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QUOTIENTS OF THE MULTIPLIHEDRON AS CATEGORIFIED
ASSOCIAHEDRA

STEFAN FORCEY
(communicated by Ronald Brown)

Abstract

We describe a new sequence of polytopes which characterize
Ao.-maps from a topological monoid to an A..-space. Therefore
each of these polytopes is a quotient of the corresponding mul-
tiplihedron. Our sequence of polytopes is demonstrated not to
be combinatorially equivalent to the associahedra, as was pre-
viously assumed in both topological and categorical literature.
They are given the new collective name composihedra. We point
out how these polytopes are used to parametrize compositions
in the formulation of the theories of enriched bicategories and
pseudomonoids in a monoidal bicategory. We also present a sim-
ple algorithm for determining the extremal points in Euclidean
space whose convex hull is the n** polytope in the sequence of
composihedra, that is, the n" composihedron CK(n).

1. Introduction

Categorification, as described in [1], refers to the process of creating a new math-
ematical theory by:

1) choosing a demonstrably useful concept that is well understood,

2) replacing some of the sets and functions in its definition with categories and
functors, and

3) replacing some of the axiomatic equalities with morphisms.

The associahedra are a sequence of polytopes, invented by Stasheff in [34], whose
face poset is defined to correspond to bracketings of a given list of elements from
a set. If instead we take lists of elements from a category, and define a sequence of
polytopes whose faces correspond to either bracketings or to certain maps in that
category, then we may naively describe our new definition as a categorified version
of the associahedra. Of course there may be many interesting ways to make this
idea precise. Here we focus on just one, which arises naturally in the study of both
topological monoids and category theory.
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Figure 1: The cast of characters. Left to right: CK(4), J(4), 3-d cube, and K(5).

Categorification of the concept of category itself can be achieved by replacing the
Hom-sets of arrows (and/or the set of objects) by categories. This implies considering
enriched (or internal) categories of Cat, the category of categories. There is room for
the composition laws in enriched or internal categories in Cat to be weakened. To
achieve this in a coherent way, the familiar definitions of bi- and tricategory utilize the
Stasheff polytopes, or associahedra, as the underlying shapes of axiomatic commuting
diagrams.

A parallel categorification of enriched categories creates a definition allowing the
hom-objects to be located in a monoidal bicategory W. This is known as the the-
ory of enriched bicategories. Rather than the associahedra, it is a new sequence of
polytopes which arises in the corresponding coherence axioms of enriched bicate-
gories. This new sequence comprises the categorified version of the associahedra
which we will be studying. Since they appear in the composition laws of enriched
categories, we have chosen to refer to them collectively as the composihedra, or sin-
gularly as the n*" composihedron, denoted CK(n). The capital “C” stands for “com-
pose”, or for “categorify,” or for “cone”— the last since the n** composihedron can be
seen as being a subdivision of the topological cone of the nt" associahedron. Indeed
the polytope CK(n) is of dimension n — 1, while the polytope K(n) is of dimension
n — 2. Decompositions of the boundaries of the earliest terms in our new sequence
of polytopes have been seen before, in the classic sources on enriched categories such
as [17], the definition of enriched bicategories in [6], and in the single-object version
of the latter: pseudomonoids as defined in [31].

The first half of our title refers to the fact that the polytopes we study here
also arise in the study of A, and A.,-maps. The multiplihedra were invented by
Stasheff [34], described by Iwase and Mimura [16], and generalized by Boardman
and Vogt [5]. They represent the fundamental structure of a weak map between
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weak structures, such as weak n-categories or A, -spaces. They form a bimodule over
the associahedra, and collapse under a quotient map to become the associahedra in
the special case of a strictly associative monoid as range. In the case of a strictly
associative monoid as domain, the multiplihedra collapse to form our new family of
polytopes. This is pictured above in Figure 1, in dimension 3. The multiplihedron is
at the top, composihedron on the left, associahedron on the right, and the cube which
results in the case of both strict domain and range structures at the bottom.

In Section 2 we briefly review the appearance of polytope sequences in topology
and category theory. In Section 3 we provide a complete recursive definition of our
new polytopes, as well as a description of them as quotients of the multiplihedra.
In Section 4 we go over some basic combinatorial results about the composihedra.
In Section 5 we present an alternative definition of the composihedra as a convex
hull, based upon the convex hull realization of the multiplihedra in [10] and which
reflects the quotienting process. In Section 6 we prove that the convex hull defined in
Section 5 is indeed combinatorially equivalent to the complex defined in Section 3.

A word of introduction is appropriate in regard to the convex hull algorithm in
Sections 5 and 6. In the paper on the multiplihedra, [10], we described how to repre-
sent Boardman and Vogt’s spaces of painted trees with n leaves as convex polytopes,
which are combinatorially equivalent to the CW-complexes described by Iwase and
Mimura. Our algorithm for the vertices of the polytopes is flexible in that it allows
an initial choice of a constant g between zero and one. In the limit as ¢ — 1, the con-
vex hull approaches that of Loday’s convex hull representation of the associahedra as
described in [23]. The limit as ¢ — 1 corresponds to the case for which the mapping
is a homomorphism in that it strictly respects the multiplication. The limit as ¢ — 0
represents the case for which multiplication in the domain of the morphism in ques-
tion is strictly associative. In the limit as ¢ — 0, the convex hulls of the multiplihedra
approach our newly discovered sequence of polytopes, the composihedra.

There are two projects for the future that are supported by this work. One is to
make rigorous the implication that enriched bicategories may be exemplified by cer-
tain maps of topological monoids. It could be hoped that if this endeavor is successful,
then A, categories and their maps might also be amenable to the same approach,
yielding more interesting examples of enriched bicategories. The other project already
underway is to extend the concept of quotient multiplihedra described here to the
graph associahedra introduced by Carr and Devadoss in [7]. Initial results are found
in [9].

There is also a philosophical conclusion to be argued from the results of this work.
Historically, weak 2- and 3-categories were defined using the associahedra, which form
an operad of topological spaces. Then the operad structure was taken as fundamental
in many of the functioning definitions of weak n-category, as described in [20, 21]
and [22]. Again historically, weak maps of bi- and tricategories were defined using
the multiplihedra, which form a 2-sided operad bimodule over the associahedra. More
recently, the operad bimodule structure has been used to define weak maps of weak
n-categories, in [4] and [15]. Thus the facts that the composihedra are used for defin-
ing enriched categories and bicategories, and that they form an operad bimodule
(left-module over the associahedra and right-module over the associative operad
t(n) = *), lead us to propose that enriching over a weak n-category should in general
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be accomplished by use of operad bimodules as well. The philosophy here is that the
structure of a bimodule will take into account the weakness of the base of enrichment,
(where a weakly associative product is used to form the domain for composition) as
well as providing for the weakness of the enriched composition itself.

Thanks to Jim Stasheff, Mike Reed, and Jerome Lecointre for suggestions, inspi-
ration, and taking the time to discuss the material in this work.

2. Polytopes in topology and category theory

Here we review the appearance of fundamental families of polytopes in the axioms
of higher-dimensional category theory. In both topology and in category theory, the
use of these polytopes has proven to be a source of important clues rather than the
final solution. The algebraic structure of the polytope sequence is more important
than its combinatorial structure, although certainly one depends on the other. Thus
the operad structure on the associahedra can be seen as foreshadowing the intuition
for the use of actions of the operad of little n-cubes to recognize loop spaces, as well
as the use of n-operad actions in Batanin’s definition of n-category [4].

2.1. Associahedron

The associahedra are the famous sequence of polytopes denoted K(n) from [34],
which characterize the structure of weakly associative products: K(1) = K(2) = a
single point, /£(3) is the line segment, KC(4) is the pentagon, and KC(5) is the following
3d shape:

The original examples of weakly associative product structure are the A,-spaces,
topological H-spaces with weakly associative multiplication of points. Here “weak”
should be understood as “up to homotopy.” That is, there is a path in the space from
(ab)c to a(be). An A-space X is characterized by its admission of an action

Kn)x X" - X

for all n.

Categorical examples begin with the monoidal categories as defined in [25], where
there is a weakly associative tensor product of objects. Here “weak” officially means
“naturally isomorphic.” There is a natural isomorphism

a: (UV)@W -Ue(VeW).

Recall that a monoidal category is a category )V, together with a functor
®:V xV — V, such that ® is associative up to the coherent natural isomorphism .
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The coherence axiom is given by a commuting pentagon, which is a copy of K(4).

a ®1
(UeoVeW)oX X Ue(VeW)oX
AU(VRW)X
XYURVIWX
UeV)e(WeX) U (VeWw)®X)
AUV (WRX) lyQ@aywx

Ue (Ve We X))

Monoidal categories can be viewed as single object bicategories. In a bicategory,
each hom(a,b) is located in Cat rather than Set. The composition of morphisms is
not exactly associative: there is a 2-cell o: (f og)oh — fo(goh). This associator
obeys the same pentagonal commuting diagram as for monoidal categories, as seen
in [19].

Another iteration of categorification results in the theory of tricategories. These
obey an axiom in which a commuting pasting diagram has the underlying form of
the associahedron KC(5), as noticed by the authors of [13]. The term “cocycle condi-
tion” for this axiom was popularized by Ross Street, and its connections to homology
are described in many of his papers, including [36]. The pattern continues in Trim-
ble’s unpublished definition of tetracategories, where K(6) is found as the underlying
structure of the corresponding cocycle condition. The associahedra are also seen as
the classifying spaces of certain categories of trees, as illustrated in [20], and as the
foundation for the free strict w-categories defined in [36].

The associahedra are also the starting point for defining the one-dimensional
analogs of the full n-categorical comparison of delooping and enrichment. One-dimen-
sional weakened versions of enriched categories have been well-studied in the field
of differential graded algebras and A..-categories, the many object generalizations
of Stasheft’s A..-algebras [34]. An A..-category is basically a category “weakly”
enriched over chain complexes of modules, where the weakening in this case is accom-
plished by summing the composition chain maps to zero (rather than by requiring
commuting diagrams). It is also easily described as an algebra over a certain operad.

2.2. Multiplihedron

The complexes now known as the multiplihedra J(n) were first pictured by
Stashefl, for n < 4 in [35]. They were introduced in order to approach a full description
of the category of A..-spaces by providing the underlying structure for morphisms
which preserved the structure of the domain space “up to homotopy” in the range.
Recall that an A,-space itself is a monoid only “up to homotopy,” and is recognized
by a continuous action of the associahedra as described in [34]. Thus the multiplihe-
dra are used to characterize the A,-maps. A map f: X — Y between A..-spaces is
an A..-map if there exists an action

Jn)x X" =Y
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for all n, which is equal to the action of f for n = 1, and obeying associativity con-
straints as described in [35]. Stasheff described how to construct the 1-skeleton of
these complexes in [35], but stopped short of a full combinatorial description. Iwase
and Mimura in [16] give the first detailed definition of the sequence of complexes
J(n) now known as the multiplihedra, and describe their combinatorial properties.

Spaces of painted trees were first introduced by Boardman and Vogt in [5] to
help describe multiplication in (and morphisms of) topological monoids that are not
strictly associative (and whose morphisms do not strictly respect that multiplica-
tion.) The n'* multiplihedron is a CW-complex whose vertices correspond to the
unambiguous ways of multiplying and applying an A.,-map to n ordered elements
of an A,.-space. Thus the vertices correspond to the binary painted trees with n
leaves. In [10] a new realization of the multiplihedra, based upon a map from these
binary painted trees to Euclidean space, is used to unite the approach to A,-maps of
Stasheff, Iwase and Mimura to that of Boardman and Vogt.

The overall structure of the associahedra is that of a topological operad, with the
composition given by inclusion. The multiplihedra together form a bimodule (left
and right module) over this operad, with the action again given by inclusion. That
is, there exist inclusions:

K(k) x (T (j1) x - x T (jx)) = T (n),

where n is the sum of the j;. This is the left module structure. The right module
structure is from existence of inclusions:

T (k) x (K(j1) x - x K(jk)) — T (n),

where n is the sum of the j;. This structure mirrors the fact that the spaces of painted
trees form a bimodule over the operad of spaces of trees, where the compositions
and actions are given by the grafting of trees, root to leaf. The definition of operad
bimodule we use here is that stated in some detail in [27] and briefly in [15]. A related
definition of operad bimodules can be found in [29, p. 138].

Here are the first few low-dimensional multiplihedra. The vertices are labeled, all
but some of those in the last picture. There the bold vertex in the large pentagonal

facet has label ((f(a)f(b))f(c))f(d) and the bold vertex in the small pentagonal facet
has label f(((ab)c)d). The others can be easily determined based on the fact that those
two pentagons are copies of the associahedron K(4), that is to say all their edges are
associations.

(f(@)f(b))f(c) p—a f(a)(f(b)f(c))

J1) = e JE2) = J(3) = fab)f(e) F(a)f (be)

f((ab)c) &——«——4@ f(a(bc))
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f(a)(f(be)f(d)) (f(a)f(be))f(d)

f(a)f((be)d) fa(be)) f(d)

J(4) = @) (b(cd)) F((ab)e)f(d)

F(@)(f(0)f(cd)) (f(ab)f(c))f(d)

(f(a)f(8)) f(cd) f(ab)(f(e)f(d))

f(ab) f(cd)

The multiplihedra also appear in higher category theory. The definitions of bicat-
egory and tricategory homomorphisms each include commuting pasting diagrams as
seen in [19] and [13] respectively. The two halves of the axiom for a bicategory homo-
morphism together form the boundary of the multiplihedra J(3), and the two halves
of the axiom for a tricategory homomorphism together form the boundary of [7(4).
Since weak n-categories can be understood as being the algebras of higher operads,
these facts can be seen as the motivation for defining morphisms of operad (and
n-operad) algebras in terms of their bimodules. This definition was mentioned in [4]
and is developed in detail in [15]. In the latter paper it is pointed out that the bimod-
ules in question must be co-rings, which have a co-multiplication with respect to the
bimodule product over the operad.

The study of the A..-spaces and their maps is still in progress. There is an open
question about the correct way of defining composition of these maps in order to form
a category. On page 100 in [5], an obvious sort of composition is described as not
being associative in the obvious way. A diagonal map is constructed for the multipli-
hedra in [32], extrapolated from an analogous diagonal on the associahedra. These
maps allow a functorial monoidal structure for certain categories of A,.-algebras and
A.-categories. Different, conjecturally equivalent, versions of diagonals on the asso-
ciahedra are presented in [24] and [28]. Eventually it needs to be understood whether
any of the possible diagonals make the multiplihedra into a co-ring as defined in [15],
as well as how such a structure relates to the canonical compositions defined in [5].

The multiplihedra have also appeared in several areas related to deformation theory
and A, category theory. The 3-dimensional version of the multiplihedron is given
the name “Chinese lantern diagram” in [38], and is used to describe deformation
of functors. There is a forthcoming paper by Woodward and Mau in which a new
realization of the multiplihedra as moduli spaces of disks with additional structure
is presented [30]. This realization allows the authors to define A,-functors as well as
morphisms of cohomological field theories. There are also interesting questions about
the extension of A,-maps, as in [14], and about the transfer of A, structure through
these maps, as in [26].
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2.3. Quotients of the multiplihedron

The special multiplihedra in the case for which multiplication in the range is strictly
associative were found by Stasheff in [35] to be precisely the associahedra. Specif-
ically, the quotient of J(n) under the equivalence generated by (f(a)f(b))f(c) =
f(a)(f(b)f(c)) is combinatorially equivalent to KC(n + 1). This projection is pictured
on the upper right-hand side of Figure 1, in dimension 3. Recall that the edges of
the multiplihedra correspond to either an association (ab)c — a(bc) or to a preserva-
tion f(a)f(b) — f(ab). The associations can either be in the range: (f(a)f(b))f(c) —
f(a)(f(b)f(c)), or the image of a domain association: f((ab)c) — f(a(bc)).

It was long assumed that the case for which the domain was associative would
likewise yield the associahedra, but we will demonstrate otherwise. The n** com-
posihedron may be described as the quotient of the n!” multiplihedron under the
equivalence generated by f((ab)c) = f(a(bc)). Of course this is implied by associativ-
ity in the domain, where (ab)c = a(bc). We will take this latter view throughout, but
we note that there may be interesting functions for which f((ab)c) = f(a(bc)) even if
the domain is not strictly associative.

Below are the first few composihedra with vertices labeled as in the multiplihedra,
but with the assumption that the domain is associative. (For these pictures, the label
actually appears over the vertex.) Notice how the n-dimensional composihedron is a
subdivided topological cone on the (n — 1)-dimensional associahedron. The Schlegel
diagram is shown for CK(4), viewed with a copy of K(4) as the perimeter.

Any confusion can probably be traced to the fact that the two sequences of poly-
topes are identical for the first few terms. They diverge first in dimension three, at
which dimension the associahedron has nine facets and 14 vertices, while the com-
posihedron has ten facets and 15 vertices. Another similarity at this dimension is that
both polytopes have exactly six pentagonal facets; the difference is in the number of
quadrilateral facets. The difference is also clear from the fact that the associahedra
are simple polytopes, whereas starting at dimension three the composihedra are not.

CK(1): f(a)
CK(2): f(a)f(b) F(ab)
CK(3) : (F(@)F () f(e) ——— F(@)(f(B)F(c)
/ \
F(ab)f(c) F(a) £ (be)
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CR(4): ((f(a)f(b))f(c))f(d) (f(a)(f(b)f(e))f(d)
(f(ab)f(c))f(d) (f(a)f(bc))f(d)

F(ab)(f(c)f(d)) f(abe) f(d)

(f(a)f(b))<f(c)f(d)) flab)f(ed) —— f(abed)  f(a)(f(be) f(d)) — f(a)((F(b)f(c))f(d))
\\
N\ (f(a)f(0))f(cd) f(a) f(bed)
AN \
\ﬂa)(ﬂb)ﬂcd))
F(@)(F(b)(f(e)f(d)))

Here are easily compared pictures of the associahedron and composihedron in
dimension 3.

b

. Stasheff points out that we can obtain the complex K(5) by deleting a single
edge of CK(4).

2.4. Enriched bicategories and the composihedron

Remarkably, the same minor error of recognition between the associahedron and
composihedron may have been made by category theorists who wrote down the coher-
ence axioms of enriched bicategory theory. The first few polytopes in our new sequence
correspond to cocyle coherence conditions in the definition of enriched bicategories,
as in [6]. It is incorrectly implied there that the final cocycle condition has the combi-
natorial form of the associahedron K(5). The axiom actually consists of two pasting
diagrams, which, when glued along their boundary, are seen to form the composihe-
dron CK(4) instead. Also note that the first few composihedra correspond as well to
the axioms for pseudomonoids in a monoidal bicategory, as seen in [31]. This fact is
to be expected, since pseudomonoids are just single object enriched bicategories.
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Little has been published about enriched bicategories, although the theory is used
in recent research papers such as [11] and [33]. The full definition of enriched bicat-
egory is worked out in [6]. It is repeated with the simplification of a strict monoidal
W in [18], in which case the commuting diagrams have the form of cubes. (Recall
that when both the range and domain are strictly associative that the multiplihedra
collapse to become the cubes, as shown in [5].) An earlier definition of a (lax) enriched
bicategory as a lax functor of certain tricategories is found in [13] and is also reviewed
in [18]; in retrospect this formulation is to be expected since the composihedra are
special cases of multiplihedra.

Here for reference is the definition of enriched bicategories, closely following [6]. Let
(W, ®, a,m,I) be a monoidal bicategory, as defined in [6] or in [13], or comparably
in [2], with I a strict unit (but we will include the identity cells in our diagrams). Note
that item (5) in the following definition corrects an obvious typo in the corresponding
item of [6], and that the 2-cells in item (6) have been somewhat rearranged from that
source, for easier comparison to the polytope CIC(4).

Definition 2.1. An enriched bicategory A over W is:

1. a collection of objects Ob.A,
2. hom-objects A(A, B) € ObW for each A, B € ObA,

3. a composition 1-cell
Mype: A(B,C) ® A(A,B) — A(A,C)
in W for each A4, B,C € ObA,
4. an identity 1-cell J4: I — A(A, A) for each object A,
5. 2-cells My in W for each A, B,C, D € ObA:

(A(C,D)® A(B,C)) ® A(A, B) —— A(C,D) ® (A(B,C) ® A(A, B))

M1 oM

A(B,D)® A(A,B) A(C,D)® A(A,C)

A(A, D)

6. which obey a cocycle condition for each A, B, C, D, E. This is shown in Figure 2,
where we abbreviate the hom-objects and composition by M: BC, AB — AC.
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7. Unit 2-cells:

I®.A(A,B) AAB)® I
IB®1 A A(A, B) oM 1®Ja
7 \A
MABB AA
— ~_

A(B.B)® A(A, B) A(A, B) @ A(A, A),
8. which obey a pasting condition of their own, which we will omit for brevity.

If, instead of the existence of 2-cells postulated in (5) and (7), we had required that
the diagrams commute, we would recover the definition of an enriched category. Note
that the pentagonal axiom for a monoidal category at the beginning of this section
has the form of the associahedron K(4) but the commuting pentagon for enriched
categories (here the domain and range of M), is actually better described as having
the form of CK(3).

Here is the cocycle condition (6), pasted together and shown as a Schlegel diagram
for comparison to the similarly displayed picture above of CK(4). To save space,
“e o — o” will represent M;: A(B,C)® A(A, B) — A(A,C).

((o @)0)e (o(0 @))e

o(e(e @)

From this perspective it is easier to visualize how, in the case that YW = Cat, an
enriched bicategory is just a bicategory. In that case My is renamed o, and the
enriched cocycle axiom becomes the ordinary bicategory cocycle axiom with the
underlying form of K(4). Thus the n'" composihedron can be seen to contain in
its structure two copies of the n'" associahedron: one copy as a particular upper facet
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DE, (CD, (BC, AB))

e

(DE,CD),(BC, AB) DE, (CD, AC)

T Mo 1
DE, ((CD, BC), AB)

7\

((DE,CD), BC), AB_._ (DE, (CD, BC)) E,(BD, AB) _ DE,AD
(DE,BD),
Mo M
(CE, BC), AB AE

T

DE,(CD, (BC, AB))

/\

BE, AB

(DE,CD), (BC, AB) DE, (CD, AC)
\ (DE,CD), AC
((DE,CD), BC), AB — Myt DE,AD

CE,(BC,AB)__________ CE,AC

/!

(CE,BC), AB

\/

BE,AB

Figure 2: Cocycle condition for enriched bicategories.
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and another as a certain collection of facets that can function as labels for the facets
of the corresponding associahedron. Of course the second copy is only seen upon
decategorification!

3. Recursive definition

In [16] the authors give a geometrically defined CW-complex definition of the
multiplihedra, and then demonstrate the recursive combinatorial structure. Here we
describe how to collapse that structure for the case of a strictly associative domain,
and achieve a recursive definition of the composihedra.

Pictures in the form of painted binary trees can be drawn to represent the multipli-
cation of several objects in a monoid, before or after their passage to the image of that
monoid under a homomorphism. We use the term “painted” rather than “colored” to
distinguish our trees with two edge colorings, “painted” and “unpainted,” from the
other meaning of colored, as in colored operad or multicategory. We will refer to the
exterior vertices of the tree as the root and the leaves , and to the interior vertices as
nodes. This will be handy since then we can reserve the term “vertices” for reference
to polytopes. A painted binary tree is painted beginning at the root edge (the leaf
edges are unpainted), and always painted in such a way that there are only three

types of nodes. They are:

This limitation on nodes implies that painted regions must be connected, that painting
must never end precisely at a trivalent node, and that painting must proceed up both
branches of a trivalent node. To see the promised representation, we let the left-hand
type (1) trivalent node above stand for multiplication in the domain; the middle,
painted, type (2) trivalent node above stand for multiplication in the range; and the
right-hand type (3) bivalent node stand for the action of the mapping. For instance,
given a, b, ¢, d elements of a monoid, and f a monoid morphism, the following diagram
represents the operation resulting in the product f(ab)(f(c)f(d)):

b

f(ab)(f(e)f(d))

To define the face poset structures of the multiplihedra and composihedra we need
painted trees that are no longer binary. Here are the three new types of node allowed
in a general painted tree: They correspond to the node types (1), (2) and (3) in that
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they are painted in similar fashion. They generalize types (1), (2), and (3) in that
each has greater or equal valence than the corresponding earlier node type.

(4) (5) (6)
Definition 3.1. By refinement of painted trees we refer to the relationship: ¢ refines
t’ means that ¢’ results from the collapse of some of the internal edges of ¢. This is a
partial order on n-leaved painted trees, and we write ¢ < ¢’. Thus the binary painted
trees are refinements of the trees having nodes of type (4)—(6). Minimal refinement
refers to the covering relation in this poset: ¢t minimally refines ¢ means that ¢ refines
t"” and also that there is no ¢’ such that both ¢ refines ' and t’ refines ¢”'. The poset

of painted trees with n leaves is precisely the face poset of the n'” multiplihedron.
Here is an example of a chain in the poset of 3-leaved painted trees:

Yoy

Definition 3.2. Two painted trees are said to be domain equivalent if two require-
ments are satisfied:

1) they both refine the same tree, and

2) the collapses involved in both refinements are of edges whose two nodes are of
type (1) or type (4). That is, these collapses will be of internal unpainted edges
with no adjacent painted edges.

Locally the equivalences will appear as follows:

~ ~

That is, the domain equivalence is generated by the two moves illustrated above.
Therefore we often choose to represent a domain equivalence class of trees by the
unique member with least refinement, that is with its unpainted subtrees all corollas.

Definition 3.3. A painted corolla is a painted tree with only one node, of type (6).
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The n'" composihedron may be described as the quotient of the n” multiplihe-
dron under domain equivalence. This quotient can be performed by applying the
equivalence either to the metric trees, which define the multiplihedra in [5] or to the
combinatorial definition of the multiplihedra, i.e. to the face poset of the multiplihe-
dra. Here we will follow the latter scheme to unpack the definition of the composihedra
into a recursive description utilizing facet inclusions.

The facets of the n** multiplihedron are of two types: upper facets whose vertices
correspond to sets of related ways of multiplying in the range, and lower facets whose
vertices correspond to sets of related ways of multiplying in the domain. A lower
facet is denoted Ji(r,s) and is a combinatorial copy of the complex J(r) x K(s).
Here r4+s—1=mn. A vertex of a lower facet represents a way in which s of the
points are multiplied in the domain, and then how the images of their product and of
the other r — 1 points are multiplied in the range. In the case for which the domain
is strictly associative, the copy of K(s) here should be replaced by a single point,
denoted {x}. Thus in the composihedra the lower faces will have reduced dimension.
In fact only certain of them will still be facets.

The recursive definition of the new sequence of polytopes is as follows:

Definition 3.4. The first composihedron denoted CK(1) is defined to be the single
point {x}. It is associated to the painted tree with one leaf, and thus one type (3)
internal node. Assume that the CK(k) have been defined for k=1,...,n—1. To
CK(k) we associate the k-leaved painted corolla. We define an (n — 2)-dimensional
CW-complex 0CK(n) as follows, and then define CK(n) to be the cone on OCK(n).
Now the top-dimensional cells of OCK(n) (facets of CK(n)) are in bijection with the
set of painted trees of two types:

upper trees u(t;ri,...,re) =

and minimal lower trees l(k,2) =

There are 2"~ — 1 upper trees, as counted in [10]. The index t can range from
2,...,n,and r; > 1. The upper facet, which we call CK(¢t;,r1,...,7) associated with
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the upper tree of identical indexing, is a copy of K(t) x CK(r1) x --- x CK(r¢). Here
the sum of the r; is n.

There are n — 1 minimal lower trees. The lower facet, which we call CKy(n — 1,2)
associated with the lower tree of identical indexing, is a copy of CK(n — 1) x K(2),
that is, a copy of CXC(n — 1). Here k ranges from 1 to n — 1. B(n) is the union of all
these facets, with intersections described as follows:

Since the facets are product polytopes, their sub-facets in turn are products of faces
(of smaller associahedra and composihedra) whose dimensions sum to n — 3. Each of
these sub-facets thus comes (inductively) with a list of associated trees. There will
always be a unique way of grafting these trees to construct a painted tree that is
a minimal refinement of the upper or minimal lower tree associated to the facet
in question. For the sub-facets of an upper facet the recipe is to paint entirely the
t-leaved tree associated to a face of K(¢) and to graft to each of its branches in turn
the trees associated to the appropriate faces of CIC(rq) through CK(r;) respectively.
A sub-facet of the lower facet CK(n — 1,2) inductively comes with an (n — 1)-leaved
associated upper or minimal lower tree T'. The recipe for assigning our sub-facet an
n-leaved minimal refinement of the n-leaved minimal lower tree I(k,2) is to graft an
unpainted 2-leaved tree to the k" leaf of T. See the following Example 3.5 for this
pictured in low dimensions.

The intersection of two facets in CK(n) consists of the sub-facets of each which
have associated trees that are domain equivalent. Then CK(n) is defined to be the
cone on ICK(n). To CK(n) we assign the painted corolla of n leaves.

Example 3.5.

CK(1) = o w

Here is CKC(2) with the upper facet IC(2) x CI(1) x CK(1) on the left and the lower
facet CKC(1) x KC(2) on the right.

Y

And here is the complex CK(3). The product structure of the upper facets is
listed, and the two lower facets are named. Note that both lower facets are copies of
CK(2) x K(2). Notice also how the sub-facets (vertices) are labeled. For instance, the
upper right vertex is labeled by a tree that could be constructed by grafting three
copies of the single leaf painted corolla onto a completely painted binary tree with
three leaves, or by grafting a single leaf painted corolla and a 2-leaf painted binary
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tree onto the leaves of a 2-leaf completely painted binary tree.

Y v ¥

K(3)XCK(1)xCK(1)xCK(1)

K(2)xCK(2) xCK(1) K(2)xCK(1)xCK(2)

1

Yoy

Remark 3.6. The total number of facets of the n'” composihedron is 2"~ +n — 2;
therefore the number of facets of CK(n + 1) is

2" +n—1=0,2,5,10,19,36,... .

This is sequence A052944 in the OEIS. This sequence also gives the number of vertices
of an n-dimensional cube with one truncated corner. Now the relationship between
the polytopes in Figure 1 can be algebraically stated as an equation:

ey (B ) (D )y,

That is:

[{facets of CKC(n + 1)}| + |{facets of K(n + 2)}| — |{facets of T (n + 1)}
= |{facets of C'(n)}|,

where C'(n) is the n-dimensional cube.
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Remark 3.7. Consider the existence of facet inclusions:
K(k) x (CK(j1) x - -+ x CK(jk)) — CK(n),

where n is the sum of the j;. This is the left module structure: the composihedra
together form a left operad module over the operad of spaces formed by the asso-
ciahedra. Notice that the description of the assignation of trees to sub-facets (via
grafting) in the definition above guarantees the module axioms.

Remark 3.8. By definition, the n*" composihedron is seen to be the quotient of the
n!" multiplihedron under domain equivalence. Recall that the lower facets of 7 (n) are
equivalent to copies of J(r) x K(s). The actual quotient is achieved by identifying
any two points (a,b) ~ (a,c¢) in a lower facet, where a is a point of J(r) and b,c
are points in K(s). The associated quotient map from J(n) to CK(n) is in fact a
cellular projection. In other words, CK(n) is the polytope achieved by taking the n*
multiplihedron 7 (n) and sequentially collapsing certain faces. For a picture of this,
see the upper left projection of Figure 1, where the small pentagon and two rectangles
on the back of J(4) collapse to a vertex and two edges respectively.

Remark 3.9. In [32], a projection 7 from the n'" permutohedron P(n) to J(n) is
described; thus there follows a composite projection from P(n) — CK(n). For com-
parison sake, recall that in the case of a strictly associative range the multiplihedra
become the associahedra, in fact the quotient under range equivalence of J(n) is
K(n+1). The implied projection of this quotient composed with 7 yields a new
projection from P(n) — K(n + 1). Saneblidze and Umble describe a very different
projection from J(n) to K(n +1). When composed with 7 this yields a (different)
projection from P(n) to (n + 1) that is shown in [32] to be precisely the projection
6 described in [37].

Remark 3.10. There is a bijection between the 0O-cells, or vertices, of C(n) and the
domain equivalence classes of n-leaved painted binary trees. This follows from the
recursive construction, since the 0O-cells must be associated to completely refined
painted trees. However, the domain equivalent trees must be assigned to the same
vertex since domain equivalence determines intersection of sub-facets. Recall that we
can also label the vertices of CIC(n) by applications of an A, function f to n-fold
products in a topological monoid.

Remark 3.11. As defined in [35], an A,-map between A,-spaces f: X — Y is de-
scribed by an action J(n) x X™ — Y. If the space X is a topological monoid, then
we may equivalently describe f: X — Y by simply replacing the action of J(n) with
an action of CK(n) in the definition of A,-map.

4. Vertex combinatorics

We now mention results regarding the counting of the vertices of the composihedra.
Recall that vertices correspond bijectively to domain equivalence classes of painted
binary trees.
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Theorem 4.1. The number of vertices a,, of the n*" composihedron is given recur-
sively by:

n—1
an = 1+ § aiQn—i,
=1

where ag = 0.

Proof. By a weighted tree we refer to a tree with a real number assigned to each of
its leaves. The total weight of the tree is the sum of the weights of its leaves. The
set of domain equivalence classes of painted binary trees with n-leaves is in bijection
with the set of binary weighted trees of total weight n, where leaves have positive
integer weights. This is evident from the representation of a domain equivalence class
by its least refined member. Here is a picture that illustrates the general case of the
bijection.

There is one weighted 1-leaved tree with total weight n. Now we count the binary
trees with total weight n that have at least one trivalent node. Each of these consists
of a choice of two binary subtrees whose root is the initial trivalent node, and whose
weights must sum to n. Thus we sum over the ways that n can be split into two
natural numbers. O

Remark 4.2. This formula gives the sequence which begins:
0,1,2,5,15,51,188,731,2950,12235. .. .

Tt is sequence A007317 of the On-line Encyclopedia of integer sequences. This formula
for the sequence was originally stated by Benoit Cloitre [8].

The recursive formula above yields the equation

Alz) = —— 4 (A@)),

Cl—z

where A(z) is the ordinary generating function of the sequence a,, above. Thus by
use of the quadratic formula we have

A(x)

T T
o 1—xc(

);

1—2x

where ¢(z) = =142 V21$_4”” is the generating function of the Catalan numbers. This for-

mula was originally derived by Emeric Deutsch from a comment of Michael Somos [8].

Now if we want to generate the sequence {a,11}22,=1,2,5,15,51,..., then we
must divide our generating function by z, to get ﬁc(lfw). This we recognize as
the generating function of the binary transform of the Catalan numbers, from the
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definition of binary transform in [3]. Therefore a direct formula for the sequence is
given by
n

g1 =) (Z)C(k),

k=0

where C'(n) are the Catalan numbers.

Remark 4.3. This sequence also counts the non-commutative non-associative parti-
tions of n. Two other combinatorial items that this sequence enumerates are: the
number of Schroeder paths (i.e. consisting of steps U = (1,1), D = (1,—1), H = (2,0)
and never going below the x-axis) from (0,0) to (2n — 2,0), with no peaks at even
level, and the number of tree-like polyhexes (including the non-planar helicenic poly-
hexes) with n or fewer cells [8].

5. Convex hull realizations

In [23] Loday gives an algorithm for taking the binary trees with n leaves and
finding for each an extremal point in R"~!  together whose convex hull is K(n),
the (n — 2)-dimensional associahedron. Note that Loday writes formulas with the
convention that the number of leaves is n + 1, where we instead always use n to refer
to the number of leaves. Given a (non-painted) binary n-leaved tree ¢, Loday arrives
at a point M (t) in R"~! by calculating a coordinate from each trivalent node. These
are ordered left to right based upon the ordering of the leaves from left to right.
Following Loday we number the leaves 0,1,...,n — 1 and the nodes 1,2,...,n— 1.
The i** node is “between” leaf i — 1 and leaf i, where “between” might be described
to mean that a raindrop falling between those leaves would be caught at that node.
Each trivalent node has a left and right branch, which each support a subtree. To find
the Loday coordinate for the i** node we take the product of the number of leaves of
the left subtree (I;) and the number of leaves of the right subtree (r;) for that node.
Thus M(t) = (x1,...,2n—1), where z; = l;r;. Loday proves that the convex hull of the
points thus calculated for all n-leaved binary trees is the n'" associahedron. He also
shows that the points thus calculated all lie in the n — 2-dimensional affine hyperplane
H given by the equation 1 + -+ 2,1 = S(n—1) = %n(n —1).

In [10] we adjust Loday’s algorithm to apply to painted binary trees as described
above, with only nodes of type (1), (2), and (3), by choosing a number ¢ € (0, 1).
Then given a painted binary tree ¢ with n leaves we calculate a point M (t) in R"~!
as follows: we begin by finding the coordinate for each trivalent node from left to
right given by Loday’s algorithm, but if the node is of type (1) (unpainted, or colored
by the domain), then its new coordinate is found by further multiplying its Loday
coordinate by q. Thus

lyr;, if nodeiist 1
M,(t) = (z1,...,2n—1), Where z; = air l noae l %S ype (1)
lir;, if node 7 is type (2).

Note that whenever we speak of the numbered nodes (1,...,n — 1 from left to right)
of a binary tree, we are referring only to the trivalent nodes, of type (1) or (2). For
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an example, let us calculate the point in R3 which corresponds to the 4-leaved tree:

Then M,(t) = (¢,4,1).
Now we turn to consider the case when in the algorithm described above we let
qg=0.

0 if node 7 is t 1
My(t) = (z1,...,Tpn-1), where z; =< 1 1o ez‘?s ype (1)
l;r;, if node i is type (2).

For the same tree ¢ in the above example we have My(t) = (0,4,1).

Lemma 5.1. If (painted binary) tree t is domain equivalent to t', then My(t) =
My(t"). That is, each domain equivalence class of binary painted trees contributes
ezxactly one point.

Proof. This is clear from the fact that all the unpainted nodes of a tree contribute a
0 coordinate. O

Theorem 5.2. The convex hull of all the resulting points My(t) for t in the set of
n-leaved binary painted trees is the n'™ composihedron. That is, our convex hull is
combinatorially equivalent to the CW-complex CK(n).

The proof will follow in Section 6. Here are all the painted binary trees with three
leaves, together with their points My(t) € R2.

M, =(1,2), M, =(2,1)
Mo =(0,2) Mo =(2,0)

Mo =(0,0), Moy = (0,0)
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Note that the bottom two points are both the origin. The convex hull of the five
total distinct points appears as follows:
A

- e >

The (redundant) list of vertices for CAC(4) based on painted binary trees with four
leaves is:

(1,2,3) (0,2,3) (0,0,3) (0,0,0)
(2,1,3) (2,0,3) (0,0,3) (0,0,0)
(3,1,2) (3,0,2) (3,0,0) (0,0,0)
(3,2,1) (3,2,0) (3,0,0) (0,0,0)
(1,4,1) (0,4,1) (1,4,0) (0,4,0) (0,0,0).

These are suggestively listed as a table where the first column is made up of the
coordinates calculated by Loday for K(4), which here correspond to trees with every
trivalent node entirely painted. The rows may be found by applying the factor 0
to each coordinate in turn, in order of increasing size of those coordinates. Here is
the convex hull of the 15 total distinct points, where we see that each row of the
table corresponds to shortest paths from the big pentagon to the origin. Of course,
sometimes there are multiple such paths.

A

//,l

To see the picture of CK(4), that is in Figure 1 of this paper, just rotate this view
of the convex hull by 90 degrees clockwise. To compare to other pictures of CK(4) in
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this paper note the smallest quadrilateral facet in this picture containing the unique
vertex with four incident edges.

To see a rotatable version of the convex hull, which is the fourth composihedron,
enter the following homogeneous coordinates into the Web Demo of polymake [12]
(with option visual). Indeed polymake was instrumental in the experimental phase of
this research. This table may be pasted into polymake as input, but with each point
listed on a new line.

POINTS

1123 1023 1003
1000 1213 1203
1312 1302 1300
1321 1320 1141
1041 1140 1040

Remark 5.3. 1t is also fairly simple to devise a mapping from n-leaved painted binary
trees to Euclidean space which reflects the quotient of the multiplihedron by range
equivalence, where f(a)(f(b)f(c)) = (f(a)f(b))f(c). It may be done by reflecting such

equivalences as:

by mapping them both to a single vertex in R?. One possible map is

s if 1
M'(t) = (x1,...,Tn_1), Where z; = {]lﬂ“,, ‘ 1 node Z ?b type (1)
i(n —1i), if node i is type (2).

This will yield a new realization of C(n 4 1) in R~ with vertices corresponding
to range equivalence classes of n-leaved painted trees. Here is the (redundant) list of
vertices for K(5) based on painted binary trees with four leaves: The list of vertices

for J(4) based on painted binary trees with four leaves, for ¢ = %, is:
(3,4,3) (1/2,4,3) (1/2,2/2,3) (1/2,2/2,3/2)
(3,4,3) (3,1/2,3) (2/2,1/2,3) (2/2,1/2,3/2)
(3,43 (3,1/2,3) (3.1/2,2/2) (3/2,1/2,2/2)
(3,4,3) (3,4,1/2) (3,2/2,1/2) (3/2,2/2,1/2)
(3,4,3) (1/2,4,3) (3,4,1/2)  (1/2,4,1/2)  (1/2,4/2,1/2) .

These are suggestively listed as a table where the first column is the single image
of all the trees with every trivalent node entirely painted. Indeed there are 14 total



250 STEFAN FORCEY

different vertices. Here is the convex hull of those vertices.
A

6. Proof of Theorem 5.2

Our algorithm for generating extremal points whose convex hull gives the com-
posihedra can be described as the ¢ — 0 limit of the algorithm for the multiplihedra,
which was given in [10]. What we need to demonstrate is that the limiting process
does indeed deliver the combinatorial equivalent of the CW-complex CK(n).

To demonstrate that our convex hulls are each combinatorially equivalent to the
corresponding CW-complexes of Definition 3.4, we need only check that they both
have the same vertex-facet incidence. We will show that for each n there is an iso-
morphism f between the vertex sets (0-cells) of our convex hull and CX(n) which
preserves the sets of vertices corresponding to facets; i.e. if .S is the set of vertices of
a facet of our convex hull then f(S) is a vertex set of a facet of CK(n).

To demonstrate the existence of the isomorphism, noting that the vertices of CX(n)
correspond to the domain equivalence classes of binary painted trees, we only need
to check that the points we calculate from those classes are indeed the vertices of
their convex hull. Recall that the calculation of a point from a class is well defined
by Lemma 5.1. The isomorphism f is the one that takes the vertex calculated from
a certain class to the 0-cell associated to the same class. Now a given facet of CXC(n)
corresponds to a tree T' which is one of the two sorts of trees pictured in Definition 3.4.
To show that our implied isomorphism of vertices preserves vertex sets of facets we
need to show that that our facet is the convex hull of the points corresponding to
the classes of binary trees represented by refinements of T. By refinement of painted
trees we refer to the relationship: ¢ refines ' if ¢’ results from the collapse of some of
the internal edges of t.

The proofs of both key points will proceed in tandem, and will be inductive. That
is, we will show that for each facet tree T, the points My(t) for t < T are precisely
those points that lie in a a bounding hyperplane of our convex hull. Then we will
check that those points My(t) are the extremal points of their convex hull, which is
indeed an (n — 2)-dimensional polytope of the type decreed in Definition 3.4.

We will use the fact that if P(¢) and R(q) are two polytopes with some vertices
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parametrized continuously by ¢ that

lim (P x @) = lim P x lim Q.

q—a q—a qg—a

Definition 6.1. The lower facets CKp(n — 1,2) correspond to minimal lower trees
such as:

These are assigned a hyperplane Hy(I(k,2)) determined by the equation xj = 0.

Recall that n — 1 is the number of branches extending from the lowest node; thus
1 < k < n—1. Notice that if ¢ were not zero, as in Definition 5.1 of [10], then the
equation would appear: x; = q. We conjecture that these latter hyperplanes would
function as replacements for the ones given by x; = 0 in that after the replacement
the resulting polytope would still be the composihedron.

Definition 6.2. The upper facets CX(t;r1, ..., r:) correspond to upper trees such as:
1 T2 Tt

N N =~

u(t;ri,...,re) =

These are assigned a hyperplane Ho(u(t;r1,...,7)) determined by the equation

(n(n 1) = ri(ri - 1)) ,

i=1

Tpy + X(pygry) T+ T(rytrgttrimy) =

DN | =

or equivalently:

Try + T(ry4ry) T Ty prgpongry_q) = E : Tilj.
1<i<j<t

Note that if ¢ = n (so r; = 1 for all 7), then this becomes the hyperplane given by
1
14+ Tpo1 = in(n—l) =S(n-1).

Therefore the points My(t) for ¢, a binary tree with only nodes type (2) and (3), will
lie in the hyperplane H by Lemma 2.5 of [23] (using notation S(n) and H as in that
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source). Also note that these upper hyperplanes are exactly the same as those defined
for J(n) in Definition 5.2 of [10].

In order to prove Theorem 5.2 it turns out to be expedient to prove a more general
result. This consists of an even more flexible version of the algorithm for assigning
points to binary trees in order to achieve a convex hull of those points which is
the composihedron. To assign points in R"~! to the domain equivalence classes of
binary painted trees with n leaves we choose an ordered n-tuple of positive integers
wo, - - -, Wy—1. Now given a tree t we calculate a point MY (¢) in R"~! as follows: we
begin by assigning the weight w; to the i*" leaf. We refer to the result as a weighted
tree. Then we modify Loday’s algorithm for finding the coordinate for each trivalent
node by replacing the number of leaves of the left and right subtrees with the sums of
the weights of the leaves of those subtrees. Thus we let L; = > wy, where the sum is
over the leaves of the subtree supported by the left branch of the i*” node. Similarly,
we let R; = > wy, where k ranges over the leaves of the subtree supported by the
right branch. Then

0, if node 1 is type (1)

MY (t) = (x1,...2xp_1), Where x; =
0'(0) = (@ D W {LiRi, if node i is type (2).

Note that the original points M(t) are recovered if w; = 1 for i =0,...,n — 1. Thus
proving that the convex hull of the points M{’(t), where ¢ ranges over the binary
painted trees with n leaves is the n'* composihedron, will imply the main theorem.
For an example, let us calculate the point in R? which corresponds to the 4-leaved

tree:
W, w1 W2 ws

Now M (t) = (0, (wo + w1) (w2 + w3), waws). To motivate this new weighted ver-
sion of our algorithm we mention that the weights wy,...,w,_1 are to be thought
of as the sizes of various trees to be grafted to the respective leaves. This weighting
is therefore necessary to make the induction go through, since the induction is itself
based upon the grafting of trees.

Since we are proving that the points MY’ (t) are the vertices of the composihedron,
we need to define hyperplanes HY'(¢) for this weighted version, which we will show
to be the bounding hyperplanes when ¢ is a facet tree.

Definition 6.3. Recall that the lower facets CKr(n — 1,2) correspond to minimal
lower trees. These are assigned a hyperplane HY(I(k,2)) determined by the equation

Jik:O.

Lemma 6.4. For any painted binary tree t, the point MY (t) lies in the hyperplane
HY (I(k,2)) if and only if t is domain equivalent to a refinement of l(k,2). Also, the
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hyperplane HY (1(k,2)) bounds below the points MY (t) fort any binary representative
of a domain class of painted trees.

Proof. The k" node of any binary tree that is a refinement of /(k, 2) will be unpainted,
and will have left and right subtrees with only one leaf each. Thus the k" node of
a binary tree that is domain equivalent to a refinement of I(k,2) will be unpainted.
Furthermore, any binary tree with its k** node unpainted is domain equivalent to a
refinement of I(k, 2), by a series of domain equivalence moves. (Recall that no branches
may be painted above an unpainted node.) Thus any binary tree ¢ which is domain
equivalent to a refinement of the lower tree I(k,2) will yield a point My’ (¢) for which
xj, = 0 since the k' node will be unpainted in any such tree. Also, if a binary tree
t is not equivalent to a refinement of a lower tree I(k,2) then the point M{’(t) will
have the property that x;, > 0, since the k** node will be painted. O

Definition 6.5. Recall that the upper facets CIC(t;71,...,r:) correspond to upper
trees such as:

1 T2 Tt
N AN =

These are assigned a hyperplane HY (u(t;r1,...,7:)) determined by the equation

Tr, + T(ry+ma) +---+ T(rydrgtetri_1) — Z Rle7

1<i<j<t

where R; = Y w;, where the sum is over the leaves of the i*" subtree (from left to
right) with root the type (5) node; the index j goes from (rqy +ro+---+7;,-1) to
(ri+ra+---+r; —1) (where rg = 0.) Note that if t =n (so r; =1 for all 7) that
this becomes the hyperplane given by

1+ -+ 1 = E WiW;.

1<i<j<n—1

Lemma 6.6. For any painted binary tree t, the point MY (t) lies in the hyperplane
HY (u(t;r,...,7m)) if and only if t is (domain equivalent to) a refinement of
w(t;r,...,1t). Also, the hyperplane HY (u(t;ri,...,r:)) bounds above the points
M (t) fort any binary painted tree.

Proof. These hyperplanes are precisely those defined as H’(u(t; 71, ..., 7)) in Defini-
tion 5.7 of [10]. Thus the proof of Lemma 5.8 of [10] holds here as well. Letting ¢ = 0
in the proof of that lemma does not change the argument, since in neither definition
does the value of ¢ actually appear. In fact the only use of ¢ in the proof relies on the
fact that ¢ < 1, and when ¢ = 0 this is certainly also true. O
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Proof of Theorem 5.2. Now we may proceed with our inductive argument. The base
case of n = 2 leaves is trivial to check. The points in R! are wow; and 0 Their convex
hull is a line segment, combinatorially equivalent to C/C(2). Now we assume that for
all © < n and for positive integer weights wy, ..., w;_1, that the convex hull of the
points {M(t) | t is a painted binary tree with i leaves} in R'~! is combinatorially
equivalent to the complex CK(i), and that the points M’ (t) are the vertices of the
convex hull. Now for ¢ = n we need to show that the equivalence still holds. Recall
that the two items we plan to demonstrate are that the points My’ (t) are the vertices
of their convex hull and that the facet of the convex hull corresponding to a given
lower or upper tree T is the convex hull of just the points corresponding to the binary
trees that are refinements of T. The first item will be seen in the process of checking
the second.

Given an n-leaved lower tree [(k,2) we have from Lemma 6.4 that the points cor-
responding to binary refinements of [(k,2) lie in an (n — 2)-dimensional hyperplane
H{(I(k,2)) which bounds the entire convex hull. To see that this hyperplane does
indeed contain a facet of the entire convex hull we use the induction hypothesis to
show that the dimension of the convex hull of just the points in HY(I(k,2)) is n — 2.
For q € (0,1) we know from [10] (proof of Theorem 3.1) that the points M’ (t) corre-
sponding to the binary trees ¢ < [(k,2) are the vertices of a polytope combinatorially
equivalent to J(n — 1) x K(2) = J(n — 1). Taking the limit as ¢ — 0 piecewise allows
us to use the induction hypothesis to show that the points M (t) corresponding to
the binary trees ¢ < l(k,2) are the vertices of a polytope combinatorially equivalent
to CKC(n — 1), which is the required type of polytope.

Given an n-leaved upper tree wu(t,r1,...,7:) we have from Lemma 6.6 that
the points corresponding to binary refinements of w(t,r1,...,7¢) lie in an n — 2-
dimensional hyperplane H (u(t,r1,...,7:)) which bounds the entire convex hull. To
see that this hyperplane does indeed contain a facet of the entire convex hull we use
the induction hypothesis to show that the dimension of the convex hull of just the
points in HY (u(t,r1,...,7¢)) is n — 2.

For g € (0,1) we know from [10] (proof of Theorem 3.1) that the points M’ (%)
corresponding to the binary trees t < u(t,r1,...,7:) are the vertices of a polytope
combinatorially equivalent to IC(t) x J(r1) x .-+ x J(r;). Here the vertices of the
associahedron do not depend on the factor ¢q. Taking the limit as ¢ — 0 piecewise
allows us to use the induction hypothesis to show that the points M’ (t) corresponding
to the binary trees ¢t < u(t,r1,...,7:) are the vertices of a polytope combinatorially
equivalent to IC(t) x CKC(r1) x -+ x CK(ry). This is the required type of polytope.

Since each n-leaved binary painted tree is a refinement of some upper and or lower
trees, then the point associated to that tree is found as a vertex of some of the facets
of the entire convex hull, and thus is a vertex of the convex hull. This completes the
proof. O
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