1) ⊗ F2{ξ̄

4
1 ξ̄

2
2 ξ̄3} → 0.

We just need to prove that these are maps of A(2)∗-comodules. The map γ is clearly
a map of A(2)∗-comodules. We have the following diagram of inclusions of A(2)∗-
comodules:

M2(j) ⊗ F2{1}
� � α //

� _

��

N1(2j)
� � δ //

� _

��

Qj(A�A(1))∗ .

(A�A(2))∗
� � // (A�A(1))∗

77 77n
n

n
n

n
n

n
n

n
n

n
n

(7.4)
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In particular, the map α is a map of A(2)∗-comodules. Let K be the cokernel of α.
Then we get an induced map of short exact sequences of A(2)∗-comodules:

M2(j) ⊗ F2{1}
α //

��

N1(2j)
β1 //

δ

��

K

β2

��
M2(j) ⊗ (A(2)�A(1))∗ // Qj(A�A(1))∗ // Qj−1(A�A(1))∗.

We deduce that the map β is a map of A(2)∗-comodules, because it is given by the
composite β2 ◦ β1 of A(2)∗-comodule maps.

Vanishing lines

We reduce the computations needed to those of M2(1)⊗k for k 6 3 using vanishing
lines for modified Adams E2 terms. Note that after a finite range, ExtA(2)∗(H(1, 4))
has a vanishing line of slope 1/5.

Lemma 7.5. We have

Exts,t

A(2)∗
(N1(j) ⊗H(1, 4)) = 0

for

s > max

{
(t− s) + 17

7
,
(t− s) + aj

6
,
(t− s) + bj

5

}
,

and the constants aj and bj are inductively defined by

a0 = 21,

b0 = 9,

a1 = 15,

b1 = 2,

a2j = max{aj−1 − 8j − 2, aj − 8j},

b2j = max{bj−1 − 8j − 3, bj − 8j},

a2j+1 = aj − 8j,

b2j+1 = bj − 8j.

Proof. The case of j = 0, 1 is obtained by examining Figures 6.4 and 8.1. The case
of j > 2 is established by induction using Lemmas 7.2 and 7.3. The terms involving
Qj(A�A(1))∗ are handled using the spectral sequence

Exts,t

A(2)∗
(N2(j) ⊗ (A(2)�A(1))∗ ⊗H(1, 4)) ⇒ Exts,t

A(2)∗
(Qj(A�A(1))∗ ⊗H(1, 4))

induced from (7.1), and the change-of-rings isomorphism

Exts,t

A(2)∗
(N2(j) ⊗ (A(2)�A(1))∗ ⊗H(1, 4)) ∼= Exts,t

A(1)∗
(N2(j) ⊗H(1, 4)).
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The only non-zero values values of Exts,t

A(1)∗
(H(1, 4)) are displayed below.

0 2 4

0

2

•
•

•
•

•
•

In particular, we see that Exts,t

A(1)∗
(H(1, 4)) is zero for s > (t−s)+17

7 .

We extract the following estimate:

Lemma 7.6. Suppose that j1, . . . , jn is a sequence of positive integers such that for
some i, ji > 2. Then we have

Exts,t

A(2)∗
(M2(j1) ⊗ · · · ⊗M2(jn)[−n] ⊗H(1, 4)) = 0

for

s > max

{
(t− s) + 17

7
,
(t− s) + 2

6
,
(t− s) − 12

5

}
.

Proof. Assume that n = 1, and set j equal to j1 > 2. By Lemma 7.5, we have

ExtA(2)∗(M2(j)[−1] ⊗H(1, 4)) = 0

if

s > max

{
(t− s) − 8j + 8 + 17

7
,
(t− s) − 8j + 7 + aj

6
,
(t− s) − 8j + 6 + bj

5

}
.

It therefore suffices to prove that the following inequalities are satisfied:

17 > 17 − 8j + 8,

2 > aj − 8j + 7,

−12 > bj − 8j + 6.

The inequalities are true for j = 2, 3. By induction, these inequalities hold for all j.
We now induct on n. We may as well assume that j1 > 2. Assume that

Exts,t

A(2)∗
(M2(j1) ⊗ · · · ⊗M2(jn−1)[−n+ 1] ⊗H(1, 4)) = 0

for

s > max

{
(t− s) + 17

7
,
(t− s) + 2

6
,
(t− s) − 12

5

}
.

By filtering the A∗-comodule M2(jn) by degree, we obtain an Atiyah-Hirzebruch type
spectral sequence which converges to

Exts,t

A(2)∗
(M2(j1) ⊗ · · · ⊗M2(jn)[−n] ⊗H(1, 4))

and whose E1-page is given by
⊕

x

Exts,t

A(2)∗
(Σ|x|M2(j1) ⊗ · · · ⊗M2(jn−1)[−n] ⊗H(1, 4)),

where x ranges over an F2-basis of M2(jn). The smallest value |x| can take is 8, in
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the case j1 = 1. By our inductive hypothesis, we have

Exts,t

A(2)∗
(Σ8M2(j1) ⊗ · · · ⊗M2(jn−1)[−n] ⊗H(1, 4)) = 0

for

s > max

{
(t− s) + 17

7
,
(t− s) + 1

6
,
(t− s) − 14

5

}
.

This verifies the inductive step.

Lemma 7.7. Suppose that n is greater than 3. Then we have

Exts,t

A(2)∗
(M2(1)⊗n[−n] ⊗H(1, 4)) = 0

for

s > max

{
(t− s) + 17

7
,
(t− s) + 4

6
,
(t− s) − 17

5

}
.

Proof. Examining Figure 6.5, we see that

Exts,t

A(2)∗
(N1(1)⊗3 ⊗H(1, 4)) = 0

for

s > max

{
(t− s) + 17

7
,
(t− s) + 8

6
,
(t− s) − 9

5

}
.

The lemma follows from induction on n, using Atiyah-Hirzebruch spectral sequences
as in the proof of Lemma 7.7.

8. The modified Adams spectral sequence for tmf ∗M(1, 4)

In this section we describe a complete computation of the MASS

Exts,t

A(2)∗
(H(1, 4)) ⇒ πt−s(tmf ∧M(1, 4)).

The spectral sequence is displayed in four pages in Figures 8.1 and 8.2. The entire
spectral sequence is v32

2 -periodic.

We first explain what is happening in these charts. Then we explain the method-
ology used to produce these differentials.

Page 1: dimensions 0–48

The truncated wedge beginning in t− s = 35 is infinite, and propagated by
g-multiplication. The entire chart is periodic under v8

2-multiplication. Classes born
on the 0-cell of M(1) are denoted with a •, and classes born on the 1-cell of M(1)
are denoted with a ◦. Although multiplication by c4 = v4

1 is faithful in ExtA(2)∗(F2),
it is not faithful in ExtA(2)∗(M(1)). We therefore get some classes coming from the
9-cell of M(1, 4), which we denote with a ⋄.

There are only two possible Adams differentials through t− s = 47, and only one
of them actually occurs. This differential is indicated on the chart.
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Page 2: dimensions 48–96
We move to the region between the occurrence of v8

2 and v16
2 . There are numerous d2

differentials in this range, displayed in the chart. In this chart, the classes propagated
by v8

2 are denoted with a •, and the classes coming from the truncated wedge starting
in t− s = 35 are denoted with a ◦. Note that beginning in t− s = 91, we just have
the following pattern:

89 91 93 95 97 99 101

18

20

• ◦
• ◦

• ◦
• ◦

• ◦
• ◦

Page 3: dimensions 96–144
We now move up to the region between v16

2 and v24
2 . We propagate only the h2,1-

periodic pattern from the previous page (denoted with ◦); everything else is either
the source or target of a d2. We denote the elements propagated by v16

2 multiplication
with a •.

Page 4: dimensions 144–192
We now introduce the differentials supported by v24

2 and its multiples. We see that
eventually we get a small gap in homotopy between the 180 stem and the 192 stem.
Then the pattern repeats with v32

2 -periodicity.

Methodology
In [HM], the structure of the Adams spectral sequence

Ext∗,∗
A(2)∗

(F2) ⇒ π∗tmf 2

is completely determined. The Adams spectral sequence for tmf ∗M(1, 4) is a module
over the Adams spectral sequence for tmf ∗, and all of the differentials for tmf ∗M(1, 4)
were deduced from this structure. These computations were double-checked against
the Atiyah-Hirzebruch spectral sequence

H∗(M(1, 4), tmf ∗) ⇒ tmf ∗M(1, 4)

using the known values of tmf ∗. As a further consistency check, a combination of
Gross-Hopkins duality [HG94] and Mahowald-Rezk [MR99] duality shows that
tmf ∗M(1, 4) is, up to a shift, Pontryagin self-dual, and this is consistent with our
computations.

9. d2(v
8

2
) and d3(v

16

2
)

In this section we will lift the differentials d2(v
8
2) and d3(v

16
2 ) from the MASS

for tmf ∗M(1, 4) to the MASS for π∗(M(1, 4) ∧DM(1, 4)). We will observe that
both d2(v

8
2) and d3(v

16
2 ) are central, and hence, using the fact that the MASS for

π∗(M(1, 4) ∧DM(1, 4)) is a spectral sequence of algebras, we will deduce that dr(v
32
2 )

is zero for r < 4.
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Lemma 9.1. In the MASS for π∗(M(1, 4) ∧DM(1, 4)), there is a differential

d2(v
8
2) = ẽ0r,

where ẽ0r is the image of the element e0r under the map

Ext10,57
A∗

(F2) → Ext10,57
A∗

(H(1, 4) ⊗DH(1, 4)).

Proof. By Proposition 2.1 it suffices to establish that d2(v
8
2) = ẽ0r in the MASS

Exts,t
A∗

(H(1, 4) ⊗DH(1)) ⇒ πt−s(M(1, 4) ∧DM(1)).

The differential d2(v
8
2) in the Adams spectral sequence for tmf maps to a differential

d2(v
8
2) = ˜̃e0r under the map of (M)ASSs

Exts,t

A(2)∗
(F2) +3

��

πt−stmf

��
Exts,t

A(2)∗
(H(1, 4) ⊗DH(1)) +3 tmf t−s(M(1, 4) ∧DM(1)),

where ˜̃e0r is the image of e0r under the composite

Ext10,57
A∗

(F2) → Ext10,57
A∗

(H(1, 4) ⊗DH(1)) → Ext10,57
A(2)∗

(H(1, 4) ⊗DH(1)).

We wish to lift the differential d2(v
8
2) = ˜̃e0r to d2(v

8
2) = ẽ0r using the map of MASSs:

Exts,t
A∗

(H(1, 4) ⊗DH(1)) +3

��

πt−s(M(1, 4) ∧DM(1))

��
Exts,t

A(2)∗
(H(1, 4) ⊗DH(1)) +3 tmf t−s(M(1, 4) ∧DM(1)).

However, using

Exts,t

A(2)∗
(H(1, 4)) =

{
e0r[0] (t− s, s) = (47, 10),

e0r[1] (t− s, s) = (48, 10)

and

Exts,t
A∗

(F2) =

{
e0r (t− s, s) = (47, 10),

0 (t− s, s) = (46, 10), (48, 10), (55, 5), (56, 5), (57, 5),

we may deduce that the map

Ext10,57
A∗

(H(1, 4) ⊗DH(1)) → Ext10,57
A(2)∗

(H(1, 4) ⊗DH(1))

is an isomorphism. This suffices to show that the differential d2(v
8
2) lifts as desired.

Since d2(v
8
2) is central, Proposition 3.6 gives the following corollary:

Corollary 9.2. In the MASS for π∗(M(1, 4) ∧DM(1, 4)), we have d2(v
16
2 ) = 0.
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We now investigate d3(v
16
2 ).

Lemma 9.3. In the MASS for π∗(M(1, 4) ∧DM(1, 4)), the element d3(v
16
2 ) is in the

image of

Ext19,114
A∗

(F2) → Ext19,114
A∗

(H(1, 4) ⊗DH(1, 4)).

In particular, d3(v
16
2 ) is central.

Proof. By Proposition 2.1 it suffices to establish that in the MASS for π∗(M(1, 4) ∧
DM(1)), the element y = d3(v

16
2 ) is in the image of the map

Ext19,114
A∗

(F2) → Ext19,114
A∗

(H(1, 4) ⊗DH(1)).

The differential d3(v
16
2 ) in the ASS for tmf maps to a differential d3(v

16
2 ) = z under

the map of (M)ASSs

Exts,t

A(2)∗
(F2) +3

��

πt−stmf

��
Exts,t

A(2)∗
(H(1, 4) ⊗DH(1)) +3 tmf t−s(M(1, 4) ∧DM(1)),

where z is in the image of

Ext19,114
A(2)∗

(F2) → Ext19,114
A(2)∗

(H(1, 4) ⊗DH(1)).

Using the map of spectral sequences

Exts,t
A∗

(H(1, 4) ⊗DH(1)) +3

��

πt−s(M(1, 4) ∧DM(1))

��
Exts,t

A(2)∗
(H(1, 4) ⊗DH(1)) +3 tmf t−s(M(1, 4) ∧DM(1)),

we see that y maps to z. Therefore z detects y in the algebraic tmf -resolution for
Ext∗,∗

A∗

(H(1, 4) ⊗DH(1)). Since the algebraic tmf -resolution is functorial, we deduce
that y is in the image of the map

Ext19,114
A∗

(F2)
i∗−→ Ext19,114

A∗

(H(1, 4) ⊗DH(1))

modulo higher terms of the algebraic tmf -resolution: that is to say, there exists an
element

x ∈ Ext19,114
A∗

(F2)

such that y − i∗(x) is detected in a higher filtration of the algebraic tmf -resolution.

We are left with showing that w = y − i∗(x) = 0. Suppose not. Using our vanishing
lines from Section 7 and our ExtA(2)∗ computations from Section 6, we deduce that
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w is detected in the algebraic tmf -resolution by an element

w ∈ Ext19,114
A(2)∗

(M2(1) ⊗H(1, 4) ⊗DH(1)[−1])

and the image of w under the map

Ext19,114
A(2)∗

(M2(1) ⊗H(1, 4) ⊗DH(1)[−1])

1⊗p∗⊗1
−−−−−→ Ext19,114

A(2)∗
(M2(1) ⊗ Σ12H(1) ⊗DH(1)[−4])

is non-trivial, where p∗ is the projection

H(1, 4) → Σ12H(1)[−3]

in the derived category of A∗-comodules induced by the projection

p : M(1, 4) → Σ9M(1).

We deduce that in the MASS for M(1) ∧DM(1) there is a differential

d3((p∗ ⊗ 1)(v16
2 )) = (p∗ ⊗ 1)(w).

We will verify the following claim:

Claim 9.4. The element (p∗ ⊗ 1)(w) is non-trivial in the E3-page of the MASS for
M(1) ∧DM(1).

Assuming Claim 9.4, we deduce that d3((p∗ ⊗ 1)(v16
2 )) is non-trivial. However, the

image of v16
2 under the map

Ext16,112
A∗

(H(1, 4) ⊗DH(1))
p∗⊗1
−−−→ Ext16,112

A∗

(Σ12H(1) ⊗DH(1)[−3])

may be computed using the May spectral sequence. In the May spectral sequence, the
element v16

2 is detected by b83,0. Applying Nakamura’s formula [Nak72] to the May
spectral sequence differential d8(b

4
3,0) = h5b

4
2,0 in the proof of Proposition 4.3 gives

d16(b
8
3,0) = h6b

8
2,0

from which it follows that

(p∗ ⊗ 1)(v16
2 ) = h6b

6
2,0.

The element b62,0 detects the cube of the Adams map:

v12
1 = (v4

1)3 ∈ π24(M(1) ∧DM(1)).

Since this homotopy element has order 2, the Adams differential

d2(h6) = h0h
2
5

implies that the element h6b
6
2,0 detects the Toda bracket of the composite

S86 θ5−→ S24 2
−→ S24 v12

1−−→M(1) ∧DM(1).

In particular, h6b
6
2,0 is a permanent cycle in the MASS for M(1) ∧DM(1), which con-

tradicts the existence of a non-trivial differential d3((p∗ ⊗ 1)(v16
2 )). Thus the assump-

tion that w 6= 0 gives rise to a contradiction, and we conclude that w = 0, as desired.
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We are left with verifying Claim 9.4. We will verify this claim by establishing:

1. The element

(1 ⊗ p∗ ⊗ 1)(w) ∈ Ext19,114
A(2)∗

(M2(1) ⊗ Σ12H(1) ⊗DH(1)[−4])

is not the target of a differential in the algebraic tmf -resolution for

Ext∗,∗
A∗

(H(1) ⊗DH(1)).

2. The element

(p∗ ⊗ 1)(w) ∈ Ext19,114
A∗

(Σ12H(1) ⊗DH(1)[−3])

is not the target of a d2 differential in the MASS for M(1) ∧DM(1).

Item (1) above is verified by observing that

Exts,t

A(2)∗
(F2) = 0 (t− s, s) = (86, 15), (87, 15), (88, 15)

and so there are no possible contributions to

Ext87,15
A(2)∗

(H(1) ⊗DH(1)),

and this is the only possible source for a differential in the algebraic tmf -resolution.

We now verify (2). The A∗-comodule H(1) ⊗DH(1) has the following diagram of
generators:

1 ◦
ED

@A0 • △

−1 �

(9.5)

Here the straight lines encode the action of Sq1∗ and the curved line denotes a Sq2∗.
Using Bruner’s computer generated ExtA∗

(F2) charts [Bru93], we compute the vicin-
ity of (p∗ ⊗ 1)(w) in Ext∗,∗

A∗

(H(1) ⊗DH(1)) in Table 9.1.

s\t− s 86 87

16
◦◦
△

(p∗ ⊗ 1)(w) • •
∗

15 ∗ ∗

14 ∗
◦ b87
�a87

Table 9.1. Exts,t
A∗

(H(1) ⊗DH(1)) near (p∗ ⊗ 1)(w)

In this table, entries marked with ∗ are not computed, otherwise, elements are
denoted by the generator (as in (9.5)) that supports it. The only possible sources for
a non-trivial d2 are a87 and b87.
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The element a87 is the image of an element

a88 ∈ Ext14,102
A∗

(F2)

under the inclusion of the bottom generator

Σ−1F2 → H(1) ⊗DH(1).

Since Ext16,103
A∗

(F2) = 0, we deduce that d2(a88) = 0 in the ASS for π∗S. The map
of MASSs induced from the inclusion of the bottom cell of M(1) ∧DM(1) gives
d2(a87) = 0.

We now turn our attention to b87. Table 9.2 shows the portion of ExtA∗
(H(1) ⊗

DH(1)) mapped to the vicinity of Table 9.1 under h2-multiplication.

s\t− s 83 84

15
c83 •
c′83��c′′83

∗

14 ∗ ∗

13 ∗
◦ b84
�

Table 9.2. Exts,t
A∗

(H(1) ⊗DH(1)) near h−1
2 b87

Using the h2 multiplicative structure in Bruner’s tables [Bru93], we deduce that

h2b84 = b87,

h2c83 = 0,

h2c
′
83 = 0,

h2c
′′
83 = 0.

Since h2 is a permanent cycle in the ASS for the sphere, we have

d2(b87) = d2(h2b84) = h2d2(b84) = 0.

This completes our proof of Claim 9.4.

Proposition 3.6 gives the following corollary:

Corollary 9.6. In the MASS for π∗(M(1, 4) ∧DM(1, 4)), we have d3(v
32
2 ) = 0.

10. Calculation of an Adams differential

The image of the element κ̄ ∈ π20(S)2 in π20(M(1, 4) ∧DM(1, 4)) gives rise to a
self-map

κ̃ : M(1, 4) →M(1, 4).

The element g ∈ Ext4,24
A∗

(F2), which detects κ̄ maps to a permanent cycle

g̃ ∈ ExtA∗
(H(1, 4) ⊗DH(1, 4))

which detects κ̃ ∈ π20(M(1, 4) ∧DM(1, 4)) in the MASS. The purpose of this section
is to prove the following theorem:
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Theorem 10.1.

1. The element v20
2 h1 ∈ Ext21,142

A(2)∗
(H(1, 4)) lifts to an element

ṽ20
2 h1 ∈ Ext21,142

A∗

(H(1, 4) ⊗DH(1, 4)).

2. There is a differential

d3(ṽ20
2 h1) = g̃6 +R

in the MASS for M(1, 4) ∧DM(1, 4), where R is an element of filtration greater
than 0 in the algebraic tmf -resolution.

Proof. Table 10.1 displays a small portion of the E1-page of the algebraic tmf -
resolution for ExtA∗

(H(1, 4) ∧DH(1)).

s\t− s 120 121

24
• • • g6

◦◦
••
◦

23
a120 • •b120

◦ x120

⊙ y120

••
◦◦
⊙⊙

22
•
⊙ z120

⊙
∗

21

•
◦

⊙ ⊙⊙⊙⊙
⊚ ⊚ ⊚⊚

∗

v20
2 h1 • •
⊙ ⊙⊙⊙

⊚⊚

∗

Table 10.1. The algebraic tmf -resolution for ExtA∗
(H(1, 4) ⊗DH(1)) near v20

2 h1

In this and all future tables depicting the algebraic tmf -resolution, we have the
following key:

• = generator of ExtA(2)∗(H(1, 4) ⊗DH(1)),

◦ = generator of ExtA(2)∗(M2(1)[−1] ⊗H(1, 4) ⊗DH(1)),

⊙ = generator of ExtA(2)∗(M2(1)⊗2[−2] ⊗H(1, 4) ⊗DH(1)),

⊚ = generator of ExtA(2)∗(M2(1)⊗3[−3] ⊗H(1, 4) ⊗DH(1)),

∗ = potential contribution from

ExtA(2)∗(M2(j1) ⊗ · · · ⊗M2(jn)[−n] ⊗H(1, 4) ⊗DH(1))

where either for some i, ji > 1, or n > 3.

We shall refer to all differentials in the algebraic tmf -resolution as d1 differentials.
Differentials in the MASS

Es,t
2 = Exts,t

A∗

(H(1, 4) ⊗DH(1)) ⇒ πt−s(M(1, 4) ∧DM(1))

will be referred to by dr for r > 2.
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In order to prove (1), we must show that the element v20
2 h1 in Table 10.1 does not

support a non-trivial d1. There is one possible target z120 in (t− s, s) = (120, 22), but
we will argue shortly that this possibility cannot occur. Assuming for the moment
that d1(v

20
2 h1) = 0, we would conclude that v20

2 h1 lifts to an element

ṽ20
2 h1 ∈ Ext21,142

A∗

(H(1, 4) ⊗DH(1, 4)).

The composite

H(1, 4) ∧DH(1, 4) → H(1, 4) → tmf ∧H(1, 4)

induces a map of MASSs:

Exts,t
A∗

(H(1, 4) ⊗DH(1, 4)) +3

��

πt−s(M(1, 4) ∧DM(1, 4))

��
Exts,t

A(2)∗
(H(1, 4)) +3 πt−s(tmf ∧M(1, 4)).

In the MASS for tmf ∧M(1, 4), there is a differential

d3(v
20
2 h1) = g6.

In order to prove (2), we need to lift this differential to the MASS for M(1, 4) ∧
DM(1, 4). By Proposition 2.1, it suffices to lift this differential to the MASS for
M(1, 4) ∧DM(1):

Exts,t
A∗

(H(1, 4) ⊗DH(1)) ⇒ πt−s(M(1, 4) ∧DM(1)).

The obstruction to lifting this differential is that ṽ20
2 h1 could support a d2 in the

MASS for M(1, 4) ∧DM(1). In fact, Table 10.1 demonstrates that there are four
possible targets for such a d2 in (t− s, s) = (120, 23): these are labeled a120, b120,
x120, y120.

We now argue (1) and (2) by showing that the element v20
2 h1 in Table 10.1 cannot

support a non-trivial d1 or d2. We will need Tables 10.2 and 10.3, which depict the
tmf -resolution in the vicinities of gv20

2 h1 and gv4
2h1, respectively.

Write d1(v
20
2 h1) = c · z120 for c ∈ F2. Then we have

d1(gv
20
2 h1) = c · gz120.

Table 10.3 shows that d1(gv
4
2h1) = 0. Multiplying by the d2-cycle v16

2 of Corollary 9.2,
we deduce that we must have d1(gv

20
2 h1) = 0. Thus c equals 0, and we have proven

(1).

Write

d2(v
20
2 h1) = c1a120 + c2b120 + c3x120 + c4y120

for ci ∈ F2. The image of v20
2 h1 in ExtA(2)∗(H(1, 4)) is a d2-cycle in the MASS

Exts,t

A(2)∗
(H(1, 4)) → πt−s(tmf ∧M(1, 4)).
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s\t− s 140 141

27
ga120 • •gb120

◦ gx120

⊙ gy120

•
◦◦
⊙⊙

26
••
⊙ gz120

• x141

⊙
∗

25

•
◦ ◦ ◦
⊙ ⊙⊙

⊚ ⊚ ⊚⊚

∗

gv20
2 h1 • •

◦◦
⊙⊙
⊚⊚

∗

Table 10.2. The algebraic tmf -resolution for ExtA∗
(H(1, 4) ⊗DH(1)) near gv20

2 h1

s\t− s 44 45
11 •

10 •• • v−16
2 x141

9
•
◦◦

gv4
2h1 • •

◦◦
∗

Table 10.3. The algebraic tmf -resolution for ExtA∗
(H(1, 4) ⊗DH(1)) near gv4

2h1

We therefore deduce that c1 = c2 = 0. We wish to show that d2(v
20
2 h1) = 0, i.e., that

it is contained in the image of d1. We have

d2(gv
20
2 h1) = c3gx120 + c4gy120.

Examining Table 10.3, we see that d2(gv
4
2h1) = 0. Since v16

2 is a d2-cycle, we deduce
that d2(gv

20
2 h1) = 0. This means that

c3gx120 + c4gx120

is in the target of a d1. With the exception of the element x141, all of the generators
in (t− s, s) = (141, 26) are g-periodic. Thus we have

d1(E
26,167
1 ) = g · d1(E

22,143
1 ) + F2{d1(x141)},

where Es,t
1 is the E1-term of the algebraic tmf -resolution for

Ext∗,∗
A∗

(H(1, 4) ⊗DH(1)).

However, we see from Table 10.3 that d1(v
−16
2 x141) = 0, so it follows that d1(x141) = 0.

We may therefore deduce the vanishing of d2(v
20
2 h1) from the vanishing of d2(gv

20
2 h1).

We have proven (2).
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11. Proof of the main theorem

By Proposition 4.3 and Lemma 5.9, the element

v32
2 ∈ Ext32,224

A(2)∗
(H(1, 4) ⊗DH(1))

is a permanent cycle in the algebraic tmf -resolution, and it detects an element

v32
2 ∈ Ext32,224

A∗

(H(1, 4) ⊗DH(1)).

By Corollary 9.6, the element v32
2 persists to the E4-page of the MASS for M(1, 4) ∧

DM(1). By Proposition 2.1, our main theorem (Theorem 1.1) is a consequence of the
following lemma:

Lemma 11.1. The element

v32
2 ∈ Ext32,224

A∗

(H(1, 4) ⊗DH(1))

cannot support a non-trivial dr in the MASS for M(1, 4) ∧DM(1) for r > 4.

Proof. We shall make use of the following tables: Table 11.1 depicts the algebraic
tmf -resolution for Ext∗,∗

A∗

(H(1, 4) ⊗DH(1)) in the region where all possible targets

of dr(v
32
2 ) can lie, for r > 4. Note that there are no non-zero elements in the alge-

braic tmf -resolution that can contribute to Exts,191+s
A∗

(H(1, 4) ⊗DH(1)) for s > 40.
Table 11.2 depicts a region of the algebraic tmf -resolution which maps to the region
of Table 11.1 under g6-multiplication. The notation in these tables is explained in
Section 10. The subgroups labeled G191 and G71 are the subgroups generated by the
contributions in the algebraic tmf -resolution labeled with a ∗.

s\t− s 190 191
40 • ••
39 • •

38
• • •

g6b70 ◦ ◦g
6c70

••
g6f71 ◦

37
••
◦

g6a70 ⊙

v8
2k143 • •v

8
2l143

g6d71 ◦ ◦g
6e71

g6b71 ⊙⊙g6c71

36
••
⊙

•
g6a71 ⊙
G191 ∗

Table 11.1. The algebraic tmf -resolution for Ext∗,∗
A∗

(H(1, 4) ⊗DH(1)) in the vicinity
of (t− s, s) = (191, 36)
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s\t− s 70 71
15 • •

14
••

b70 ◦ ◦c70

••
f71 ◦

13
•
◦◦

a70 ⊙

d71 ◦ ◦ ◦ e71
b71 ⊙⊙c71

12
⊙
∗

a71 ⊙⊙⊙⊙⊙
G71 ∗

Table 11.2. The algebraic tmf -resolution for Ext∗,∗
A∗

(H(1, 4) ⊗DH(1)) in the vicinity
of (t− s, s) = (71, 12)

The element v32
2 ∈ Ext32,224

A(2)∗
(H(1, 4)) detects a non-trivial permanent cycle of order

2 in tmf 192M(1, 4). We deduce that the element

v32
2 ∈ ExtA(2)∗(H(1, 4) ⊗DH(1))

is a permanent cycle in the MASS for tmf ∧M(1, 4) ∧DM(1). Consider the map of
MASSs

Exts,t
A∗

(H(1, 4) ⊗DH(1)) +3

��

πt−s(M(1, 4) ∧DM(1))

��
Exts,t

A(2)∗
(H(1, 4) ⊗DH(1)) +3 tmf t−s(M(1, 4) ∧DM(1))

(11.2)

induced by the map

M(1, 4) ∧DM(1) → tmf ∧M(1, 4) ∧DM(1).

Because v32
2 is a permanent cycle in the MASS for tmf ∧M(1, 4) ∧DM(1), we deduce

that in the MASS for M(1, 4) ∧DM(1), the differential dr(v
32
2 ) cannot hit an element

coming from ExtA(2)∗ in the algebraic tmf -resolution (these elements are represented
by a • in Table 11.1). Thus the only possible targets for dr(v

32
2 ) in Table 11.1 are

g6a71, g
6b71, g

6c71, g
6d71, g

6e71, g
6f71 (11.3)

or an element of the group G191. We claim that none of these elements persist to
detect a non-trivial element of the E4-page of the MASS.

Each of the elements in (11.3) is in the image of multiplication by g6. Because the
groups G71 and G191 lie on the edge of the slope 1/5 vanishing line of Lemmas 7.6
and 7.7, each of the elements in G191 are of the form g6y for y ∈ G71.

Suppose that x is a linear combination of the elements

a71, b71, c71, d71, e71, f71 (11.4)

and the elements in G71. We must show that g6x cannot be the non-trivial image of
dr(v

32
2 ) for r > 4.
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If x is a dr-cycle for r 6 3, then x persists to E4. Using the multiplicative structure
of the MASS (Proposition 3.6) together with the fact that g6 = 0 in the E4-page of
the MASS for M(1, 4) ∧DM(1, 4) (Theorem 10.1)1, we deduce that g6x is zero in
E4. It therefore cannot be a non-trivial target for dr(v

32
2 ).

Suppose, however, that dr(x) is non-trivial for some r 6 3. Since differentials in
the algebraic tmf resolution must increase filtration, we deduce that the only possible
targets for dr(x) are linear combinations of

a70, b70, c70

and •’s in Table 11.2 for which t− s = 70 and s > 14. However, each of these •’s
map to non-trivial permanent cycles under the map of spectral sequences (11.2), and
therefore cannot be the target of MASS differentials. The only remaining possibilities
are

Case (1): d1(x) = a70,

Case (2): d2(x) = t1b70 + t2c70,

for (0, 0) 6= (t1, t2) ∈ F2 ⊕ F2. Using Theorem 10.1 we see that in these cases we would
respectively have:

Case (1): d1(g
6x) = g6a70,

Case (2): d2(g
6x) = t1g

6b70 + t2g
6c70.

If we are in Case (1), we are done: the differential dr(v
32
2 ) cannot be detected by g6x

because g6x does not persist to E2. If we are in Case (2), however, we must verify
that t1g

6b70 + t2g
6c70 is not in the image of a d1-differential. The only possibility is

d1(s1v
8
2k143 + s2v

8
2l143) = t1g

6b70 + t2g
6c70. (11.5)

The algebraic tmf -resolution for ExtA∗
(H(1, 4) ⊗DH(1)) in the vicinity of the ele-

ments k143 and l143 is displayed below.

s\t− s 142 143
30 • •
29 •• k143 • •l143

We see that k143 and l143 must be d1-cycles. By Proposition 4.3 and Lemma 5.9,
we deduce that v8

2k143 and v8
2l143 must be d1-cycles. Thus Possibility (11.5) cannot

occur, and we deduce that in Case (2), d2(g
6x) does not vanish. We conclude that in

Case (2), g6x cannot persist to E4 and therefore it cannot be the target of dr(v
32
2 )

for r > 4.

1
This statement must be interpreted with care — Theorem 10.1 asserts that there is an element in

E2 of the MASS for M(1, 4) ∧ DM(1, 4) which is detected by eg6
in the algebraic tmf -resolution,

and which is the target of a d3 in the MASS.
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