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PRODUCTS IN HOPF-CYCLIC COHOMOLOGY

ATABEY KAYGUN

(communicated by J. F. Jardine)

Abstract
We construct several pairings in Hopf-cyclic cohomology of

(co)module (co)algebras with arbitrary coefficients. As a special
case of one of these pairings, we recover the Connes-Moscovici
characteristic map in Hopf-cyclic cohomology. We also prove
that this particular pairing, along with a few others, would stay
the same if we replace the derived category of (co)cyclic mod-
ules with the homotopy category of (special) towers of super
complexes, or the derived category of mixed complexes.

1. Introduction

Hopf-cyclic cohomology of Hopf algebras was discovered by Connes and Moscovici
in their seminal work on transverse index theory [3, 4]. The Hopf-cyclic cohomol-
ogy was later extended by Hajac, Khakhali, Rangipour and Sommerhäuser [9] to a
cohomology theory of (co)module (co)algebras with coefficients in stable anti-Yetter-
Drinfeld (SAYD) modules. Now, Hopf-cyclic cohomology of module (co)algebras as
defined in [9] and its subsequent generalization to arbitrary coefficients in [15], can be
described via appropriate bivariant cohomology theories [16]. These bivariant coho-
mology theories provide us with the right kind of tools to investigate various kinds of
products and pairings in the Hopf-cyclic and equivariant cyclic settings. We showed
in [16] that equivariant cyclic (co)homology groups of H-module (co)algebras are
graded modules over the graded algebra Ext∗H(k, k), where H is the underlying Hopf
algebra. Not only is this the right kind of equivariance for an equivariant cohomology
theory, but it is also a very useful computational tool in obtaining new equivariant
cyclic classes from old ones by using the action. However, Hopf-cyclic cohomology is,
by design, oblivious to the cohomology of the underlying Hopf algebra viewed as an
algebra or a coalgebra depending on the type of the symmetry at hand. Nevertheless,
in Theorem 2.8 we construct a pairing similar to one of the cup products obtained
in [17]

^ : HCp
Hopf(C, M)⊗HCq

Hopf(A,M)→ HCp+q(A)

for an H-module coalgebra C acting equivariantly on a H-module algebra A
(Definition 2.2), where M is an arbitrary coefficient module/comodule. The main
corollary to this pairing is Theorem 2.10, where we recover the Connes-Moscovici
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characteristic map [3, Section VIII, Proposition 1] by letting q = 0, C = H, and
letting M = k(σ,δ) be the coefficient module coming from a modular pair in invo-
lution. The ideas instrumental in constructing this pairing are the derived functor
interpretation of Hopf-cyclic and equivariant cyclic cohomology [16], and the Yoneda
interpretation of Ext-groups [23]. Once we couple equivariant/Hopf-cyclic cohomol-
ogy and the Yoneda product, we obtain other types of products and pairings by
imposing various conditions on the underlying Hopf algebra, the coefficient modules
and (co)module (co)algebras involved (Theorems 2.11, 3.2, 3.5, 4.4 and 4.7.)

The first example of the pairing of the form given in Theorem 2.8 between Hopf-
cyclic cohomology of a module algebra A and the comodule algebra C = H is the
Connes-Moscovici characteristic map [3] defined for q = 0, and for the 1-dimensional
coefficient module k(σ,δ) coming from a modular pair in involution. Gorokhovsky
later extended this pairing to a differential graded setting using periodic cyclic coho-
mology for an arbitrary q in [8]. Subsequently, in [17], Khalkhali and Rangipour
defined two cup products for arbitrary module algebras and coalgebras with coeffi-
cients in arbitrary SAYD modules. Their “cup product of the second kind” agrees
with Gorokhovsky’s extended characteristic map, and therefore with the Connes-
Moscovici characteristic map, when the coefficient module is k(σ,δ). There are yet
other ways of defining cup products in the context of Hopf equivariant Cuntz-Quillen
formalism due to Crainic [5] and Nikonov-Sharygin [20], where the former constructs
the cup product only for C = H and for the 1-dimensional coefficient module k(σ,δ),
while the latter generalizes the construction to arbitrary H-module coalgebras and
arbitrary SAYD coefficient modules. Our approach to products is different than all
of the approaches we enumerated above in that we use the derived category of cyclic
modules, while all the cup products we mentioned above use the theory of abstract
cycles and closed graded traces (see [2, p. 183], [17], [18, p. 74]) or the homotopy
category of (special) towers of super complexes [6].

The last section of our paper is devoted to ramifications of an interesting tech-
nical problem in cyclic cohomology. There are essentially two different homotopical
frameworks for the category cyclic modules:

(i) Connes’ derived category of cyclic modules [1], and
(ii) Cuntz-Quillen formalism of homotopy category of towers of super complexes [6],

which is equivalent to the derived category of mixed complexes [13] and the
derived category of S-modules [14], thanks to Quillen [22].

One can see the difference in the simple fact that for a cyclic module X•, the derived
functors Ext∗Λ(k∨• , X•) in the category of cyclic modules compute the dual cyclic
homology of X• [16, Corollary 2.10 and Proposition 3.4], while the derived functors
Ext∗M(B∗(k∨• ),B∗(X•)) in the category of mixed complexes compute the negative
cyclic homology of X• [12, Theorem 2.3]. Here, k• is the cocyclic module of the ground
field viewed as a coalgebra, the dual cyclic homology of X• is the cyclic cohomology
of X∨

• , the cyclic dual of a (co)cyclic module X• defined by using Connes’ duality
functor [1], and B∗(Z•) is the mixed complex of a (co)cyclic module Z•. The main
result of this last section is Theorem 5.4, where we prove that replacing the derived
category cyclic modules by the derived category of mixed complexes, or S-modules,
or the homotopy category of towers of super complexes in Theorems 2.8, 2.11, and 3.2
will not change the pairings we have already defined.
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In this article k will denote an arbitrary field. We make no assumption about the
characteristic of k. We will use H to denote a bialgebra, or a Hopf algebra with an
invertible antipode over k, whenever necessary. All tensor products, unless otherwise
explicitly stated, are over k.

2. Equivariant actions of coalgebras on algebras

In this section, A will denote a unital associative left H-module algebra and C will
denote a counital coassociative left H-module coalgebra. Explicitly, one has

h(a1a2) = (h(1)a1)(h(2)a2) and (hc)(1) ⊗ (hc)(2) = h(1)c(1) ⊗ h(2)c(2)

for any a1, a2 ∈ A, c ∈ C and h ∈ H. We also assume

h(1A) = ε(h)1A and ε(hc) = ε(h)ε(c)

for any c ∈ C and h ∈ H. We will use M to denote an arbitrary H-module/comodule
with no assumption on the interaction between the H-module and H-comodule struc-
tures on M .

Given two morphisms f1, f2 ∈ Homk(C,A), we define their convolution product as

(f1 ∗ f2)(c) := f1(c(1))f2(c(2))

for any c ∈ C. This binary operation on Homk(C, A) is an associative product. The
unit for this algebra is η(c) := ε(c)1A. The proof of the following lemma is routine.

Lemma 2.1. There exists a morphism of algebras of the form α : A→ Homk(C, A)
if and only if one has a pairing φ : C ⊗A→ A, which satisfies

φ(c, a1a2) = φ(c(1), a1)φ(c(2), a2) and φ(c, 1) = ε(c)1A

for any c ∈ C and a1, a2 ∈ A.

Definition 2.2. If one has a pairing between a module coalgebra C and a module
algebra A as described in Lemma 2.1, then C is said to act on A. Such an action is
going to be called equivariant if one also has

hφ(c, a) = φ(hc, a)

for any a ∈ A, h ∈ H and c ∈ C.

One can observe that an H-module coalgebra C acts on an H-module algebra A
equivariantly, if and only if the canonical morphism of algebras α : A→ Homk(C, A)
factors through the inclusion HomH(C, A) ⊆ Homk(C, A) [17].

Definition 2.3. If X• is a (para-)cocyclic k-module and Y• is a (para-)cyclic
k-module, then the graded module

diag Homk(X•, Y•) :=
⊕

n

Homk(Xn, Yn)
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carries a (para-)cyclic module structure defined as

(∂jf)(xn−1) := ∂Y
j f(∂X

j (xn−1)) 0 6 j 6 n,

(σjfn)(xn+1) := σY
j f(σX

j (xn+1)) 0 6 j 6 n,

(τnfn)(xn) := τn,Y f(τn,X(xn))

for any f ∈ Homk(Xn, Yn), xi ∈ Xi for i = n− 1, n, n + 1.

We will use Cyc•(X) to denote the classical cyclic k-module of an (co)associative
(co)unital k-(co)algebra X. Also, we will use k• to denote Cyc•(kc), the cocyclic
k-module of the ground field viewed as a coalgebra, and k∨• to denote Cyc•(k), the
cyclic k-module of the ground field k viewed as an algebra. Note that in this case k∨•
is actually the cyclic dual of the cocyclic k-module k• in the sense of [1, Lemme 1].
In general, if X• is an arbitrary (co)cyclic k-module, then X∨

• will denote its cyclic
dual. T•(C, M) and T•(A,M) are going to denote the para-(co)cyclic complex (also
referred as “the cover complex”) of the H-module coalgebra C and H-module algebra
A with coefficients in a H-module/comodule M respectively [16].

Here we recall the para-(co)cyclic structure morphisms on both T•(C,M) and
T•(A,M) from [16]. The modules are defined as

Tn(C, M) := C⊗n+1 ⊗M and Tn(A,M) := A⊗n+1 ⊗M.

We define the structure morphisms on T•(C, M) by

∂0(c0 ⊗ · · · ⊗ cn ⊗m) := c0
(1) ⊗ c0

(2) ⊗ c1 ⊗ · · · ⊗ cn ⊗m,

σ0(c0 ⊗ · · · ⊗ cn ⊗m) := c0 ⊗ ε(c1)⊗ c2 · · · ⊗ cn ⊗m,

τn(c0 ⊗ · · · ⊗ cn ⊗m) := c1 ⊗ · · · ⊗ cn ⊗m(−1)c
0 ⊗m(0).

Then we define ∂j := τ−j
n+1∂0τ

j
n and σi := τ−j

n−1σ0τ
j
n. Similarly, we let

∂0(a0 ⊗ · · · ⊗ an ⊗m) := a0a1 ⊗ a2 ⊗ an ⊗m,

σ0(a0 ⊗ · · · ⊗ an ⊗m) := a0 ⊗ 1A ⊗ a1 ⊗ · · · ⊗ an ⊗m,

τn(a0 ⊗ · · · ⊗ an ⊗m) := S−1(m(−1))an ⊗ a0 ⊗ · · · ⊗ an−1 ⊗m(0).

Then we define ∂j := τ j
n−1∂0τ

−j
n and σj := τ j

n+1σ0τ
−j
n .

Proposition 2.4. Assume C acts on A equivariantly and let M be an arbitrary
H-module/comodule. Let us define

αn(a0 ⊗ · · · ⊗ an)(c0 ⊗ · · · ⊗ cn ⊗m) := φ(c0, a0)⊗ · · · ⊗ φ(cn, an)⊗m

for any n > 0, m ∈M , ai ∈ A, and ci ∈ C for i = 0, . . . , n. Then α• defines a mor-
phism of para-cyclic k-modules of the form

α• : Cyc•(A)→ diag HomH(T•(C, M), T•(A,M)).



PRODUCTS IN HOPF-CYCLIC COHOMOLOGY 119

Proof. It is easy to observe that αn is H-linear since the action of C on A is equiv-
ariant. Let us check if α• now defines a morphism of para-cyclic modules:

αn−1(∂A
0 (a0 ⊗ · · · ⊗ an))(c0 ⊗ · · · ⊗ cn−1 ⊗m)

= φ(c0, a0a1)⊗ φ(c1, a2)⊗ · · · ⊗ φ(cn−1, an)⊗m

= φ(c0
(1), a0)φ(c0

(2), a1)⊗ φ(c1, a2)⊗ · · · ⊗ φ(cn−1, an)⊗m

= ∂
(A,M)
0 αn(a0 ⊗ · · · ⊗ an)∂(C,M)

0 (c0 ⊗ · · · ⊗ cn−1 ⊗m),

αn+1(σA
0 (a0 ⊗ · · · ⊗ an))(c0 ⊗ · · · ⊗ cn+1 ⊗m)

= φ(c0, a0)⊗ ε(c1)1A ⊗ φ(c2, a1)⊗ · · · ⊗ φ(cn+1, an)⊗m

= σ
(A,M)
0 αn+1(a0 ⊗ · · · ⊗ an)σ(C,M)

0 (c0 ⊗ · · · ⊗ cn+1 ⊗m),

αn(τn(a0 ⊗ · · · ⊗ an))(c0 ⊗ · · · ⊗ cn ⊗m)

= φ(c0, an)⊗ φ(c1, a0)⊗ · · · ⊗ φ(cn, an−1)⊗m

= S−1(m(−1))φ(m(−2)c
0, an)⊗ φ(c1, a0)⊗ · · · ⊗ φ(cn, an−1)⊗m(0)

= τn,(A,M)

(
φ(c1, a0)⊗ · · · ⊗ φ(cn, an−1)⊗ φ(m(−1)c

0, an)⊗m(0)

)

= τn,(A,M)αn(a0 ⊗ · · · ⊗ an)τ(C,M)(c0 ⊗ · · · ⊗ cn ⊗m),

for any ci ∈ C, ai ∈ A, m ∈M .

Remark 2.5. Now, we will recall a few relevant definitions from [16].
Let J•(C, M) be the smallest para-cocyclic k-submodule and graded H-submodule

(but not necessarily the para-cocyclic H-subcomodule) of T•(C, M) generated by ele-
ments of the form [Lh, τ i

n](Ψ) + (τn+1
n − idn)(Φ), where Ψ,Φ ∈ Tn(C, M), i ∈ Z, and

Lh is the graded k-module endomorphism of T•(C,M) coming from the left diagonal
action of h ∈ H on Tn(C, M) for each n > 0. One can similarly define J•(A,M).

We define Q•(C, M) := T•(C, M)/J•(C, M). One can see that Q•(C, M) is a co-
cyclic H-module. Similarly, Q•(A, M) := T•(A,M)/J•(A, M) is a cyclic H-module.
This cocyclic (resp. cyclic) H-module is called the H-equivariant cocyclic (resp.
cyclic) module of the pair (C,M) (resp. (A,M)). The cyclic cohomology of the
(co)cyclic H-modules Q•(C,M) and Q•(A,M) will be denoted by HC∗H(C, M) and
HC∗H(A,M) respectively.

We define C•(C, M) := k ⊗H Q•(C,M). One can see that C•(C,M) is a cocyclic
k-module. Similarly, C•(A,M) := k ⊗H Q•(A,M) is a cyclic k-module. This cocyclic
(resp. cyclic) k-module is called the Hopf-cocyclic (resp. Hopf-cyclic) module of
the pair (C,M) (resp. (A,M)). The cyclic cohomology of the (co)cyclic k-modules
C•(C, M) and C•(A,M) will be denoted by HC∗Hopf(C,M) and HC∗Hopf(A,M)
respectively.

Lemma 2.6. For any n > 0 and ai ∈ A for 0 6 i 6 n, the restriction of the
H-linear morphism αn(a0 ⊗ · · · ⊗ an) in Homk(Tn(C, M), Tn(A,M)) to Jn(C,M) is
a morphism in HomH(Jn(C, M), Jn(A, M)).
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Proof. It is sufficient to prove that for every n > 0, ai ∈ A with 0 6 i 6 n, the mor-
phism αn(a0 ⊗ · · · ⊗ an) maps the elements of the form [Lh, τ i

n](Ψ) + (τn+1
n − idn)(Φ)

to elements of the same form. We know that each αn(a0 ⊗ · · · ⊗ an) is H-linear. So,
we can reduce the proof to verification of the following string of equalities:

αn(a0 ⊗ · · · ⊗ an)τn,(C,M)(c0 ⊗ · · · ⊗ cn ⊗m)

= αn(a0 ⊗ · · · ⊗ an)(c1 ⊗ · · · ⊗ cn ⊗m(−1)c
0 ⊗m(0))

= φ(c1, a0)⊗ · · · ⊗ φ(cn, an−1)⊗m(−1)φ(c0, an)⊗m(0)

= τ−1
n,(A,M)(φ(c0, an)⊗ φ(c1, a0)⊗ · · · ⊗ φ(cn, an−1)⊗m)

for m ∈M , ai ∈ A, ci ∈ C with 0 6 i 6 n.

Proposition 2.7. α• can be extended to a morphism of cyclic k-modules of the form

α• : Cyc•(A)→ diag HomH(Q•(C, M), Q•(A,M))

and
α• : Cyc•(A)→ diag Homk(C•(C, M), C•(A,M)).

Proof. The first part of the statement follows from Lemma 2.6. The second part
follows from the fact that k ⊗H ( · ) is a functor from the category of left H-modules
to the category of k-modules.

Theorem 2.8. The equivariant action of an H-module coalgebra C on an H-module
algebra A induces a pairing of the form

^ : HCp
Hopf(C, M)⊗HCq

Hopf(A,M)→ HCp+q(A)

for any p, q > 0.

Proof. First, we observe that we have

HCp
Hopf(C,M) = Extp

Λ(k•, C•(C, M))

and
HCq

Hopf(A,M) = Extq
Λ(C•(A,M), k∨• ).

We will use the Yoneda interpretation of Ext-groups [23], which was developed in
[19, Chapter III]. Our approach in part is inspired by the use of Yoneda
Ext-groups in [21]. In the Yoneda approach, one can represent the cohomology classes
ξ ∈ HCp

Hopf(k•, C•(C, M)) and ν ∈ HCq
Hopf(C•(A,M), k∨• ) by exact sequences of

(co)cyclic k-modules

ξ : 0←− k• ←− Y 1
• ←− · · · ←− Y p

• ←− C•(C, M)←− 0,

ν : 0←− C•(A,M)←− Z1
• ←− · · · ←− Zq

• ←− k∨• ←− 0.

Since k is a field, the functor diag Homk( · , C•(A,M)) from the category of cocyclic
k-modules to the category of cyclic k-modules is exact. Hence we get an exact sequence
diag Homk(ξ, C•(A,M)) of the form

0←− diag Homk(C•(C,M), C•(A, M))←− diag Homk(Y p
• , C•(A,M))←−

· · · ←− diag Homk(Y 1
• , C•(A,M))←− C•(A,M)←− 0,

after observing the fact that diag Homk(k•, C•(A,M)) is isomorphic to C•(A,M) as
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cyclic k-modules. Now, if we splice the exact sequences diag Homk(ξ, C•(A,M)) and
ν, we get a class in Extp+q

Λ (diag Homk(C•(C, M), C•(A,M)), k∨• ). However, we also
have a morphism of cyclic k-modules α• constructed in Proposition 2.7. The result
follows from the corresponding morphism of Ext-modules

Extp+q
Λ (α•, k∨• ) : Extp+q

Λ (diag Homk(C•(C, M), C•(A,M)), k∨• )

→ Extp+q
Λ (Cyc•(A), k∨• ),

and then observing that HC∗(A) = Ext∗Λ(Cyc•(A), k∨• ).

If one wishes to write a formula for this pairing, then one can write

ξ ^ ν := Extp+q
Λ (α•, k∨• ) (diag Homk(ξ, C•(A,M)) ◦ ν)

for any ξ ∈ HCp
Hopf(C, M) and ν ∈ HCq

Hopf(A, M), where ◦ denotes the Yoneda prod-
uct in bivariant cohomology written in the opposite order; i.e.,

◦ : Extp
Λ(X•, Y•)⊗ Extq

Λ(Y•, Z•)→ Extp+q
Λ (X•, Z•).

However, there is one other pairing in the same setting. One can define this second
pairing by the formula

ν ^ ξ := Extp+q
Λ (α•, k∨• ) (diag Homk(C•(C, M), ν) ◦ diag Homk(ξ, k∨• )) .

Below, we give an alternative construction for these pairings we gave above and prove
that they actually are the same up to a sign.

Proposition 2.9. Assume that an H-module coalgebra C acts on an H-module alge-
bra A equivariantly. Then, for any ξ ∈ HCp

Hopf(C, M) and ν ∈ HCq
Hopf(A,M), one

has ξ ^ ν = (−1)pqν ^ ξ.

Proof. Since the bifunctor diag Homk( · , · ) is exact in both variables, one has
well-defined morphisms of the form

diag Homk(Z•, · ) : Extp
Λ(X•, Y•)→ Extp

Λ(diag Homk(Z•, X•), diag Homk(Z•, Y•))

and

diag Homk( · , Z•) : Extp
Λ(X•, Y•)→ Extp

Λ(diag Homk(Y•, Z•), diag Homk(X•, Z•))

for any cocyclic modules X•, Y• and cyclic module Z•. Since

ξ ∈ HCp
Hopf(C, M) := Extp

Λ(k•, C•(C, M))

and
ν ∈ HCq

Hopf(A,M) := Extq
Λ(C•(A,M), k∨• ),

one has well-defined elements

ζ1 := diag Homk(ξ, C•(A,M)) ◦ ν,

which belongs to Extp+q
Λ (diag Hom(C•(C,M), C•(A,M)), k∨• ) and

ζ2 := diag Homk(C•(C, M), ν) ◦ diag Homk(ξ, k∨• ),

which belongs to Extp+q
Λ (diag Hom(C•(C,M), C•(A,M)), k∨• ). Here we use the oppo-

site composition notation as before. We observe that ν = diag Homk(k•, ν). Then the
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proof that one has, ζ1 = (−1)pqζ2 in Extp+q
Λ (diag Homk(C•(C, M), C•(A,M)), k∨• ),

reduces to proving that the bifunctor diag Homk( · , · ) satisfies the following prop-
erty:

diag Homk(a•, Y ′
•) ◦ diag Homk(X•, b•) = diag Homk(X ′

•, b•) ◦ diag Homk(a•, Y•)

for any morphism of cocyclic modules a• : X ′
• → X• and any morphism of cyclic

modules b• : Y• → Y ′
• , which is obvious. The result follows after observing

ξ ^ ν := Extp+q
Λ (α•, k∨• )(ζ1) = Extp+q

Λ (α•, k∨• )((−1)pqζ2) := (−1)pqν ^ ξ,

where α• is the morphism of cyclic modules we constructed in Proposition 2.4.

Theorem 2.10. The Connes-Moscovici characteristic map

HCp
Hopf(H, k(σ,δ))→ HCp(A)

defined in [3, Section VIII, Proposition 1] agrees with the pairing we defined in The-
orem 2.8 for C = H, M = k(σ,δ) and q = 0. Here k(σ,δ) denotes the 1-dimensional
anti-Yetter-Drinfeld module of the module pair in involution (σ, δ).

Proof. Since k(σ,δ) is a stable anti-Yetter-Drinfeld module (an SAYD module in
short), by [15], we know that C•(H, k(σ,δ)) is isomorphic to k ⊗H T•(H, k(σ,δ)). There-
fore, one can identify C•(H, k(σ,δ)) as the graded k-submodule of T•(H, k(σ,δ)), which
consists of elements the form

∑
i(1⊗ h1

i ⊗ · · · ⊗ hn
i ). The Connes-Moscovici charac-

teristic is defined with the help of an invariant trace τ on A, which satisfies the
following condition:

τ(h(a)a′) = τ(aS(h(1))(a′)δ(h(2))) and τ(h(a)) = ε(h)τ(a)

for any a, a′ ∈ A and h ∈ H. This is equivalent to τ ∈ Homk(A⊗ k(σ,δ), k) being a
cyclic cochain in degree 0 for the cyclic module C•(A, k(σ,δ)). The characteristic map
is defined as

γ•(1⊗ h1 ⊗ · · · ⊗ hn)(a0 ⊗ · · · ⊗ an) = τ(a0h
1(a1) · · ·hn(an))

for any 1⊗ h1 ⊗ · · · ⊗ hn ∈ Cn(H, k(σ,δ)) and a0 ⊗ · · · ⊗ an ∈ Cycn(A). Now observe
that one can write γ• as a composition γ• = τ ◦ α•, where α• is defined in the proof
of Proposition 2.4. This means γ• is the morphism,

Homk(α•, k) : Homk(diag Homk(C•(H, M), C•(A,M)), k)→ Homk(Cyc•(A), k),

where M = k(σ,δ). Then Homk(α•, k) induces the morphism Ext∗Λ(α•, k∨• ) on coho-
mology, which is used in the proof of Theorem 2.8 to define the pairing. The result
follows.

One can extend the pairing we defined above to the equivariant cyclic cohomology
groups as follows:

Theorem 2.11. The equivariant action of an H-module coalgebra C on an H-module
algebra A induces a pairing of the form

^ : HCp
H(C,M)⊗HCq

H(A,M)→
p+q⊕
r=0

HCp+q−r(A)⊗ Extr
H(k, k)

for any p, q > 0.
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Proof. First observe that the morphism of cyclic modules α•, defined in Proposi-
tion 2.4, can also be considered as a morphism of cyclic H-modules of the form
α• : Cyc•(A)→ diag Homk(Q•(C,M), Q•(A,M)). Here Cyc•(A) is considered as a
trivial H-module and diag Homk(Q•(C, M), Q•(A,M)) has the following H-module
structure:

(hf)(Ψ) := h(1) · f(S(h(2)) ·Ψ)

for any f ∈ diag Homk(Q•(C, M), Q•(A,M)), h ∈ H and Ψ ∈ Q•(C,M). We consider
two cohomology classes

µ : 0←− k• ←− U1
• ←− · · · ←− Up

• ←− Q•(C, M)←− 0,

ν : 0←− Q•(A,M)←− V 1
• ←− · · · ←− V q

• ←− k∨• ←− 0,

elements of the cyclic cohomology modules HCp
H(C,M) := Extp

H[Λ](k•, Q•(C, M))
and HCq

H(A,M) := Extp
H[Λ](Q•(A,M), k•), respectively. Now we consider the exact

sequence diag Homk(µ,Q•(A,M)) of cyclic H-modules

0←− diag Homk(Q•(C, M), Q•(A, M))←− diag Homk(Up
• , Q•(A, M))←−

· · · ←− diag Homk(U1
• , Q•(A,M))←− Q•(A,M)←− 0.

We define a class in Extp+q
H[Λ](diag Homk(Q•(C, M), Q•(A,M)), k∨• ) by splicing the

exact sequences diag Homk(µ,Q•(A,M)) and ν at Q•(A,M). Then we define

µ ^ ν ∈ Extp+q
H[Λ](Cyc•(A), k∨• )

by using the morphism of cyclic H-modules α•. However, the H-module structure
on Cyc•(A) is trivial. Therefore, using the first spectral sequence constructed in
[16, Proposition 3.5] we obtain

Extp+q
H[Λ](Cyc•(A), k∨• ) ∼=

p+q⊕
r=0

HCp+q−r(A)⊗Homk(TorH
r (k, k), k).

Since k is a field we have Extr
H(U, k) ∼= Homk(TorH

r (U, k), k) for any r > 0 and any
left H-module U , in particular, for U = k.

3. Product (co)algebras

We will change the notation to distinguish Hopf-cyclic cohomology and equivariant
cyclic cohomology of H- and H ⊗H-module algebras. We will use Q•(H; A,M) to
denote the cyclic H-module associated with the H-module algebra A with coefficients
in M . Also, we will use HC∗Hopf(H; A,M) to denote the Hopf-cyclic cohomology of
an H-module algebra A with coefficients in M .

Proposition 3.1. Let A, A′ be two H-module algebras and let M and M ′ be two
H-module/comodules. Then there is an external product structure on the equivariant
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cyclic cohomology groups

HCp
H(A,M)⊗HCq

H(A′,M ′)→ HCp+q
H⊗H(A⊗A′, M ⊗M ′)

and the Hopf-cyclic cohomology groups

HCp
Hopf(H; A,M)⊗HCq

Hopf(H; A′,M ′)→ HCp+q
Hopf(H ⊗H; A⊗A′, M ⊗M ′)

for any p, q > 0.

Proof. Any cohomology class ν ∈ HCp
H(A,M) and ν′ ∈ HCq

H(A′,M ′) can be repre-
sented by two exact sequences of cyclic H-modules of the form

ν : 0←− Q•(A,M)←− X1
• ←− · · · ←− Xp

• ←− k∨• ←− 0

and
ν′ : 0←− Q•(A′,M ′)←− Y 1

• ←− · · · ←− Y q
• ←− k∨• ←− 0.

Now we define the external product ν × ν′ by the composition

0←− diag(Q•(H; A,M)⊗k Q•(H;A′,M ′))←− diag(X1
• ⊗k Q•(H;A′,M ′))←− · · ·

←− diag(Xp
• ⊗k Q•(H; A′, M ′))←− Y 1

• ←− · · · ←− Y q
• ←− k∨• ←− 0,

which is an exact sequence of cyclic H ⊗H-modules. Here diag denotes the diagonal
cyclic structure. Therefore, diag(U• ⊗ V•) is a cyclic H ⊗H-module whenever U•
and V• are cyclic H-modules. Now observe that there is a natural epimorphism from
Q•(H ⊗H; A⊗A′,M ⊗M ′) onto diag(Q•(H;A, M)⊗Q•(H; A′,M ′)). This proves
our first assertion. The proof of our second assertion is similar.

Given two left H-comodules M and M ′, we define

M2HM ′ :=

{∑

i

mi ⊗m′
i |

∑

i

mi,(−1) ⊗mi,(0) ⊗m′
i =

∑

i

m′
i,(−1) ⊗mi ⊗m′

i,(0)

}
.

Theorem 3.2. Let A, A′ be two H-module algebras and let M and M ′ be two H-
module/comodules. Assume H is cocommutative Hopf algebra and M2HM ′ is an
H-submodule of M ⊗M ′. One has pairings of the form

HCp
H(A,M)⊗HCq

H(A′,M ′)→ HCp+q
H (A⊗A′,M2HM ′)

and

HCp
Hopf(H; A,M)⊗HCq

Hopf(H; A′,M ′)→ HCp+q
Hopf(H;A⊗A′,M2HM ′)

for any p, q > 0.

Now assume Z is a H-comodule coalgebra; i.e., Z is an H-comodule and a coalgebra
such that the following compatibility condition is satisfied

z[−1] ⊗ z[0](1) ⊗ z[0](2) = z(1)[−1]z(2)[−1] ⊗ z(1)[0] ⊗ z(2)[0], (3.1)

where the H-comodule structure λ : Z → H ⊗ Z is denoted by z[−1] ⊗ z[0], and the
comultiplication ∆: Z → Z ⊗ Z is denoted by z(1) ⊗ z(2) for any z ∈ Z.

Lemma 3.3. Assume H is commutative. If Z and Z ′ are two arbitrary H-comodule
coalgebras, then their product Z ⊗ Z ′ has an H-comodule coalgebra structure.
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Definition 3.4. For a H-comodule coalgebra Z and a stable H-module/comodule
M , we define the Hopf-cyclic module C•(Z,M) associated with the pair (Z, M) as
follows: on the graded k-module level we let Cn(Z, M) := HomH-comod(Z⊗n+1,M),
where we view Z⊗n+1 as an H-comodule via the diagonal coaction; i.e.,

(z0 ⊗ · · · ⊗ zn)[−1] ⊗ (z0 ⊗ · · · ⊗ zn)[0] := z0
[−1] · · · zn

[−1] ⊗ (z0
[0] ⊗ · · · ⊗ zn

[0])

for any zi ∈ Z. The cyclic structure morphisms are defined by

(∂0f)(z0 ⊗ · · · ⊗ zn−1) := f(z0
(1) ⊗ z0

(2) ⊗ z1 ⊗ · · · ⊗ zn−1),

(σ0f)(z0 ⊗ · · · ⊗ zn+1) := ε(z1)f(z0 ⊗ z2 ⊗ · · · ⊗ zn+1),

(τnf)(z0 ⊗ · · · ⊗ zn) := z0
[−1]f(z1 ⊗ · · · ⊗ zn ⊗ z0

[0])

for any f ∈ Cn(Z, M) and zi ∈ Z. Then we set ∂j := τ j
n−1∂0τ

−j
n and σi := τ i

n+1σ0τ
−i
n

for 0 6 j 6 n and 0 6 i 6 n. The cyclic cohomology of this cyclic H-module will
be denoted by HC∗Hopf(Z, M). The cyclic cohomology of the dual cocyclic object
C•(Z, M)∨ will be denoted by HC∨,∗

Hopf(Z, M).

Theorem 3.5. Assume Z and Z ′ are arbitrary H-comodule coalgebras and M and
M ′ are arbitrary H-module/comodules. If H is commutative and M is a symmetric
H-module, then there is a pairing of the form

HC∨,p
Hopf(Z, M)⊗HC∨,q

Hopf(Z
′,M ′)→ HC∨,p+q

Hopf (Z ⊗ Z ′,M ⊗H M ′)

for any p, q > 0.

Proof. There is a well-defined morphism of cocyclic k-modules of the form

∗ : diag(C•(Z,M)⊗ C•(Z ′,M ′))→ C•(Z ⊗ Z ′,M ⊗H M ′)

given by the formula

(f ∗ f ′)((x0, y0)⊗ · · · ⊗ (xn, yn)) := f(x0 ⊗ · · · ⊗ xn)⊗H f ′(y0 ⊗ · · · ⊗ yn)

for any n > 0, xi ∈ Z and yi ∈ Z ′. It is easy to see that ∗ is a morphism of simplicial
modules. We see that

(τnf) ∗ (τnf ′)((x0, y0)⊗ · · · ⊗ (xn, yn))

= (τnf)(x0 ⊗ · · · ⊗ xn)⊗H (τnf ′)(y0 ⊗ · · · ⊗ yn)

= x0
[−1]f(x1 ⊗ · · · ⊗ xn ⊗ x0

[−1])⊗H y0
[−1]f(y1 ⊗ · · · ⊗ yn ⊗ y0

[−1])

= x0
[−1]y

0
[−1]f(x1 ⊗ · · · ⊗ xn ⊗ x0

[−1])⊗H f(y1 ⊗ · · · ⊗ yn ⊗ y0
[−1])

= (τn(f ∗ f ′))((x0, y0)⊗ · · · ⊗ (xn, yn))

since M is symmetric, as we wanted to show. Now take the exact sequences

ν : 0←− k∨• ←− U1
• ←− · · · ←− Up

• ←− C•(Z,M)←− 0

ν′ : 0←− k∨• ←− V 1
• ←− · · · ←− V q

• ←− C•(Z ′,M ′)←− 0

representing two cyclic cohomology classes in HC∨,p
Hopf(Z, M) and HC∨,q

Hopf(Z
′,M ′)
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respectively. Consider the exact sequence

0←− k∨• ←− U1
• ←− · · · ←− Up

• ←− diag(C•(Z,M)⊗ V 1
• )←− · · ·

←− diag(C•(Z,M)⊗ V q
• )←− diag(C•(Z,M)⊗ C•(Z ′,M ′))←− 0,

which represents a class in Extp+q
Λ (k∨• ,diag(C•(Z, M)⊗ C•(Z ′,M ′))). Using the mor-

phism ∗ we defined above, we get a class in Extp+q
Λ (k∨• , C•(Z ⊗ Z ′,M ⊗H M ′). The

result follows after observing the fact that

Ext∗Λ(k∨• , X•) ∼= HC∨,p(X•)

for any cyclic k-module X•.

4. Crossed product (co)algebras

In this section, we will assume A is an H-module algebra and B is an H-comodule
algebra. M will denote an arbitrary (left-left) stable anti-Yetter-Drinfeld (SAYD)
module [10]; i.e., M satisfies

m(−1)m(0) = m and (hm)(−1) ⊗ (hm)(0) = h(1)m(−1)S
−1(h(3))⊗ h(2)m(0)

for any m ∈M and h ∈ H.

Definition 4.1. We construct a new algebra AoB, which is defined as A⊗B on
the k-module level. The multiplication structure is defined by the formula

(a, b)(a′, b′) := (a(b(−1)a
′), b(0)b

′)

for (a, b), (a′, b′) ∈ AoB.

Recall the following definition from [9].

Definition 4.2. The Hopf-cocyclic k-module C•(B,M) associated with the pair
(B,M) is defined by Cn(B,M) = HomH-comod(B⊗n+1,M) on the graded module
level for any n > 0. This means that f : B⊗n+1 →M is in Cn(B,M) if and only if

(f(b0 ⊗ · · · ⊗ bn))(−1) ⊗ (f(b0 ⊗ · · · ⊗ bn))(0) = b0
(−1) · · · bn

(−1) ⊗ f(b0
(0) ⊗ · · · ⊗ bn

(0))

for any bi ∈ B for i = 0, . . . , n. We let

(∂0f)(b0 ⊗ · · · ⊗ bn+1) := f(b0b1 ⊗ b2 ⊗ · · · ⊗ bn+1),

(σ0f)(b0 ⊗ · · · ⊗ bn−1) := f(b0 ⊗ 1B ⊗ b1 ⊗ · · · ⊗ bn+1),

(τnf)(b0 ⊗ · · · ⊗ bn) := S(bn
(−1))f(bn

(0) ⊗ b1 ⊗ · · · ⊗ bn−1).

Then we define ∂j := τ−j
n+1∂0τ

j
n and σi := τ−j

n−1σ0τ
j
n for 0 6 j 6 n + 1 and 0 6 i 6 n.

Note that since M is stable, τn+1
n = id for any n > 0.
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Proposition 4.3. Let us define

βn((a0, b
0)⊗ · · · ⊗ (an, bn))(f) := a0 ⊗ b0

(−n)a1 ⊗ b0
(−n+1)b

1
(−n+1)a2 ⊗ · · · ⊗ b0

(−1) · · · bn−1
(−1)an

⊗ f(b0
(0) ⊗ · · · ⊗ bn−1

(0) ⊗ bn)

for any n > 0, (ai, b
i) ∈ AoB and f ∈ Cn(B, M). Then β• defines a morphism of

cyclic modules of the form

β• : Cyc•(AoB)→ diag Homk(C•(B, M), C•(A, M)).

Proof. We see that

βn(∂0((a0, b
0)⊗ · · · ⊗ (an, bn)))(f)

= a0b
0
(−n)(a1)⊗ b0

(−n+1)b
1
(−n+1)a2 ⊗ · · · ⊗ b0

(−1) · · · bn−1
(−1)an

⊗ f(b0
(0)b

1
(0) ⊗ b2

(0) ⊗ · · · ⊗ bn−1
(0) ⊗ bn)

= ∂0(a0 ⊗ b0
(−n)a1 ⊗ b0

(−n+1)b
1
(−n+1)a2 ⊗ · · · ⊗ b0

(−1) · · · bn−1
(−1)an)

⊗ (∂0f)(b0
(0) ⊗ · · · ⊗ bn−1

(0) ⊗ bn),

βn(σ0((a0, b
0)⊗ · · · ⊗ (an, bn)))(f)

= a0 ⊗ 1⊗ b0
(−n)a1 ⊗ b0

(−n+1)b
1
(−n+1)a2 ⊗ · · · ⊗ b0

(−1) · · · bn−1
(−1)an

⊗ f(b0
(0) ⊗ 1⊗ b1

(0) ⊗ · · · ⊗ bn−1
(0) ⊗ bn)

= σ0(a0 ⊗ b0
(−n)a1 ⊗ b0

(−n+1)b
1
(−n+1)a2 ⊗ · · · ⊗ b0

(−1) · · · bn−1
(−1)an)

⊗ (σ0f)(b0
(0) ⊗ · · · ⊗ bn−1

(0) ⊗ bn),

and finally we obtain

βn(τn((a0, b
0)⊗ · · · ⊗ (an, bn)))(f)

= an ⊗ bn
(−n)a0 ⊗ bn

(−n+1)b
0
(−n+1)a1 ⊗ · · · ⊗ bn

(−1)b
0
(−1) · · · bn−2

(−1)an−1

⊗ f(bn
(0) ⊗ b0

(0) ⊗ · · · ⊗ bn−2
(0) ⊗ bn−1)

= S−1(bn
(−2))an ⊗ a0 ⊗ b0

(−n+1)a1 ⊗ · · · ⊗ b0
(−1) · · · bn−2

(−1)an−1

⊗ S(bn
(−1))f(bn

(0) ⊗ b0
(0) ⊗ · · · ⊗ bn−2

(0) ⊗ bn−1),

where the last equality follows from the fact that C•(A, M) is a trivial H-module with
respect to the diagonal H-action. Then, using the fact that M is a SAYD module
and f ∈ HomH-comod(B⊗n+1,M), we get

βn(τn((a0, b
0)⊗ · · · ⊗ (an, bn)))(f)

= S−1(bn
(−1)(1))S

−1(bn
(0)(−1)b

0
(0)(−1) · · · bn−2

(0)(−1)b
n−1
(−1))b

n
(−1)(3)b

0
(−1) · · · bn−1

(−1)an

⊗ a0 ⊗ b0
(−n)a1 ⊗ · · · ⊗ b0

(−2) · · · bn−2
(−2)an−1 ⊗ S(bn

(−1)(2))f(bn
(0)(0)

⊗ b0
(0)(0) ⊗ · · · ⊗ bn−2

(0)(0) ⊗ bn−1
(0) )

= τn (βn((a0, b0)⊗ · · · ⊗ (an, bn))(τnf)) ,

as we wanted to show.
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Theorem 4.4. Assume M is a SAYD module over H. If A is an H-module algebra
and B is an H-comodule algebra, then there is a pairing of the form

^ : HCp
Hopf(A,M)⊗HCq

Hopf(B,M)→ HCp+q(AoB)

for any p, q > 0.

Proof. Assume we have two exact sequences

ν : 0←− k• ←− V 1
• ←− · · · ←− V p

• ←− C•(B, M)←− 0

ν′ : 0←− C•(A,M)←−W 1
• ←− · · · ←−W q

• ←− k∨• ←− 0

representing two cyclic classes ν ∈ HCp
Hopf(A,M) and ν′ ∈ HCq

Hopf(B, M). We con-
struct a new exact sequence diag Homk(ν, C•(A,M))

0←− diag Homk(C•(C,M), C•(A, M))←− diag Homk(V p
• , C•(A, M))←−

· · · diag Homk(V 1
• , C•(A,M))←− C•(A,M)←− 0

and then splice it with the exact sequence ν′ at C•(A,M) to get a class in the
cohomology module HCp+q(diag Homk(C•(B, M), C•(A,M))). Now we use the mor-
phism β• of cyclic modules we constructed in Proposition 4.3 to get a class in
HCp+q(AoB).

Definition 4.5. Given an H-module coalgebra C and an H-comodule coalgebra Z,
we define the crossed product coalgebra Z n C as follows: we let Z n C := Z ⊗ C on
the k-module level. The counit on Z n C is the tensor product of counits on C and
Z respectively. The comultiplication structure is defined by the formula

(z, c)(1) ⊗ (z, c)(2) := (z(1), z(2)[−1]c(1))⊗ (z(2)[0], c(2))

for any (c, z) ∈ Z n C. For coassociativity, one must have

(z, c)(1)(1) ⊗ (z, c)(1)(2) ⊗ (z, c)(2)
= (z(1), z(2)[−1]c(1))⊗ (z(2)[0], c(2))(1) ⊗ (z(2)[0], c(2))(2)
= (z(1), z(2)[−1]c(1))⊗ (z(2)[0](1), z(2)[0](2)[−1]c(2))⊗ (z(2)[0](2)[0], c(3)).

The compatibility conditions for comodule coalgebras give in equation (3.1) imply

z[−1] ⊗ z[0](1) ⊗ z[0](2)[−1] ⊗ z[0](2)[0] = z(1)[−1]z(2)[−1] ⊗ z(1)[0] ⊗ z(2)[−1] ⊗ z(2)[0].

This in turn yields

(z, c)(1)(1) ⊗ (z, c)(1)(2) ⊗ (z, c)(2)
= (z(1), z(2)[−1]z(3)[−1]c(1))⊗ (z(2)[0], z(3)[−1]c(2))⊗ (z(3)[0], c(3))
= (z, c)(1) ⊗ (z, c)(2)(1) ⊗ (z, c)(2)(2)

for any z ∈ Z and c ∈ C as we wanted to show.



PRODUCTS IN HOPF-CYCLIC COHOMOLOGY 129

Proposition 4.6. Assume M is an SAYD module. Let us define ξn by the formula

ξn((z0, c0)⊗ · · · ⊗ (zn, cn))(f)

:= S−1(z0
[−1] · · · zn

[−1])c
0 ⊗ S−1(z1

[−2] · · · zn
[−2])c

1 ⊗ · · · ⊗ S−1(zn
[−n−1])c

n

⊗ f(z0
[0] ⊗ · · · ⊗ zn

[0])

= S−1(z0
[−1] · · · zn−1

[−1] )c
0 ⊗ S−1(z1

[−2] · · · zn−1
[−2] )c

1 ⊗ · · · ⊗ S−1(zn−1
[−n])c

n−1 ⊗ cn

⊗ zn
[−1]f(z0

[0] ⊗ · · · ⊗ zn
[0])

for any n > 0, ci ∈ C, zi ∈ C and f ∈ Cn(Z, M). Then ξ• is a morphism of cocyclic
modules of the form

ξ• : Cyc•(Z n C)→ diag Homk(C•(Z, M), C•(C,M)).

Proof. We will prove that ξ• and the cyclic operators are compatible, but we will
leave the verification of the fact that ξ• is compatible with the face and degeneracy
maps to the reader. We also observe

ξn(τn((z0, c0)⊗ · · · ⊗ (zn, cn)))(f)

= ξn((z1, c1)⊗ · · · ⊗ (zn, cn)⊗ (z0, c0))(f)

= S−1(z1
[−1] · · · zn

[−1])c
1 ⊗ S−1(z2

[−2] · · · zn
[−2])c

2 ⊗ · · · ⊗ S−1(zn
[−n])c

n ⊗ c0

⊗ z0
[−1]f(z1

[0] ⊗ · · · ⊗ zn
[0] ⊗ z0

[0])

= S−1(z1
[−2] · · · zn

[−2])c
1 ⊗ S−1(z2

[−3] · · · zn
[−3])c

2 ⊗ · · · ⊗ S−1(zn
[−n−1])c

n

⊗ z0
[0][−4]z

1
[0][−1] · · · zn

[0][−1]z
0
[0][−1]S

−1(z0
[0][−2])S

−1(z0
[−1]z

1
[−1] · · · zn

[−1])c
0

⊗ z0
[0][−3]f(z1

[0][0] ⊗ · · · ⊗ zn
[0][0] ⊗ z0

[0][0])

= τn(ξn((z0, c0)⊗ · · · ⊗ (zn, cn))(τnf))

for any n > 0, zi ∈ Z, ci ∈ C and f ∈ Cn(Z, M).

Theorem 4.7. Fix an SAYD module M over H. For an H-module coalgebra C and
an H-comodule coalgebra Z one has a pairing of the form

HCp(Z n C)⊗HC∨,q
Hopf(Z,M)→ HCp+q

Hopf(C,M)

for any p, q > 0, where HC∨,∗
Hopf(Z, M) denotes the cyclic cohomology of the dual

(cocyclic) module of the cyclic k-module C•(Z,M).

Proof. Any class [ν] in HC∨,q
Hopf(Z,M) is represented by an exact sequence of the form

ν : 0←− k∨• ←− X1
• ←− · · · ←− Xq

• ←− C•(Z, M)←− 0. Now one can construct a new class
diag Homk(ν, C•(C, M)) in Extq

Λ(diag Homk(C•(Z, M), C•(C, M)), C•(C, M)) via

0←− diag Homk(C•(Z,M), C•(C, M))←− diag Homk(Xq
• , C•(C, M))←− · · ·

←− diag Homk(X1
• , C•(C, M))←− C•(C, M)←− 0.

By using ξ•, which we defined in Proposition 4.6, we obtain a class in

Extq
Λ(Cyc•(Z n C), C•(C, M)).

In other words, we have a morphism of graded modules of the form

HC∨,∗
Hopf(Z, M)→ Ext∗Λ(Cyc•(Z n C), C•(C,M)).
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Now, pairing with the cyclic cohomology of the crossed product coalgebra

HCp(Z n C) := Extp
Λ(k•, Cyc•(Z n C))

and using the Yoneda composition, we get the desired cup product.

5. Cup products in the derived category of mixed complexes

Recall that in the construction of various products, we heavily relied on the exact
bifunctor diag Homk( · , · ), which takes a pair of cocyclic and cyclic k-modules as
an input and which produces a cyclic k-module. Also, we explicitly used the derived
category of (co)cyclic k-modules or H-modules depending on whether we needed
the bivariant Hopf or the equivariant bivariant cyclic cohomology. An alternative
approach would be to develop a similar theory by using the derived category of
mixed complexes, or towers of super complexes. But, thanks to Quillen [22] we know
that the category of (special) towers of super complexes is homotopy equivalent to
the category of mixed complexes and the category of S-modules. So, it is enough to
develop similar cup products in the derived category of mixed complexes. To this end,
we need to mimic the construction of the exact bifunctor diag Homk( · , · ) within
the framework of mixed complexes.

One can view the category of mixed complexes as the category of differential graded
M-modules, whereM is the free graded symmetric algebra of the graded vector space
k, and where the single generator is assumed to have degree 1. We will suggestively
use B ∈M to denote this generator. Then the derived category of differential graded
M-modules is the homotopy category of mixed complexes [12].

Lemma 5.1 ([21, Proposition 1.5]). The functor B∗ : mod-Λ→M-dgmod, which
sends a cyclic module to its mixed complex, is an exact functor. Therefore it induces
natural morphisms of derived bifunctors

Ext∗Λ( · , · )→ Ext∗M( · , · ),
where ExtM stands for the derived functor of the Hom-bifunctor of the category of
differential graded M-modules.

A bi-differential graded k-module (X∗,∗; b1, b2) is called a mixed double complex if
there exists differentials B1 and B2 of degree 1 such that

[bi, bj ] = [bi, Bj ] = [Bi, Bj ] = 0 whenever i 6= j

and

biBi + Bibi = 0 for i = 1, 2.

For any mixed double complex (X∗,∗; b1, b2, B1, B2) we will use Tot∗(X∗,∗) to denote
the mixed complex over the total complex of the bi-differential graded module X∗,∗
with the degree 1 differential B = B1 + B2.

Lemma 5.2. Assume X• is an arbitrary cocyclic k-module and Y• is an arbitrary
cyclic k-module. Then in the derived category of mixed complexes there is an isomor-
phism of the form

η∗ : Tot∗Homk(B∗(X•),B∗(Y•))→ B∗(diag Homk(X•, Y•)).
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Proof. We know that Homk(X•, Y•) is a bi-cyclic k-module. If this bi-cyclic module
was a product of two cyclic modules, then we could have used [11]. Unless Xn is finite
dimensional for any n > 0, this is not the case. But, we can still use [7, Theorem 3.1]
with T = id to get the desired isomorphism η∗.

Lemma 5.3. Let M be an arbitrary H-module/comodule. Assume A is an H-module
algebra, B is an H-comodule algebra and C is a H-module coalgebra. Then there are
morphisms of mixed complexes of the form

Tot∗Homk(B∗(C•(C, M)),B∗(C•(A, M))) Tot∗Homk(B∗(C•(B, M)),B∗(C•(A, M)))

η∗
??y

??yη∗

B∗(diag Homk(C•(C, M), C•(A, M))) B∗(diag Homk(C•(B, M), C•(A, M)))

B∗(α•)
x??

x??B∗(β•)

B∗(Cyc•(A)) B∗(Cyc•(AoB)),

where on the second column, we also require M to be SAYD.

Proof. The upward arrows come from applying the functor B∗ to α• that we con-
structed in Propositions 2.4 and 2.7, and to β• which was constructed in Proposi-
tion 4.3. The downward arrows come from Lemma 5.2.

Theorem 5.4. One can define pairings analogous to the pairings we defined in The-
orems 2.8, 2.11 and 3.2 by using the derived category of mixed complexes instead of
the derived category of cyclic modules. However, these pairings defined in the derived
category of mixed complexes agree with those defined in the derived category of cyclic
modules.

Proof. The fact that η∗ is an isomorphism in the derived category of mixed complexes
allows us to use Tot∗Homk(B∗( · ),B∗( · )) as a replacement for diag Homk( · , · ) in
the category of mixed complexes. Then Lemma 5.1 gives us a comparison map between
these pairings, which are isomorphisms for the specific cases we enumerate.

Remark 5.5. One can prove a version of Lemma 5.2 for the case X• is a cyclic and
Y• is a cocyclic module, provided one reverses the roles of the Hochschild differential
b and the differential B for cocyclic modules. In other words, for a cocyclic module
Y•, we consider (B∗(Y•), B) as the differential graded M-module via the action of
the Hochschild differential. Then one can define pairings in the derived category of
mixed complexes analogous to the pairings we obtained in Theorems 3.5 and 4.7, if
one replaces dual cyclic cohomology functors with negative cyclic cohomology and
dual negative cyclic cohomology functors respectively.
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