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ADDING INVERSES TO DIAGRAMS II: INVERTIBLE
HOMOTOPY THEORIES ARE SPACES

JULIA E. BERGNER

(communicated by J. F. Jardine)

Abstract
In previous work, we showed that there are appropriate

model category structures on the category of simplicial cat-
egories and on the category of Segal precategories, and that
they are Quillen equivalent to one another and to Rezk’s com-
plete Segal space model structure on the category of simplicial
spaces. Here, we show that these results still hold if we instead
use groupoid or “invertible” cases. Namely, we show that model
structures on the categories of simplicial groupoids, Segal pre-
groupoids, and invertible simplicial spaces are all Quillen equiv-
alent to one another and to the standard model structure on
the category of spaces. We prove this result using two differ-
ent approaches to invertible complete Segal spaces and Segal
groupoids.

1. Introduction

The notion of homotopy theories as mathematical objects is becoming a useful
tool in topology as more mathematical structures are being viewed from a homo-
topical or higher-categorical viewpoint. Currently, there are four known models for
homotopy theories: simplicial categories, Segal categories, complete Segal spaces, and
quasi-categories. There are corresponding model category structures for each; the first
three were shown to be Quillen equivalent to each other by the author [7], and the
fourth was shown to be equivalent to the first by Joyal [19]; explicit equivalences
between the fourth and the other two are also given by Joyal and Tierney [21]. Each
of these models has proved to be useful in different contexts. Simplicial categories
are naturally models for homotopy theories, in that they arise naturally from model
categories, or more generally from categories with weak equivalences, via Dwyer and
Kan’s simplicial localization techniques [11, 13]. For this reason, one important moti-
vation for studying any of these models is to understand specific homotopy theories
and relationships between them. Quasi-categories, on the other hand, are more clearly
a generalization of categories and more suited to constructions that look like those
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appearing in category theory. In fact, both Joyal [20] and Lurie [22] have written
extensively on extending category theory to quasi-category theory. The objects in all
four models are often called (∞, 1)-categories, to indicate that they can be regarded
as categories with n-morphisms for any n > 1, but for which these n-morphisms are
all invertible whenever n > 1.

In this current paper, we would like to show that the first three models can be
restricted to the groupoid case without much difficulty. Such structures could be called
(∞, 1)-groupoids, but they are really (∞, 0)-categories, since even the 1-morphisms
are invertible in this case. In fact, we go on to prove that these model structures are
Quillen equivalent to the standard model structure on the category of simplicial sets
(and therefore to the standard model structure on the category of topological spaces).
It has been proposed by a number of people, beginning with Grothendieck [16], that
∞-groupoids, or (∞, 0)-categories, should be models for homotopy types of spaces,
so this result can be seen as further evidence for this “homotopy hypothesis.” Many
authors have proved results in this area, including Tamsamani [29], Berger [3], Cisin-
ski [10], Paoli [24], Biedermann [8], and Barwick [2], and a nice overview is given by
Baez [1].

We should further note here that this comparison actually encompasses an invert-
ible version of the fourth model, that of quasi-categories, since a quasi-category with
inverses is just a Kan complex, and the fibrant objects in the standard model category
structure on the category of simplicial sets are precisely the Kan complexes.

Organization

In Section 2, we give a new proof of the existence of a model structure on the
category of simplicial groupoids. In Sections 3 and 4, we define invertible versions
of complete Segal spaces and Segal categories using the category I∆op rather than
∆op as a means of encoding inverses. We prove the existence of appropriate model
category structures as well. In Section 5, we prove that these simplicial groupoid, Segal
groupoid, and invertible complete Segal space model structures are Quillen equivalent
to one another and to the standard model category structure on the category of
simplicial sets. In Section 6, we give an alternate approach to invertible versions of
Segal categories and complete Segal spaces by changing the projection maps in the
category ∆op, and we again show that we have a zig-zag of Quillen equivalences
between the resulting model categories.

We refer the reader to the previous paper [4] for our notations and conventions
regarding simplicial objects and model categories.
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2. A model category structure on the category of simplicial
groupoids

A simplicial category is a category C enriched over simplicial sets, or a category
such that, for objects x and y of C, there is a simplicial set of morphisms MapC(x, y)
between them.

Recall that the category of components π0C of a simplicial category C is the category
with the same objects as C and such that

Homπ0C(x, y) = π0MapC(x, y).

We use the following notion of equivalence of simplicial categories.

Definition 2.1 ([11, 2.4]). A functor f : C → D between two simplicial categories is
a Dwyer-Kan equivalence if it satisfies the following two conditions:
• (W1) for any objects x and y of C, the induced map

MapC(x, y)→ MapD(fx, fy)

is a weak equivalence of simplicial sets, and
• (W2) the induced map of categories of components π0f : π0C → π0D is an equiv-

alence of categories.

Dwyer and Kan proved in [12, 2.5] that there is a model structure on the category
SGpd of small simplicial groupoids with the Dwyer-Kan equivalences as weak equiv-
alences. In fact, they went on to show that this model structure has the additional
structure of a simplicial model category, and that it is Quillen equivalent to the usual
model structure on the category SSets of simplicial sets. In this section, we give an
alternate proof of the existence of this model structure, following the proof for the
model category of small simplicial categories [5].

Consider the category SGpdO of simplicial groupoids with a fixed set O of objects.
In particular, the morphisms in this category are required to be the identity map on
this set of objects. There is a model category structure on SGpdO in which the weak
equivalences are defined to be those simplicial functors f : C → D such that for any
objects x and y of C, the map

MapC(x, y)→ MapD(fx, fy)

is a weak equivalence of simplicial sets. The fibrations are defined analogously [4].
This model category can also be shown to have the additional structure a simplicial
model category, just as Dwyer and Kan show for the analogous model category SCO
of small simplicial categories with a fixed object set [13, 7.1].

Theorem 2.2. The category SGpd of small simplicial groupoids has a cofibrantly
generated model category structure given by the following three classes of morphisms:

1. The weak equivalences are the Dwyer-Kan equivalences of simplicial groupoids.
2. The fibrations are the maps f : C → D such that

• (F1) for any objects x and y of C, the map

MapC(x, y)→ MapD(fx, fy)

is a fibration of simplicial sets, and
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• (F2) for any object x in C, z in D, and morphism g : fx→ z in D0, there
is an object y in C and morphism d : x→ y in C0 such that fd = g.

3. The cofibrations are the maps with the left lifting property with respect to the
maps which are both fibrations and weak equivalences.

To prove this theorem, we need to define candidates for our sets of generating
cofibrations and generating acyclic cofibrations. To do so, we begin by defining the
functor

UG : SSets→ SGpd.
Let SC denote the category of small simplicial categories. The functor UG is the
composite of the functor U : SSets→ SC taking a simplicial set X to the simplicial
category with objects x and y, Hom(x, y) = X, and no other nonidentity morphisms,
and the functor L : SC → SGpd left adjoint to the forgetful functor.

Using this functor, we define the set of generating cofibrations to consist of the
maps

• (C1) UG∆̇[n]→ UG∆[n] for all n > 1, and

• (C2) ∅ → {x}.
Similarly, we define the set of generating acyclic cofibrations to consist of the maps

• (A1) UGV [n, k]→ UG∆[n] for all n > 1, 0 6 k 6 n, and

• (A2) {x} → F , where F is the groupoid with two objects x and y and with all
the mapping spaces given by ∆[0].

Notice, in particular, that the set of generating acyclic cofibrations is substantially
smaller than the analogous set for the model structure on the category of simplicial
categories.

Proposition 2.3. A map f : C → D of simplicial groupoids has the right lifting prop-
erty with respect to the maps in (A1) and (A2) if and only if it satisfies (F1) and
(F2).

Proof. Using the standard model structure SSets on the category of simplicial sets,
it is not hard to show that condition (F1) is equivalent to having the right lifting
property with respect to the maps in (A1).

Thus, let us suppose that f has the right lifting property with respect to (A1) and
(A2) and show that f satisfies (F2). In other words, given an object x of C and object
z of D, we need to show that a map g : fx→ z in D lifts to a map d : x→ y for some
object y of C such that fy = z and fd = g. Let us consider the objects w = fx and
z in C.

First suppose that w 6= z. Define E to be the full simplicial subcategory of D with
objects w and z. Let F be the simplicial category with two objects w and z and
a single isomorphism h : w → z. Consider some map i : F → E which preserves the
objects. Note that the map {x} → F is precisely the map in (A2). Consider the
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composite inclusion map F → E → D. These maps fit into a diagram

{x} //

²²

C
f

²²
F //

=={
{

{
{

{
D.

The dotted arrow lift exists because we assume that f : C → D has the right lifting
property with respect to the map in (A2). But, the existence of this lift implies that
any morphism in D, since it must be an isomorphism, lifts to a morphism in C.

Then, suppose that w = z. Define E ′ to be the simplicial groupoid with two objects
w and w′ such that each function complex of E ′ is the simplicial set MapD(w,w) and
composites are defined as they are in D. We then define the map E ′ → D which
sends both objects of E ′ to w in D and is the identity map on all the function
complexes. Using this simplicial groupoid E ′ for the simplicial groupoid E used above,
the argument proceeds as before.

Now suppose that f satisfies (F1) and (F2). We seek to show that f has the right
lifting property with respect to the map (A2). In other words, we need to show that
the dotted arrow lift exists in the diagram

{x} //

²²

C
f

²²
F //

=={
{

{
{

{
D.

However, the existence of such a lift follows from the fact that the map f satisfies
property (F2).

The proof of the following proposition follows just as the analogous statement for
simplicial categories [5, 3.1].

Proposition 2.4. The category SGpd has all small limits and colimits and its class of
weak equivalences is closed under retracts and satisfies the “two out of three” property.

Notice that, as for the case of SC, a map f : C → D satisfies both (F1) and (W1) if
and only if it has the right lifting property with respect to the maps in (C1). However,
we need the following stronger statement.

Proposition 2.5. A map in SGpd is a fibration and a weak equivalence if and only
if it has the right lifting property with respect to the maps in (C1) and (C2).

Proof. First, we suppose that f : C → D is a fibration and a weak equivalence. As
noted above, it follows from the definitions that f has the right lifting property
with respect to the maps in (C1). Thus, it remains to show that f has the
right lifting property with respect to the map (C2), i.e., with respect to the map
∅ → {x}. However, satisfying such a lifting property is equivalent to being surjective
on objects. The fact that f is essentially surjective, or surjective on isomorphism
classes of objects, follows from condition (W2). Given this property, the fact that f
satisfies condition (F2) guarantees that it is actually surjective.
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Conversely, suppose that f : C → D has the right lifting property with respect to
the maps in (C1) and (C2). We need to show that f is a fibration and a weak equiv-
alence. As noted above, it follows immediately from the definitions that f satisfies
conditions (F1) and (W1).

The fact that f satisfies (W1) implies that the map

Homπ0C(x, y)→ Homπ0D(fx, fy)

is an isomorphism of sets. Furthermore, the fact that f has the right lifting property
with respect to the map in (C2) guarantees that f is surjective on objects. There-
fore, the map π0f : π0C → π0D is an equivalence of categories; i.e., condition (W2) is
satisfied.

It remains to show that f satisfies condition (F2). Since we have already proved
that f satisfies (F1) if and only if it has the right lifting property with respect to
(A1), and that if f has the right lifting property with respect to (A1) and (A2), then
it satisfies (F2), it suffices to show that f has the right lifting property with respect to
(A2). However, the map {x} → F in (A2) can be written as a composite of a pushout
along ∅ → {x} followed by pushouts along maps of the form UG∆̇[n]→ UG∆[n] for
n = 0, 1. But, f has the right lifting property with respect to all such maps since they
are in (C1) and (C2).

Proposition 2.6. A map in SGpd is an an acyclic cofibration if and only if it has
the left lifting property with respect to the fibrations.

The proof of this proposition can be proved formally, just as in the case of sim-
plicial categories [5, 3.3]. It does, however, require the following lemma, whose proof
essentially follows the one for SCO in [13, 7.3].

Lemma 2.7. The model category SGpdO is proper.

Proof. We first prove that SGpdO is right proper, namely, that a pullback of a weak
equivalence along a fibration is a weak equivalence. However, since fibrations and
weak equivalences are defined in terms of fibrations and weak equivalences of mapping
spaces, this fact follows from the right properness of SSets [17, 13.1.13].

To prove that SGpdO is left proper, we need to show that the pushout of a weak
equivalence along a cofibration is a weak equivalence. Suppose that the following
diagram

A i //

g

²²

X
f

²²
B

j
// Y

is a pushout diagram with the map g a cofibration and i a weak equivalence. To
prove that the map j is a weak equivalence, we can assume that the map g : A → B
is a free map, since cofibrations are retracts of free maps [12, 2.4]. Furthermore, any
free map can be written as the colimit of a sequence of free maps for which all of
the nondegenerate generators are in the same dimension. So, suppose that C is an
ordinary groupoid, regarded as a simplicial groupoid, and let C ⊗∆[n] denote the
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simplicial groupoid given by the simplicial structure on SGpdO. Then, it suffices to
show that j is a weak equivalence in the diagram (made up of two pushout squares)

C ⊗ ∆̇[n]

²²

// A i //

g

²²

X
f

²²
C ⊗∆[n] // B

j
// Y.

This result follows from technical results on pushouts in [13, §8].

Proof of Theorem 2.2. We need to verify the conditions of Theorem 2.1 of the pre-
vious paper [4]. The fact that M has small limits and colimits and that its weak
equivalences satisfy the necessary conditions was proved in Proposition 2.4. Con-
dition 1 follows from the same arguments as used for simplicial categories [5, 1.1].
Condition 2 was proved in Proposition 2.3. Condition 3 was proved in Proposition 2.5.
Condition 4 was proved in Proposition 2.6.

The following proposition is proved similarly to the analogous result for simplicial
categories [5, 3.5].

Proposition 2.8. The model category SGpd is right proper.

Proof. Suppose that

A f //

²²

B
g

²²
C

h
// D

is a pullback diagram of simplicial groupoids, where g : B → D is a fibration and
h : C → D is a Dwyer-Kan equivalence. We would like to show that f : A → B is a
Dwyer-Kan equivalence as well.

We first need to show that MapA(x, y)→ MapB(fx, fy) is a weak equivalence of
simplicial sets for any objects x and y of A. However, this fact follows since the model
category structure on simplicial sets is right proper [17, 13.1.4].

It remains to prove that π0A → π0B is an equivalence of categories. Given what
we have proved thus far, it suffices to show that A → B is essentially surjective on
objects.

Consider an object b of B and its image g(b) in D. Since C → D is a Dwyer-Kan
equivalence, there exists an object c of C together with an isomorphism g(b) ∼= h(c) in
D. Since B → D is a fibration, there exists an object b′ and isomorphism b ∼= b′ in B
such that g(b′) = h(c). Using the fact that A is a pullback, we have an isomorphism
b ∼= f(b′, c), completing the proof.

3. Invertible Segal spaces

In this section, we define “groupoid versions” of Rezk’s Segal spaces and complete
Segal spaces. To do so, we first summarize a few general facts using the category
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I∆op; further details can be found in the previous paper [4, §4]. We note that Rezk’s
original definition of (complete) Segal spaces can be recovered from the definitions in
this section by replacing the category I∆op with the category ∆op throughout. The
same holds for our definitions of Segal groupoids in the next section. We give fewer
details in this section and the following ones, compared to the previous section, due
to the fact that most of the proofs are not only similar but actually follow just as in
the original cases.

In the category I∆, there are maps βi : I[1]→ I[k] given by 0 7→ i and 1 7→ i+ 1.
We denote the corresponding map in I∆op by βi : I[k]→ I[1]. Each map βi induces
an inclusion of invertible simplicial sets I∆[1]→ I∆[n]. We thus define the invertible
simplicial space

IG(k)t =
k−1⋃

i=0

βiI∆[1]t

and the inclusion map
ξk : IG(k)t → I∆[n]t

Furthermore, this inclusion map induces, for any invertible simplicial space X, a map

Map(I∆[k]t, X)→ Map(IG(k)t, X)

which can be written as the Segal map

ξk : Xk → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
k

.

(This treatment should be compared to Rezk’s in the non-invertible case [27, §4].)
Using I∆op rather than ∆op, we still have the injective and projective model

structures on the category SSetsI∆op

. These model structures can be defined via
the inclusion maps I∆op →∆op. For the injective structure, then, the generating
cofibrations are the maps

∆̇[m]× I∆[n]t ∪∆[m]× I∆̇[n]t → ∆[m]× I∆[n]t

for all n,m > 0. For the projective structure, the generating cofibrations are the maps

∆̇[m]× I∆[n]t → ∆[m]× I∆[n]t

for all m,n > 0.

Definition 3.1. An invertible Segal space is an injective fibrant invertible simplicial
space W such that the Segal maps ξk are weak equivalences of simplicial sets for
k > 2.

Define the map

ξ =
∐

k>1

(ξk : IG(k)t → I∆[k]t).

Theorem 3.2. Localizing the injective model category structure on the category
SSetsI∆op

of invertible simplicial spaces, with respect to the map ξ, results in a model
structure ISeSpc in which the fibrant objects are the invertible Segal spaces.
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We can also define a model structure ISeSpf on the category of simplicial spaces
by localizing the projective, rather than the injective, model structure with respect
to the map ξ. In this case the fibrant objects are invertible simplicial spaces fibrant
in the projective model structure for which the Segal maps are isomorphisms.

Like a Segal space, an invertible Segal space has a set of “objects,” given by the
set W0,0, and, for any pair (x, y) of objects, a “mapping space” mapW (x, y). This
mapping space is defined to be the fiber over (x, y) of the map

W1
d1×d0 //W0 ×W0.

However, the fact that we are considering an invertible Segal space implies that these
mapping spaces have inverses, so that for any x and y objects in W , the simpli-
cial sets mapW (x, y) and mapW (y, x) are isomorphic. Thus, all maps are homotopy
equivalences and the space Whoequiv ⊆W1 consisting of “homotopy equivalences” (as
defined by Rezk for Segal spaces [27, §5]) is in fact all of W1 for an invertible Segal
space W . (It is helpful here to regard an invertible Segal space simply as a Segal space
via the inclusion functor ∆op → I∆op, in which case Rezk’s definitions can be used
as is.)

Definition 3.3. An invertible complete Segal space is an invertible Segal space W
such that the degeneracy map s0 : W0 →W1 is a weak equivalence of simplicial sets.

Notice that in some sense this definition is silly, because an invertible complete
Segal space is one for which W0 and W1 are weakly equivalent, and therefore, using
the definition of Segal space, each equivalent to Wn for each n > 0. Thus, invertible
complete Segal spaces are just, up to weak equivalence, constant simplicial spaces,
and equivalent to simplicial sets. We prove this fact more explicitly in Section 5.

However, we can take the same map ψ : ∆[0]t → Et that Rezk used to obtain a
complete Segal space model structure on the category of simplicial spaces to obtain an
invertible complete Segal space model structure on the category of invertible simplicial
spaces. Here, E denotes the nerve of the category F with two objects and a single
isomorphism between these two objects and no other nonidentity morphisms. The
map ψ is just the inclusion of one of these objects. The following theorem can then
be proved just as Rezk proves the analogous theorem for the complete Segal space
model structure [27, 7.2]

Theorem 3.4. There is a model structure ICSS on the category of invertible sim-
plicial spaces such that the fibrant objects are the invertible complete Segal spaces.

4. Segal groupoids

To define the notion of a Segal groupoid, we again use Segal maps in the context of
invertible simplicial spaces. We first used this approach to them in [4], but the idea of
a Segal groupoid has also been studied from a slightly different angle by Simpson [28]
and Pellissier [25].

Definition 4.1. A Segal pregroupoid is an invertible simplicial space X such that the
simplicial set X0 is discrete.
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We denote the category of Segal pregroupoids by SeGpd.
Recall from the previous section that, given an invertible simplicial space X, the

maps βk for k > 2 induce the Segal maps

ξk : Xk → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
k

.

Definition 4.2. A Segal groupoid is a Segal groupoid X such that the Segal maps
ξk are weak equivalences of simplicial sets for all k > 2.

In the previous paper, we proved that there model category structures on the
category of Segal groupoids with a fixed object set O.

Proposition 4.3 ([4, 4.1]). There is a model category structure ISSpO,f on the
category of Segal pregroupoids with a fixed set O in degree zero in which the weak
equivalences and fibrations are given levelwise. Similarly, there is a model category
structure ISSpO,c on the same underlying category in which the weak equivalences
and cofibrations are given levelwise. Furthermore, we can localize each of these model
category structures with respect to a map to obtain model structures ILSSpO,f and
ILSSpO,c whose fibrant objects are Segal groupoids.

(Recall here that the subscripts c and f are meant to suggest the injective and
projective model structures, with the respective letter indicating whether cofibrations
or fibrations are given levelwise.)

Furthermore, the following rigidification result holds in this fixed object set case.

Proposition 4.4 ([4, 4.2]). There is a Quillen equivalence between the model cate-
gories ILSSpO,f and SGpdO.

We conjectured in [4] that this result should still hold when we generalize to the
category of all small simplicial groupoids and all Segal groupoids. Before proving this
result, we need to establish that we have the necessary model structures for Segal
groupoids, i.e., model structures on the category of Segal pregroupoids in which the
fibrant objects are Segal groupoids.

The first step in finding such model structures is modifying the generating cofibra-
tions and generating acyclic cofibrations of SSetsI∆op

c and SSetsI∆op

f so that they
are maps between Segal pregroupoids rather than maps between arbitrary invertible
simplicial spaces.

Recall that for SSetsI∆op

c , a set of generating cofibrations is given by

{∆̇[n]× I∆[n]t ∪∆[m]× I∆̇[n]t → ∆[m]× I∆[n]t | m,n > 0}.
To find the set that we need, we apply a reduction functor (−)r which makes the
space in degree 0 discrete and then check potentially problematic values of n and m,
as in [7, §4]. Thus, we obtain the set Ic given by

{(∆̇[m]× I∆[n]t ∪∆[m]× I∆̇[n]t)r

→ (∆[m]× I∆[n]t)r | m > 0 when n > 1, n = m = 0}
as a potential set of generating cofibrations.
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For the modification of the generating cofibrations of SSetsI∆op

f , we need to take
a different approach. To do so, we make the following definitions. Let IPm,n be the
pushout in the diagram

∆̇[m]× (I∆[n]t)0

²²

// ∆̇[m]× I∆[n]t

²²
(I∆[n]t)0 // IPm,n.

If we replace ∆̇[m] with ∆[m] in the above diagram, we denote the pushout IQm,n.
We then define a set of generating cofibrations for SeGpdf to be

If = {Im,n : IPm,n → IQm,n | m,n > 0}.
Now, to give the definitions of the desired weak equivalences for our model struc-

tures, we establish an appropriate “localization” functor. Since our model structures
are not actually obtained by localizing another model structure, this functor is not
technically a localization, but it is analogous to the fibrant replacement functor in
ISeSpf , which is obtained from localization, and it does turn out to be a fibrant
replacement functor in SeGpdf .

For the invertible Segal space model structure ISeSpc, a choice of generating
acyclic cofibrations is the set

{V [m, k]× I∆[n]t ∪∆[m]× IG(n)t → ∆[m]× I∆[n]t | n > 0,m > 1, 0 6 k 6 m}.
To have these maps defined between Segal pregroupoids rather than between arbitrary
invertible simplicial spaces, we restrict to the case where n > 1. As in [7, §5] it can
be shown that taking an colimit of iterated pushouts along all such maps results in
a Segal groupoid which is also an invertible Segal space. We will denote this functor
Lc. There is an analogous functor in the model category ISeSpf which we denote
Lf .

Thus, using the fact that an invertible Segal space X has “objects,” “mapping
spaces,” and a “homotopy category” Ho(X) (again, as given by Rezk in [27, §5]),
we can define the classes of maps we need for the model structure SeGpdc. First, we
define a Dwyer-Kan equivalence of invertible Segal spaces to be a map f : W → Z
such that

• the map mapW (x, y)→ mapZ(fx, fy) is a weak equivalence of simplicial sets
for any pair of objects x and y of W , and

• the map Ho(W )→ Ho(Z) is an equivalence of categories.

Theorem 4.5. There is a model category structure SeGpdc on the category of Segal
pregroupoids such that

1. a weak equivalence is a map f : X → Y such that the induced map LcX → LcY
is a Dwyer-Kan equivalence of Segal spaces,

2. a cofibration is a monomorphism (so every Segal pregroupoid is cofibrant), and

3. a fibration is a map with the right lifting property with respect to the maps which
are cofibrations and weak equivalences.
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This theorem can be proved using as generating cofibrations the set Ic defined
above and as generating acyclic cofibrations the set Jc = {i : A→ B} of representa-
tives of isomorphism classes of maps in SeGpd satisfying

1. for all n > 0, the spaces An and Bn have countably many simplices, and

2. the map i : A→ B is a monomorphism and a weak equivalence.

Given these definitions, the proof of the existence of the model structure SeGpdc,
while technical, follows just as the proof for the model structure SeCatc [7, 5.1].

The other model structure, SeGpdf , has the same weak equivalences as SeGpdc,
but not all monomorphisms are cofibrations. Instead, we take the maps of Segal
pregroupoids which are cofibrations in the projective model structure SSetsI∆op

f .

Theorem 4.6. There is a cofibrantly generated model structure SeGpdf on the cate-
gory of Segal pregroupoids given by the following classes of morphisms:

1. the weak equivalences are the same as those of SeGpdc,

2. the cofibrations are the maps which can be obtained by taking iterated pushouts
along the maps in the set If , and

3. the fibrations are the maps with the right lifting property with respect to the
maps which are both cofibrations and weak equivalences.

Here, the set of generating cofibrations is If , and the set of generating acyclic
cofibrations is given by the set Jf which is defined analogously to Jc but using the
new definition of cofibration. Again, the proof follows just as in [7, 7.1].

5. Quillen equivalences

Here, we show that we still have Quillen equivalences between these various model
categories. In fact, the proofs that we give in [7] continue to hold. Here we give a
sketch of what the various functors are connecting these categories. We begin with the
simplest example. Throughout, the topmost arrow indicates the left Quillen functor.

Proposition 5.1. The identity functor

id : SeGpdf À SeGpdc : id

is a Quillen equivalence of model categories.

To compare the model categories SeGpdc and ICSS, first notice that we can take
the inclusion functor

I : SeGpdc → ICSS.
This functor has a right adjoint R given as follows.

Recall that, given any simplicial space X, we can consider its 0-coskeleton, denoted
cosk0(X) [26, §1]. Let W be an invertible simplicial space, and regard W0 and W0,0

as constant simplicial spaces. Consider the invertible simplicial spaces U = cosk0(W0)
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and V = cosk0(W0,0) and the natural maps W → U ← V . Define RW to be the pull-
back of the diagram

RW //

²²

V

²²
W // U.

As in [7, §6], we can see that R is in fact a right adjoint and that the following
result holds:

Proposition 5.2. The adjoint pair

I : SeGpdc À ICSS : R

is a Quillen equivalence of model categories.

To prove the existence of a Quillen equivalence between SGpd and SeGpdf , we first
notice that via the nerve functor a simplicial groupoid can be regarded as a strictly
local object in the category of I∆op diagrams of simplicial sets with respect to the
map ξ used to define the invertible Segal space model structure. Thus, the nerve
functor R : SGpd→ SeGpdf can be shown to have a left adjoint via the following
lemma.

Lemma 5.3 ([6, 5.6]). Consider two categories, the category of all diagrams X : D →
SSets and the category of strictly local diagrams with respect to some set of maps
S = {f : A→ B}. The forgetful functor from the category of strictly local diagrams to
the category of all diagrams has a left adjoint.

Denoting this left adjoint F , the following result once again follows from the same
arguments given in [7, 8.6].

Theorem 5.4. The adjoint pair

F : SeGpdf À SGpd : R

is a Quillen equivalence of model categories.

However, in this case we also have the following additional result, emphasizing the
idea that an (∞, 0)-category should just be a space (or simplicial set).

Theorem 5.5. Let T : ICSS → SSets be the functor taking an invertible complete
Segal space W to its 0-space W0. This functor has a left adjoint given by the functor
C : SSets→ ICSS taking a simplicial set K to the constant invertible simplicial space
CK. This adjoint pair gives a Quillen equivalence of model categories.

Proof. It is not hard to show that C is left adjoint to T . To prove that this adjoint
pair is a Quillen pair, we observe that the left adjoint functor C preserves cofibrations
because they are just monomorphisms in each category. It also preserves acyclic cofi-
brations because the image of a weak equivalence of simplicial sets is a Reedy weak
equivalence of simplicial spaces, and therefore also a weak equivalence in ICSS.

By the same reasoning, C also reflects weak equivalences between cofibrant objects.
Thus, to prove that we have a Quillen equivalence it remains to show that the map
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C(TW )→W is a weak equivalence for any invertible complete Segal space W . How-
ever, C(TW ) = C(W0), the constant invertible simplicial set which has W0 in each
degree. However, if W is an invertible complete Segal space, then the spaces in each
degree are all weakly equivalent. Thus, the desired map is a weak equivalence.

Again, we note that this result is not surprising, in that Dwyer and Kan proved that
SGpd is Quillen equivalent to SSets in [12], but this particular Quillen equivalence
with ICSS makes the relationship especially clear.

We conclude this section by noting some relationships between models for invertible
homotopy theories as given in this paper and models for homotopy theories. Recall
that the inclusion map ∆op → I∆op induces a map

SSetsI∆op → SSets∆op

,

which has an “invert” map as a left adjoint. This adjoint pair is in fact a Quillen
pair when we consider the respective injective model category structures on the two
categories. Furthermore, we still have a Quillen pair

ICSS ¿ CSS
between the localized model categories.

This adjoint relationship between CSS and ICSS (where the “invert” map is
the left adjoint) can be contrasted with an Quillen pair between CSS and SSets
for which the analogous map is the right adjoint. The map CSS → SSets given by
taking a simplicial space X to the simplicial set X0 can be shown to have a left adjoint
(giving, essentially, a constant simplicial space). It can be shown to be a right Quillen
functor because if X is a fibrant object (i.e., a complete Segal space and therefore
Reedy fibrant), then X0 is fibrant in SSets as well, and because weak equivalences
between complete Segal spaces give weak equivalences between 0-spaces.

6. A Bousfield approach to Segal groupoids and invertible
complete Segal spaces

As in [4], we can also use a different approach to defining Segal groupoids and
invertible (complete) Segal spaces. The idea behind this method is, when moving
from the ordinary Segal case to the invertible one, to change the projections used to
define the Segal maps, an idea used by Bousfield [9].

In the category ∆, consider the maps γk : [1]→ [n] given by 0 7→ 0 and 1 7→ k + 1
for any 0 6 k < n. Just as the maps αk are used to define the ordinary Segal maps
ϕk, we can use the maps γk to define the Bousfield-Segal maps

χn : Xn → X1 ×X0 · · · ×X0 X1︸ ︷︷ ︸
n

for each n > 2.

Definition 6.1. A Bousfield-Segal space is a Reedy fibrant simplicial space W sat-
isfying the condition that the Bousfield-Segal maps χn are weak equivalences for
n > 2.
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Notice that Bousfield-Segal spaces are really just another way to think about
invertible Segal spaces. We have given them a different name here to distinguish
them from our previous definition; when we consider model category structures the
distinction is more important, since the underlying category here is that of simplicial
spaces, rather than that of invertible simplicial spaces.

To define a model category structure on the category of simplicial spaces in which
the fibrant objects are Bousfield-Segal spaces, we need to define an appropriate map
with which to localize the Reedy model structure. For γi defined as above, define

H(k)t =
k−1⋃

i=1

γi∆[1]t

and the inclusion map
χk : H(k)t → ∆[k]t.

Combining these maps for all values of k, we obtain a map

χ =
∐

k>1

(χk : H(k)t → ∆[k]t).

Theorem 6.2. Localizing the Reedy model structure with respect to the map χ results
in a model structure BSeSpc in which the fibrant objects are the Bousfield-Segal
spaces.

As usual, we can also localize the projective model structure with respect to the
map χ to obtain a model category BSeSpf .

The properties of invertible Segal spaces discussed previously continue to hold for
Bousfield-Segal spaces. In particular, we have the following definition.

Definition 6.3. A complete Bousfield-Segal space is a Bousfield-Segal space W for
which the degeneracy map s0 : W0 →W1 is a weak equivalence.

Recall the map ψ : ∆[0]t → Et used to define the (invertible) complete Segal space
model structure. We use it again here to establish what we call the complete Bousfield-
Segal space model structure on the category of simplicial spaces.

Theorem 6.4. Localizing the model structure BSeSpc with respect to the map ψ
results in a model structure CBSS in which the fibrant objects are the complete
Bousfield-Segal spaces.

We now turn to the Bousfield approach to Segal groupoids. We gave the following
definition in [4, §6].

Definition 6.5. A Bousfield-Segal category is a Segal precategory for which the
Bousfield-Segal maps χn are weak equivalences for each n > 2.

In [4], we consider the fixed object set case, in which we look at Bousfield-Segal
categories with a given set O in degree zero. In particular, we defined a fixed-object
version of the map χ as follows:

χO =
∐

k>0

(
χk
O : H(k)t

O → ∆[k]tO.
)
.
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Proposition 6.6 ([4, 6.1]). Localizing the category SSpO,f with respect to the map
χO results in a model structure LBSSpO,f whose fibrant objects are Bousfield-Segal
categories. Similarly, localizing SSpO,c with respect to χO results in a model category
we denote LBSSpO,c.

Using these model structures, we can proceed to the more general case, in which we
have model structures BSeCatc and BSeCatf on the category of Segal precategories
in which the fibrant objects are Bousfield-Segal categories. We first consider BSeCatc,
which is analogous to SeCatc.

Considering the acyclic cofibrations given by the set

{V [m, k]×∆[n]t ∪∆[m]×H(n)t → ∆[m]×∆[n]t}
for n > 1,m > 1, and 0 6 k 6 m enables us to define a “localization” functor LB,c tak-
ing a Segal precategory to a Bousfield-Segal category by taking a colimit of pushouts
along the maps of this set.

Theorem 6.7. There is a model category structure BSeCatc on the category of Segal
precategories such that

1. a weak equivalence is a map f : X → Y such that the induced map LB,cX →
LB,cY is a Dwyer-Kan equivalence of Bousfield-Segal spaces,

2. a cofibration is a monomorphism, and

3. a fibration is a map which has the right lifting property with respect to the maps
which are cofibrations and weak equivalences.

In particular, in this model structure, the cofibrations should be monomorphisms
so that all objects are cofibrant. Therefore, we can use the same set of generating
cofibrations,

Ic = {(∆̇[m]×∆[n]t ∪∆[m]× ∆̇[n]t)r → (∆[m]×∆[n]t)r},
where m > 0 when n > 1, and when n = m = 0, that we used for SeCatc in [7, §5].
We can define a set of generating acyclic cofibrations very similarly, namely, by a set
of representatives of isomorphism classes of maps i : A→ B which are cofibrations
and weak equivalences such that for all n > 0 the simplicial sets An and Bn have only
countably many simplices. Notice that this definition only differs from the one in [7]
in that we weak equivalences are defined here in terms of the functor LB,c rather
than by the functor Lc taking a Segal precategory to a Segal category.

Given these generating sets, the proof of the existence of this model structure
follows just as in [7, 5.1]. Once again, we also have a companion model structure
BSeCatf .

For this model structure, we use a functor LB,f taking a Segal precategory to a
Bousfield-Segal category which is fibrant in the projective, rather than the Reedy
model structure, and then define the weak equivalences in terms of this functor.
However, as before, it turns out that the two functors define the same class of weak
equivalences [7, §7]. Just as in SeCatf , we make use of the set

If = {Pm,n → Qm,n | m,n > 0}.
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Theorem 6.8. There is a model category structure BSeCatf on the category of Segal
precategories such that

1. weak equivalences are the same as those in BSeCatc,
2. a cofibration is a map which can be obtained by taking iterated pushouts along

the maps in the set If , and
3. a fibration is a map which has the right lifting property with respect to the maps

which are cofibrations and weak equivalences.

Now, we have the following results, analogous to those of the previous section.

Proposition 6.9. The identity functor induces a Quillen equivalence

id : BSeCatf À BSeCatc : id.

Theorem 6.10. The inclusion functor

I : BSeCatc → CBSS
has a right adjoint, and this adjoint pair is a Quillen equivalence.

As described in the previous section, the right adjoint here, applied to an object
W of CBSS, is given by a pullback of the diagram

W → cosk0(W0)← cosk0(W0,0).

The proof that this map is adjoint to the inclusion map and that the adjoint pair is
in fact a Quillen equivalence of model categories follows just as the one given in [7,
§6].

We can again make use of Lemma 5.3 and an argument like the one in [7, 8.6] to
prove the following result.

Theorem 6.11. The nerve functor

R : SGpd→ BSeCatf
has a left adjoint, and this adjoint pair is a Quillen equivalence.

Lastly, we can compare the model structure CBSS to the model structure on
simplicial sets just as we did in the proof of Theorem 5.5.

Theorem 6.12. Let T : CBSS → SSets be the functor taking an complete Bousfield-
Segal space W to its 0-space W0. This functor has a left adjoint C : SSets→ CBSS
taking a simplicial set K to the constant invertible simplicial space CK. This adjoint
pair gives a Quillen equivalence of model categories.
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ematics 174, Birkhäuser Verlag, Basel, 1999.

[16] A. Grothendieck, Pursuing stacks, letter to D. Quillen, available at
www.grothendieckcircle.org.

[17] P.S. Hirschhorn, Model categories and their localizations, Mathematical Surveys
and Monographs 99, American Mathematical Society, Providence, RI, 2003.

[18] M. Hovey, Model categories, Mathematical Surveys and Monographs 63, Amer-
ican Mathematical Society, Providence, RI, 1999.

[19] A. Joyal, Simplicial categories vs quasi-categories, in preparation.
[20] A. Joyal, The theory of quasi-categories I, in preparation.
[21] A. Joyal and M. Tierney, Quasi-categories vs Segal spaces, in Categories in

algebra, geometry and mathematical physics, Contemp. Math. 431 (2007), 277–
326.

[22] J. Lurie, Higher topos theory, preprint available at math.CT/0608040.
[23] S. Mac Lane, Categories for the working mathematician, Second edition, Grad-

uate Texts in Mathematics 5, Springer-Verlag, New York, 1998.
[24] S. Paoli, Semistrict Tamsamani n-groupoids and connected n-types, preprint

available at math.AT/0701655.



INVERTIBLE HOMOTOPY THEORIES 193

[25] R. Pellissier, Catégories enrichies faibles, preprint available at math.AT/
0308246.

[26] C.L. Reedy, Homotopy theory of model categories, unpublished manuscript,
available at http://www-math.mit.edu/~psh.

[27] C. Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer.
Math. Soc. 353 (2001), no. 3, 973–1007.

[28] C. Simpson, Effective generalized Seifert-Van Kampen: how to calculate ΩX,
preprint available at q-alg/9710011.

[29] Z. Tamsamani, Equivalence de la théorie homotopique des n-groupöıdes et
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