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SPLITTINGS IN THE BURNSIDE RING AND IN SFG

CHRISTOPHER P. FRENCH

(communicated by Gunnar Carlsson)

Abstract
Let G be a finite p-group, p 6= 2. We construct a map from

the space JG, defined as the fiber of ψk − 1: BGO → BGSpin,
to the space (SFG)p, defined as the 1-component of the zeroth
space of the equivariant p-complete sphere spectrum. Our map
produces the same splitting of the G-connected cover of (SFG)p
as we have described in previous work, but it also induces a
natural splitting of the p-completions of the component groups
of fixed point subspaces.

1. Introduction

In his seminal J(X) papers ([1, 2, 3, 4]), Adams studied the group of fiber
homotopy equivalence classes of virtual real vector bundles over a space X, J(X).
Understanding J(X) is important for several reasons. For example, when X is a
projective space, J(X) gives information about cross-sections of Stiefel fiberings and
the vector fields on spheres question. When X is a sphere, J(X) gives information
about the image of the classical J-homomorphism, from the homotopy groups of
orthogonal groups to the stable homotopy groups of spheres.

Adams based his study on two auxiliary groups, J ′(X) and J ′′(X), together with
surjective maps

J ′′(X) → J(X) → J ′(X).

Thus, J ′(X) serves as a lower bound for J(X) and J ′′(X) serves as an upper bound.
These groups are in principal computable, and with Quillen’s proof of the so-called
Adams conjecture ([16]), Adams’ work implies that J ′′(X) is in fact equal to J ′(X).
Roughly speaking, Adams’ conjecture was that for an integer k, a finite CW-complex
X, and a virtual real vector bundle ξ, the underlying virtual spherical fibrations
of ψkξ and ξ are equivalent after inverting k. Here, the maps ψk are the Adams
operations. Having a collection of virtual vector bundles that become trivial in J(X)
(after inverting certain integers) is the key ingredient in defining the upper bound
J ′′(X).

A number of the results in Adams’ papers were cast in a new geometric light
by May in [12]. Instead of looking at groups and homomorphisms, like the homo-
morphism from the group of virtual vector bundles to the group of virtual spherical
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fibrations over a given space, May looked at the representing Hopf spaces for these
groups and the Hopf maps between them. May constructed a homotopy commuta-
tive diagram, which we call the Adams-May square:

BO
ψk−1 //

σk

²²

BSpin

ρk

²²
BO⊗

ψk/1 // BSpin⊗.

Here, BO is the classifying space for the group of virtual real vector bundles of
virtual dimension 0 under direct sum, while BO⊗ is the classifying space for the
group of virtual real vector bundles of virtual dimension 1 under tensor product.
Likewise, BSpin and BSpin⊗ are the analogous classifying spaces for virtual bun-
dles with Spin structure. The operations ψk − 1 and ψk/1 on vector bundles induce
the horizontal maps, while the Adams-Bott cannibalistic class induces the map ρk

on the right. The map σk is seemingly something new, defined using geometric con-
structions like maps of fiber sequences. As it turns out, we can restrict σk to BSO
and extend ρk to BSO, and the resulting maps are homotopic. At an odd prime, of
course, the spaces BO,BSO and BSpin all coincide.

If we localize at a prime, then Adams’ theorem that J ′(X) = J ′′(X) becomes a
corollary of showing that the Adams-May square is a pull-back in the homotopy
category, which May does. But May’s geometric arguments lead to something more.
Let Jp and J⊗p denote the p-localization of the fibers of the maps ψk − 1 and
ψk/1. Then the Adams-May square induces a weak equivalence from Jp to J⊗p.
Moreover, a closer look at the construction of the Adams-May square shows that
the map Jp → J⊗p can be made to factor through the p-localization of the space
SF of stable degree 1 self-maps of spheres. Thus, one obtains a splitting of the
space SFp. The homotopy groups of the factor Jp contain the image of the classical
J-homomorphism.

In the decade that followed the publication of Adams’ J(X)-papers, questions
about equivariant generalizations naturally arose; tom Dieck considered such ques-
tions in [21]. There he defines a number of variations of the natural equivariant
generalization JOG(X). First, two equivariant real bundles E and F are said to
be stably locally homotopy-equivalent if for each H 6 G, there is a G-representation
V and fiberwise G-maps f : S(E ⊕ V ) → S(F ⊕ V ) and g : S(F ⊕ V ) → S(E ⊕ V ),
each inducing a fiberwise homotopy equivalence on H-fixed points. This yields a
quotient of JOG(X), denoted JOloc

G (X), which is more amenable to computation.
Also, for a set of primes S, tom Dieck defines a quotient JOG,S(X) of KOG(X),
where two vector bundles E and F are said to be stably S-equivalent if there exist
stable maps f : S(E) → S(F ) and g : S(F ) → S(E) with fiber degrees prime to all
elements of S. For a p-group G, he shows [21, 11.4.2] that the quotient map from
JOloc

G (X)p to JOG,{p}(X)p is an isomorphism. In our work below and in [9], we
consider stable fibrations whose fibers are p-completions of equivariant sphere rep-
resentations, so when S = {p}, S-equivalences give rise to equivariant homotopy
equivalences.

Most importantly, tom Dieck proved [21, 11.4.1] that when G is a p-group, the
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kernel of the quotient map from KOG(X)p to JOloc
G (X)p is given by the image of

the self-map ψk − 1 on KOG(X)p, where k is a positive odd integer generating the
p-adic units. Also, tom Dieck proved [21, 11.5] that when G is a p-group and q
is a prime not equal to p, then the kernel of the J-homomorphism KOG(X)q →
JOloc

G (X)q is generated by elements of the form ψkξ − ξ, where k ranges over a
collection of integers. In Adams’ language, these statements amount to saying that
the computable upper bound of JOloc

G (X)p is sharp.
McClure [15] considered the case in which G is not a p-group. Here, there is

something of a surprise — there exist groups G for which the kernel of the J-
homomorphism contains more than just “Adams conjecture elements.” That is,
there are elements in KOG(X)p which cannot be written as linear combinations
of elements of the form ψkξ − ξ, but which nevertheless vanish in JOG(X)p. In
Adams’ language, the upper bound of JOG(X)p fails to be sharp (and therefore
certainly cannot be equal to the lower bound). McClure’s main theorem, however,
gives a reduction of the problem of showing two equivariant bundles are stably p-
equivalent to the p-group case. For a cyclic subgroup H of G whose order is prime
to p, let P (H) denote a p-Sylow subgroup of NH/H. Then two G-vector bundles
ξ and η are stably p-equivalent if for each such cyclic subgroup H, the fixed point
P (H)-bundles ξH and ηH are stably p-equivalent.

In [9], we considered the equivariant analogue of the Adams-May square, for the
sake of obtaining a splitting (at a prime) of an equivariant analogue of SFG, the
space of degree 1 self-maps of equivariant spheres, where G is a finite p-group, p 6= 2.
Indeed, in light of tom Dieck’s work discussed above, we had reason to hope that
the equivariant Adams-May square should be a pull-back square in the homotopy
category. The key step in proving this was to show that the equivariant analogues
of ρk and σk are again homotopic, the demonstration of which required entirely
different techniques from those used by May. We were only able to show that ρk

and σk are homotopic on G-connected covers. (The G-connected cover of a based
G-space X is a G-map i : X0 → X such that iH induces an equivalence on πn for all
n > 1 and all H 6 G, and XH

0 is connected for each H 6 G. Nonequivariantly, of
course, all the spaces under consideration are connected.) We used Atiyah and Tall’s
results on p-adic λ-rings ([5]) to show that ρk induces a weak equivalence on the
equivariant Adams summand of BGSpinp̂. From there, we completed the argument
using the same ideas as May used in the nonequivariant case. As a corollary, we
obtained an equivariant splitting of the p-completion of the G-connected cover of
SFG, where G is a p-group, p 6= 2. One of the factors in this splitting is given by a
map from JG to SFG.

Now, in [19], Segal used the theory of p-adic λ-rings to study the ring homo-
morphism h : A(G) → RQ(G) from the Burnside ring to the ring of rational repre-
sentations, induced by the permutation representation. He constructed a map from
RQ(G) to A(G) and showed that its composite with h can be described in terms
of an Adams-Bott cannibalistic class ρk, for a certain k. If H 6 G, then π0(SFHG )
and π0(JHG ) can be described as augmentation ideals in the Burnside ring and the
representation ring of H. Thus, one might hope that one could construct the maps

(JG)p̂ → (SFG)p̂ → (J⊗G)p̂
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which induce the splitting of the G-connected cover of (SFG)p̂ so that, on π0 of
fixed point subspaces, these maps yield the splitting studied by Segal. It is to this
question we turn in the present paper.

Let us recall in more detail part of the nonequivariant proof in [12] of the split-
ting of SFp. For a given positive integer k, we have the following diagram of fiber
sequences, where all spaces are implicitly localized away from k:

Jk //

αk

²²

BO
ψk−1 //

γk

²²

BSpin

SF //

εk

²²

SF/Spin //

f

²²

BSpin
Bj //

ρk

²²

BSF

Jk⊗ // BO⊗
ψk/1 // BSpin⊗.

The map Bj represents taking the underlying spherical fibration of a bundle. The
map γk is obtained from the Adams conjecture, which implies that, after invert-
ing k, the underlying spherical fibration of a bundle ψkξ − ξ is trivial. The maps
ρk and f are produced by means of the Atiyah-Bott-Shapiro orientation of Spin-
bundles. We denote f ◦ γk by σk. After completing at a prime p not dividing k,
we obtain the Adams-May square from the middle two columns of the above dia-
gram. As mentioned above, to prove that this is a pull-back square in the homotopy
category, one first shows that σk happens to be homotopic to ρk. This comes as a
surprise, since the map γk depends on a choice of null-homotopy for Bj ◦ (ψk − 1).
In this paper we show how to produce an “Adams-conjecture null-homotopy” in the
equivariant context (G a p-group, p 6= 2) so that the map on components of fixed
point subspaces induced by restriction of σk to Jk is equal to the map ρk described
algebraically by Segal in [19].

At one point, we had hoped to produce a splitting of (SFG)p̂ itself. This has
proved to be somewhat problematic, since we have been unable to show that the
map αk from JG to (SFG)p̂ extends to (JG)p̂. This is a subtle question — ordinarily,
one would assume that one could extend a G map f : X → Y p̂ to X p̂. However, we
do not have an equivariant theory of p-completions for spaces which are not even
G-connected — the spaces we have referred to as (JG)p̂ and (SFG)p̂ are obtained by
taking p-completions on the spectrum level, and then passing to zeroth spaces. In
order to get an actual splitting of (SFG)p̂, one would need a stable equivariant null-
homotopy of Bj ◦ (ψk − 1), and we do not know how to extend Quillen’s methods
in [16] to construct this.

In a separate paper [10], we have studied the Adams-May square for more general
groups G, though in that paper we again restrict to G-connected covers. There we
show that if G is any group and p is any prime such that none of the prime divisors
of G are congruent to 1 modulo p, then the equivariant Adams-May square becomes
a pull-back after passing to p-completions of G-connected covers. As a corollary, we
obtain a splitting of the p-completion of the G-connected cover of SFG.

Our paper is organized as follows. In Section 2, we review some facts about clas-
sifying spaces for equivariant bundles and fibrations, for which details can be found
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in [9] and [22]. We also describe Brauer lifting maps in our setting. In Section 3,
which is the heart of the geometric argument in the paper, we show how to construct
a map between the underlying spherical fibrations (with p-local fibers) of a bundle
ξ and ψkξ. While we rely on the techniques of [16] and [21], we pay close attention
to the degree of our maps over orbits, since this will be essential in understanding
the effect of αk on components of fixed point subspaces. In Section 4, we extend the
theory of classifying spaces, showing how to use the geometric maps constructed in
the previous section to construct a lift of ψk − 1 with the right behavior on orbits.
We use these constructions to prove our main theorem in Section 5. Our appendix
gives some technical information on equivariant completions.

2. Background on classifying spaces

2.1. Bundles
If G is a finite group and A is a compact Lie group, then a principal (G,A)-bundle

consists of a G-map p : P → B which is a principal A-bundle, such that the action
of each g ∈ G gives a map of A-bundles. If λ : H → A is a homomorphism, we let
Aλ denote A with the corresponding left H-action. Then there is a category CG(A),
whose objects are homomorphisms λ : H → A, H 6 G. A morphism in CG(A) from
λ : H → A to λ′ : H ′ → A is a commutative square

G×H Aλ
θ̄ //

²²

G×H′ Aλ′

²²
G/H

θ̃ // G/H ′

,

where θ̃ is a G-map and θ̄ is a G×A-map. Let O : CG(A) → GU be the functor
taking λ to G/H and taking (θ̄, θ̃) to θ̃. Then the G-space BGA := B(∗, CG(A),O)
classifies (G,A)-bundles over finite G-CW-complexes.

Definition 2.1. A G-group is a group A equipped with a distinguished homomor-
phism ρA : G→ A.

Note that ρA : G→ A endows CG(A) with a distinguished object, which deter-
mines a basepoint for BGA.

Remark 2.2. Suppose H 6 G. For each λ : H → A, define Aλ to be the set of all
elements a in A such that λ(h)a = aλ(h) for each h ∈ H. Then each a ∈ Aλ deter-
mines a self-map of λ in CG(A) covering the identity map on G/H. This induces
a map BAλ → BGA

H . Let R+(H,A) be a set of representatives for the conjugacy
classes of homomorphisms ρ : H → A. Then we have a homotopy equivalence

∐

ρ∈R+(H,A)

BAρ ' BGA
H .

Definition 2.3. If Q ⊆ B is a G-invariant subspace, and p : P → B is a bundle, we
let pQ : p−1(Q) → Q denote the restriction of p to Q.
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Definition 2.4. If B is a G-space with a G-fixed basepoint b, and A is a G-group,
then a based principal (G,A)-bundle over B is a principal (G,A)-bundle p : P → B
such that p{b} is G-equivalent to A with action ρA. If V is a G-representation, then
a based G-vector bundle over B with fiber V is a G-vector bundle p : E → B such
that p−1(b) is isomorphic to the G-representation V .

If A is a G-group, then a based G-map B → BGA represents a based principal
(G,A)-bundle. Note that an unbased G-map from a point b to BGA could represent
any homomorphism from G to A.

If V is an orthogonal A-representation with structure map α : A→ O(V ), then we
may also view V as a G-representation. A based principal (G,A)-bundle determines
a based G-vector bundle pV : PV = P ×A V → B, with fiber V . This process is
classified by the based map Bα∗ : BGA→ BGO(V ).

Definition 2.5. Suppose ξV is a based G-vector bundle over B with fiber V , and
Q is a G-orbit in B. Then if K 6 G and QK is nonempty, we define

dim(ξV , Q,K) = dim(ξVQ)K .

Note that dim is additive on G-vector bundles.

We next construct stabilization maps. On the geometric level, a stable G-vector
bundle is an equivalence class of based G-vector bundles. The equivalence relation
is generated as follows. If U is any G-representation, we let tU denote the trivial
G-vector bundle B × U → B. If ξV : P → B is a based G-vector bundle with fiber
V , then we identify ξV to its fiberwise sum with tU . We let ξ represent the stable
bundle corresponding to ξV . Isomorphism classes of stable G-vector bundles form
a group under the direct sum operation.

Suppose U is a complete G-universe; that is, U is a complex G-representa-
tion which contains an infinite number of copies of each irreducible complex G-
representation. Since G is finite, we could take U to be an infinite direct sum
of copies of the regular representation. Then, for each finite-dimensional orthog-
onal G-representation V ⊆ U , we have a classifying space BGO(V ). Note that the
G-action on V only determines the basepoint of BGO(V ). In general, we will let
ρV : G→ O(V ) denote the action map of V . If V ⊆W and U = W − V , andH 6 G,
then any homomorphism α : H → O(V ) gives rise to a homomorphism

H
α×ρU // O(V )×O(U)

⊕ // O(W ) .

In this way, we get a functor from CG(O(V )) to CG(O(W )) taking ρV to ρW , and
thus a based map from BGO(V ) to BGO(W ) classifying fiberwise sum with the
trivial bundle B × U → B. The colimit of these spaces, denoted BGO, classifies
stable G-vector bundles.

Definition 2.6. Suppose ξV : E → B is a based G-vector bundle with fiber V , and
Q ⊆ B is a G-orbit. Then if K 6 G, we define

dim(ξ,Q,K) = dim(ξV , Q,K)− dim(tV , Q,K).

Note that dim is a well-defined homomorphism from the group of isomorphism
classes of stable G-vector bundles to the integers.
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If A is a G-group, V an A-representation, and p : P → B a based principal (G,A)-
bundle, with associated bundle G-vector bundle pV , then we let p(V ) denote the
corresponding stable bundle. If V = V1 − V2 is a virtual A-representation, we define
p(V ) to be pV1 − pV2 .

2.2. Fibrations
An admissible set of fibers is a set F of based spaces {Fλ} with left actions of

subgroups Hλ 6 G. We assume that each Fλ has the homotopy type of a G-CW-
complex, and that the set {Fλ} is closed under subconjugation. Note that for each
space Fλ in F, there is a G-map pλ : G×Hλ

Fλ → G/Hλ with a distinguished section
sλ : G/Hλ → G×Hλ

Fλ.

Definition 2.7. We let GF(F) be the category whose objects are all sectioned G-
maps p : P → Q such that for some Fλ, there is a diagram of G-spaces

G×Hλ
Fλ

θ̄ //

pλ

²²

P

p

²²
G/Hλ

θ̃ // Q

in which θ̃ is a G-homeomorphism and θ̄ is a section-preserving fiberwise homotopy
equivalence. A morphism in GF(F) is just a section-preserving commutative square.

Then GF(F) is an equivariant category of fibers with distinguished set of fibers
F. Now, a GF(F)-space is a sectioned G-map ξ : P → B which restricts over each
G-orbit in B to an object in GF(F). A GF(F)-fibration is a GF(F)-space satisfy-
ing a version of the covering homotopy property. Such fibrations are classified by
introducing the following category.

Definition 2.8. Let A = A(F) be the full subcategory of GF(F) consisting only of
those objects of the form pλ. Let O : A → GU be the functor taking pλ to the orbit
G/Hλ. Let BG(F) be the G-space B(∗,A,O). A distinguished G-space Fρ endows
BG(F) with a distinguished basepoint.

The based G-space BG(F) is a classifying space for GF(F)-fibrations over finite
G-CW-complexes. The classifying map for a GF(F)-fibration ξ : E → B can be
obtained as follows. Let P(ξ) : A → U be the functor given by P(ξ)(pλ) =
GF(F)(pλ, ξ). Then there is a canonical diagram

B B(P(ξ),A,O)'oo // B(∗,A,O) = BG(F)

(see [22, 2.3.2]). Inverting the equivalence determines a classifying map for ξ.
We can sometimes identify the G-connected cover of BG(F) as the classifying

space of a G-monoid. Let Ã(Fρ) be the G-monoid of based nonequivariant self-
maps of Fρ which are nonequivariant equivalences (G acts through conjugation). If
πH0 (Ã(Fρ)) is a group for each H 6 G, then B(Ã(Fρ)) is a G-connected cover of
BG(F) (see [9, §3]). For example, if V is a G-representation large enough so that
[SV , SV ]H is isomorphic to the Burnside ring A(H) for each H 6 G, then as shown
in [9, §8], πH0 (Ã(SVp )) ∼= (A(H)p)× is a group for each H 6 G.
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If V is an orthogonal G-representation containing a trivial summand, then we
define sets of fibers SV(p) = {SVλ

(p)} and SVp = {SVλ
p } consisting of the p-localizations

and p-completions of the one point compactifications of orthogonal representations
with the same underlying real inner product space as V (in both cases, we only
consider representations containing a trivial summand). The given G-action on V
determines distinguished fibers in both cases, so that BG(SV(p)) and BG(SVp ) are
based G-spaces.

Fiberwise suspension determines a functor from the category of GF(SV(p))-fibra-
tions to that of GF(SW(p))-fibrations whenever V ⊆W are finite-dimensional orthog-
onal G-representations. Given a complete universe U , we call an object of the col-
imit category a GF(S(p))-fibration. On the classifying space level, the stabilization
functors are realized by based maps BG(SV(p)) → BG(SW(p)). The colimit, denoted
BG(S(p)), classifies GF(S(p))-fibrations over finite G-CW-complexes. There is an
analagous space BG(Sp) classifying stable GF(Sp)-fibrations over finite G-CW-
complexes ([9, §7]), though its definition as a colimit is made considerably more
complicated by the fact that suspension does not commute with completion.

Remark 2.9. Since the units in A(G)p̂ form a group, we were able to show in [9,
§8] that ΩBG(Sp) is equivalent to the homotopy units in Ω∞Sp, where Sp is the
p-complete equivariant sphere spectrum. This argument does not work for the units
in the p-localization of A(G), so that we cannot assert (and we do not believe) that
ΩBG(S(p)) is equivalent to the homotopy units in Ω∞S(p).

The classifying map of a particular GF(S(p))-fibration can be obtained either by
classifying a representative of its equivalence class and then passing to the colimit
of the classifying spaces, or inverting the equivalence below:

B colimVB(P(ξV ),A(SV(p)),O)'oo // BG(S(p)) .

2.3. Thom classes
Let E = KOp. Then E is commutative unital ring spectrum which comes equip-

ped with a collection of periodicity classes (Bott classes) bVλ in Ẽ0
Hλ

(SVλ) for all
Spin Hλ-representations Vλ of dimension divisible by 8. (See [9, §5] for details on
periodic ring spectra.)

Remark 2.10. If the order of Hλ is odd, then any homomorphism from Hλ to O(V )
clearly lifts uniquely to SO(V ), and also to Spin(V ), since any extension of Hλ

by Z/2 splits. Thus, there is no distinction between Spin Hλ-representations and
orthogonal Hλ-representations.

In this section, suppose V is a real G-representation of dimension divisible by 8.
If ξV is a GF(SVp )-fibration over a G-space B, let TξV be the Thom space of ξV ,
obtained by quotienting out the canonical section of ξV . Then for each x ∈ BH , the
Thom space TξVx is equivalent to SVλ , where Vλ is a real H-representation of dimen-
sion divisible by 8. Therefore, Ẽ0

H(TξVx ) is a free E0
H -module. An E-orientation of

a GF(SVp )-fibration ξV is an element µ ∈ Ẽ0
G(TξV ) which restricts to a generator

in Ẽ0
H(TξVx ), for each x ∈ BH .
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Now let FV E be the functor from A(SVp ) to U which takes the object G×H
SVλ
p to the subspace of FH(SVλ

p ,Ω∞E) consisting of those components representing
generators of Ẽ0

H(SVλ
p ). Then the space B(FV E,A(SVp ),O) is a classifying space for

E-oriented GF(SVp )-fibrations. A choice of G-map from SVp to Ω∞E representing
bV determines a basepoint. The natural map

qV : B(FV E,A(SVp ),O) → B(∗,A(SVp ),O)

represents forgetting an orientation.

Remark 2.11. If Vλ is a real H-representation of dimension divisible by 8, then
Ẽ0
H(SVλ

p ) and Ẽ0(SVp ) are isomorphic to RO(H)p and Zp respectively. Since a power
of IO(G) is contained in pIO(G) (see [5, III.1.1, V.1.3]), every element in RO(H)p
mapping to a unit in Zp is itself a unit. By [9, §3], this implies that we have a fiber
sequence

FV E(pλ∗)
j∗ // B(FV E,A(SVp ),O)

qV

// B(∗,A(SVp ),O) .

Here, λ∗ : 〈e〉 → G is the unique homomorphism, and G acts on FV E(pλ∗) by con-
jugation.

Remark 2.12. Suppose V is a real G-representation of dimension divisible by 8.
An H-equivariant map θ : SVp → SVp determines a morphism in A(SVp ), hence a 1-
simplex in B(∗,A(SVp )0,O)H . This 1-simplex starts and ends at the same point
and therefore determines an element θ̂ in π1(B(∗,A(SVp )0,O)H). The image of θ̂ in
π0(FV E(pλ∗)

H) is represented by bV ◦ θ.
By taking a colimit of classifying spaces for E-oriented GF(SVp )-fibrations, we

obtain a classifying space BG(Sp;E) for stable E-oriented GF(Sp)-fibrations (see [9,
§4,7].) There is a natural map q : BG(Sp;E) → BG(Sp) obtained by taking a colimit
of the maps qV above. The fiber of q is equivalent to the subspace (Ω∞E)× of Ω∞E
consisting of components representing units in E0 ([9, §4]). We then have a fiber
sequence

(Ω∞E)× → BG(Sp;E) → BG(Sp).

2.4. Brauer lifting
Suppose k is a prime different from p, and let Fkm denote the field of km elements.

Let F be the algebraic closure of Fk. Suppose VF is an F-inner product space. Then
if H acts by orthogonal transformations on VF through a map α : H → O(VF), we
call VF a representation of H over F. We let ROF(H) denote the ring of virtual
orthogonal representations of H over F. By Brauer lifting, there is a natural ring
homomorphism

λH : ROF(H) → RO(H)

(see [7, 6.1], [16], or [20]). If the order of H is prime to k, then λH restricts to an
isomorphism of semi-rings of actual representations ([7, 6.2] or [20, 15.5]).

Let Π(m, j) = O(m,Fkj ) 6 O(m,F), let W F
m,j be the canonical m-dimensional

Π(m, j)-representation over F, and let Wm,j = λΠ(m,j)(W F
m,j). Any orthogonal G-

representation over F can be realized over Fkj for j sufficiently large. It follows by the
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naturality of λ, and surjectivity of λG when |G| is prime to k, that for any orthogonal
G-representation V of dimension m, there is a map ρV : G→ Π(m, j) such that V is
isomorphic to ρ∗V (Wm,j). We use this isomorphism to identify the underlying vector
spaces of V and Wm,j . We may then view V as a Π(m, j)-representation, and we
regard Π(m, j) as a G-group.

We denote the action map Π(m, j) → O(V ) of the Π(m, j)-representation V as
bV ; the map bV then induces a based map βV : BG(Π(m, j)) → BG(O(V )), repre-
senting the operation of replacing a (G,Π(m, j))-bundle p : P → B by the associated
G-vector bundle pV : PV → B.

Suppose V1 ⊆ V2 ⊆ V3 ⊆ · · · is an increasing sequence of G-representations whose
union is a complete G-universe, and let mn = dimVn. Let Un = Vn+1 − Vn, so that
dimUn = mn+1 −mn. Then we may choose an increasing sequence jn and maps
ρUn

: G→ Π(mn+1 −mn, jn+1) so that Un ∼= ρ∗Un
(Wmn+1−mn

, jn+1). We may define
ρVn+1 inductively as the composite

G
ρVn×ρUn // Π(mn, jn)×Π(mn+1 −mn, jn+1)

⊕ // Π(mn+1, jn+1) ,

where ⊕ denotes block sum of matrices. Then by additivity and naturality of λ, it
follows by induction that ρ∗Vn

(Wmn,jn) ∼= Vn for each n. We will denote Π(mn, jn)
as Πn and Wmn,jn as Wn.

Given a homomorphism αn : H → Πn, we get a map αn+1 : H → Πn+1 defined
by

H
α×ρUn // Π(mn, jn)×Π(mn+1 −mn, jn+1)

⊕ // Π(mn+1, jn+1) = Πn+1 .

As in Section 2.1, this gives us based stabilization maps BGΠn → BGΠn+1. We let
BGO(F) denote the colimit of these maps. Now, for each n, we have the following
homotopy commutative diagram:

BG(Πn)

²²

βVn // BG(O(Vn))

²²
BG(Πn+1)

βVn+1 // BG(O(Vn+1)).

This yields a map β : BG(O(F)) → BG(O).
We recall that a p̂-cohomology isomorphism is a map inducing an isomorphism

on cohomology with coefficients in any p-complete abelian group; see [13].

Proposition 2.13. For each H 6 G, the map βH : BG(O(F))H → BG(O)H induces
an isomorphism on π0 and a p̂-cohomology isomorphism on each component.

Proof. Suppose αn : H → O(mn,F) is the action map of an H-representation V αn
n

over F. Then since H is finite, αn factors through Π(mn, j) for some j. The represen-
tation V αn

n is in the same stable class as V αn′
n′ for some n′ > n where jn′ > j. There-

fore, each stable representation over F can be represented by a map αn : H → Πn

for some n sufficiently large. It follows by Remark 2.2 that π0(BG(O(F))H) is iso-
morphic to the set of stable representations of H over F, and by a similar argument
π0(BG(O)H) is isomorphic to the set of stable representations of H. It follows from
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the definitions that βH induces λH on π0. Therefore, βH induces an isomorphism
on π0 for each H 6 G.

Furthermore, using Remark 2.2, we see that the component of BG(O(F))H cor-
responding to the sequence αn : H → Πn can be represented as a colimit of spaces
B(Π(mn, jn)αn), where Π(mn, jn)αn denotes the set of elements in O(mn,F) which
commute with the image of αn. This colimit is equivalent to the corresponding col-
imit of the spaces B(O(mn,F)αn). Elements in O(mn,F)αn represent equivariant
endomorphisms of the orthogonal H-representation αn over F. By a similar argu-
ment the corresponding component of BG(O)H can be represented by the colimit
of spaces B(O(Vn)λ(αn)), where λ(αn) = bVn

◦ αn.
Just as irreducible orthogonal representations over C come in three types, irre-

ducible orthogonal representations of G over F come in three analogous types. Fol-
lowing [7], we let S0 consist of those irreducible G-representations over F which are
not isomorphic to their dual, we let S+ consist of those which admit nondegenerate
symmetric bilinear forms, and we let S− consist of those admitting nondegenerate
alternating bilinear forms. By Lemma 3.3 in [7], and since F is algebraically closed,
any orthogonal representation (such as αn) breaks up as an orthogonal direct sum of
three types of irreducible orthogonal representations over F. The first type consists
of irreducible G-representations in S+. The second and third types consist of repre-
sentations of the form V ⊕ V ∗, with V ∈ S0 or V ∈ S−, where V ⊕ V ∗ is endowed
with the symmetric form

〈(v ⊕ f), (w ⊕ g)〉 = g(v) + f(w).

It follows that each component of BGO(F)H splits into a product of the form
(×S+BO(F)

)× (×S0BGL(F))× (×S−BSp(F)
)

with one factor of BO(F), BGL(F), and BSp(F) for each irreducible orthogonal
G-representation of each type. (For more details, see, for example, the proof of
Proposition 3.4 in [7].) The corresponding component of BGOH likewise splits into
a product (×S+BO

)× (×S0BGL)× (×S−BSp
)
.

Finally, it follows from [16] and [8, III,§7] (see also [7, §6]) that the maps
BO(F) → BO, BGL(F) → BGL and BSp(F) → BSp induce p̂-cohomology isomor-
phisms.

3. A map of spherical fibrations

Suppose p : P → B is a (G,A)-bundle, and W is a virtual A-representation.
Let S(p(W )) be the underlying stable spherical fibration of p(W ). Let S(p(W ))(p)
denote the fiberwise smash product of S(p(W )) with a p-local circle. Our goal in
this section is to show that for any virtual A-representation V , there is a map from
the trivial GF(S(p))-fibration to S(p(ψkV − V ))(p) having certain specified degrees
on fixed points (see Theorem 3.5).

Let RO(A) and R(A) denote the real and complex representation rings of A
respectively, and let c : RO(A) → R(A) and r : R(A) → RO(A) be the complexifi-
cation and “realification” homomorphisms.
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Lemma 3.1. Suppose A has odd order. Then the map r : R(A) → RO(A) has cok-
ernel Z/2, generated by the one-dimensional trivial representation. In particular,
if V is an orthogonal A-representation, then the numbers dimR V K have the same
parity for all K 6 A.

Proof. By Proposition V.1.3 of [5], any nontrivial real irreducible representation
of A is in the image of r. Clearly, twice the trivial representation is in the image
of r. The last statement follows since either V or V − 1 is the underlying real
representation of a complex representation.

Given an A-equivariant map of p-local spheres f : X → Y , let df (K) denote the
degree of fK : XK → Y K for each K 6 A such that XK and Y K have the same
dimension.

Lemma 3.2. Let p and k be distinct odd prime numbers. Suppose that V is an
even-dimensional virtual orthogonal representation of a p-group Ap. Then there is

a (stable) Ap-equivariant map f ′V : S0
(p) → Sψ

kV−V
(p) such that df ′V (K) =

√
k

dimV K

for all K 6 Ap.

Proof. Of course, the claim means that there is an Ap-representation U such that
U + ψkV − V is an actual Ap-representation, and there is an Ap-equivariant map
SU(p) → SU+ψkV−V

(p) having the claimed degrees. Observe that these degrees are p-
local integers by Lemma 3.1. Also, note that (ψkV )H and V H have the same dimen-
sion, so the degrees are defined for all K 6 Ap.

By Lemma 3.1 and Brauer Induction (cf. [16, 2.4]), V is the underlying real repre-
sentation of an integral linear combination of representations induced from complex
one-dimensional representations of subgroups of Ap. So, it suffices to consider such
induced representations.

If W is a complex one-dimensional H-representation, H 6 Ap, then there is a
(nonlinear) H-equivariant map of W → ψkW given by z → zk, inducing an H-
equivariant map SW(p) → Sψ

kW
(p) . This map has nonequivariant degree k, and has

degree 1 onH ′-fixed points for any subgroupH ′ 6 H acting nontrivially onW . Since
k and p are relatively prime, this map is an H-equivalence, and also ψkindAp

H W =
indAp

H ψkW . So, there is a (nonlinear) map indAp

H W → ψkindAp

H W whose degree on
K-fixed points is equal to kn, where n is the dimension of (indAp

H W )K .

The following transfer argument will certainly be familiar to the expert.

Lemma 3.3. Let Ap be a Sylow p-subgroup of a finite group A, and suppose that
f ′ : X → Y is an Ap-equivariant map between A-equivariant spheres of the same
dimension. Then there is a stable A-equivariant map f : X → Y such that df (K) =
|(A/Ap)K |df ′(K) for all K 6 Ap.

Proof. Let U = C[A/Ap]. We will represent f as a map SU ∧X → SU ∧ Y . Let e =
π1, π2, · · · , πn be coset representatives of A/Ap, and let ei = πiAp be the associated
basis of U . If u ∈ U , let ui be defined by the formula u =

∑n
i=1 uiei.

Let φ be a homeomorphism from C to the open disk of radius 1/2 centered at
the origin. Let i : U → U be given by i(

∑
uiei) = e1 +

∑n
i=1 φ(ui)ei. Then i is an
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Ap-equivariant embedding of U in itself, since ge1 = e1 for any g ∈ Ap. This gives
rise to an A-equivariant embedding

A×Ap
(U ×X) → U ×X

and by the Pontryagin-Thom construction, we obtain an A-equivariant map

SU ∧X → A+ ∧Ap (SU ∧X).

Now any Ap-equivariant map f ′ : X → Y induces an A-equivariant map

A+ ∧Ap (SU ∧X) → SU ∧ Y
and hence an A-equivariant map f : SU ∧X → SU ∧ Y .

For each i = 1, 2, · · · , n, let Ki = π−1
i Kπi. The K-fixed points of

A+ ∧Ap (SU ∧X)

are isomorphic to ∨

{i|Ki6Ap}
(SU ∧X)Ki .

The number of wedge summands in this wedge product is equal to |(A/Ap)K |. It
follows that the degree of f on K fixed points is equal to |(A/Ap)K |df ′(K).

Corollary 3.4. Suppose that A is a finite group, and let k be a prime different
from p. Suppose V is a virtual orthogonal A-representation. Then there is a stable

A-equivariant map fV : S0
(p) → Sψ

kV−V
(p) such that dfV (K) =

√
k

dimV K

for all p-
subgroups K 6 A.

Proof. As above, the corollary means that there is an A-representation U such that
U + ψkV − V is an actual A-representation, and that there is an A-equivariant
map fV : SU(p) → SU+ψkV−V

(p) with the claimed degrees. By Lemma 3.2, there is an
Ap-equivariant map f ′V having the correct degrees.

We view A/Ap as an Ap-set, hence as an element in the Burnside ring of Ap. Let
W be an A-representation large enough that [SW , SW ]Ap is isomorphic to the Burn-
side ring of Ap. Then there is an Ap-equivariant map α : SW → SW with deg(αK) =
|(A/Ap)K | for all K 6 Ap. As a K-set, A/Ap breaks up into orbits, and all non-
trivial orbits must have order divisible by p. Since the order A/Ap is not divisible
by p, |(A/Ap)K | is prime to p. Now, ΣWSU(p) is p-local, so that α ∧ 1: SW ∧ SU(p) →
SW ∧ SU(p) is an equivariant homotopy equivalence. We let β : ΣWSU(p) → ΣWSU(p)
denote the inverse of α ∧ 1, so that dβ(K) · |(A/Ap)K | = 1 for all K 6 Ap.

Now, apply Lemma 3.3 to the Ap-equivariant map ΣW f ′V ◦ β to get an A-
equivariant map fV : ΣWSU(p) → ΣWSU+ψkV−V

(p) such that for each K 6 Ap,

dfV
(K) = |(A/Ap)K |dβ(K)df ′V (K) = df ′V (K).

This suffices since the degree of an A-equivariant map on K fixed points only
depends on the conjugacy class of K and all p-groups are subconjugate to Ap.
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Theorem 3.5. Suppose A is a finite G-group, p : P → B is a based principal (G,A)-
bundle, and V is a virtual orthogonal A-representation. Then there is a stable G-map
from the trivial GF(S(p))-fibration to S(p(ψkV − V )) whose restriction to any orbit
Q ⊆ B has degree function

d(K) =
√
k

dim(p(V ),Q,K)
.

This degree function is defined on all K such that QK is nonempty.

Proof. Let U be an A-representation such that U + ψkV − V is an actual A-repre-
sentation. We will construct a (stable) map of GF(S(p))-fibrations from S(p(U))
to S(p(U + ψkV − V )). First, we represent p(U) and p(U + ψkV − V ) by actual
G-vector bundles, both having the same fiber 2U + ψkV − V , namely

pU + tU+ψkV−V and pU+ψkV−V + tU .

By Corollary 3.4, there is a map

S(pU ) → S(pU+ψkV−V ).

Now, if Q ∼= G/H is an orbit in B, then p−1(Q) can be identified with G×H Aα,
where H acts on Aα by a homomorphism α : H → A. Then the restriction of S(pU )
to Q can be identified with G×H S

α∗(U)
(p) . If QK is nonempty for some K 6 G, then

K is conjugate to some K ′ 6 H, and by Corollary 3.4, the degree of our map on

the K-fixed points of this G-space is
√
k

dim(α∗(V )K′ )
. But α∗(V )K

′
has the same

dimension as (pVQ)K .
Also by Corollary 3.4, the map

fV : SU(p) → SU+ψkV−V
(p)

is invertible, so that we get a map

S(tU+ψkV−V ) → S(tU ).

If Q is an orbit in B, then the preimages of Q in S(tU ) and S(tU+ψkV−V ) are
just Q× SU(p) and Q× SU+ψkV−V

(p) . So, if K 6 G is conjugate to some K ′ 6 H, then
the restriction of our map to the K-fixed points of the preimage of Q has degree
(
√
k)− dimV K

. But V K has the same dimension as (tVQ)K . Therefore, adding these
two maps (by fiberwise smash product) gives a map with the claimed degrees.

4. Constructing homotopies from geometric data

4.1. Classifying maps
In what follows, we produce a contractible parameter space of classifying maps

for any given (G,Spin)-bundle or GF(S(p))-fibration, and, given a map of (G,Spin)-
bundles or GF(S(p))-fibrations, we produce a contractible parameter space of homo-
topies between the classifying maps of the source and target. We use these con-
structions to show how to pass from geometric data, concerning maps of GF(S(p)))-
fibrations, to homotopical data, concerning the classifying homotopies of these maps.
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In particular, we wish to show that if two maps of GF(S(p))) fibrations restrict to
equivalent maps on orbits, then their classifying homotopies restrict to equivalent
homotopies on orbits.

Remark 4.1. Suppose that ε : C → B is an acyclic fibration (i.e. a homotopy equiv-
alence and a fibration). Then the map

ε∗ : MapG(B,C) → MapG(B,B)

is an acyclic fibration. Therefore, ε−1
∗ (idB) is contractible. That is, the space of all

equivariant sections of ε is contractible.

Remark 4.2. Now suppose given a commutative diagram

C1
ε1 //

f

²²

B1

g

²²
C2

ε2 // B2

,

where ε1 and ε2 are acyclic fibrations. Then

(ε2)∗ : MapG(B1, C2) → MapG(B1, B2)

is an acyclic fibration. Therefore (ε2)−1
∗ (g) is contractible. That is, the space of all

G-maps h from B1 to C2 satisfying ε2 ◦ h = g is contractible. Note that if η1 is a
section of ε1 and η2 is a section of ε2, then ε2 ◦ (f ◦ η1) = g and ε2 ◦ (η2 ◦ g) = g,
so there is a homotopy H from f ◦ η1 to η2 ◦ g such that ε2 ◦H is constant at g.

Now, suppose given a (G,Spin)-bundle ξ over a finite G-CW-complex B. Recall
that ξ is represented by a sequence ξVi of (G,Spin(Vi))-bundles. Let C(ξ) denote
the homotopy pullback of the diagram

B colimiB(P(ξVi), CG(Spin(Vi)),O)oo // BG(Spin) .

Then we have maps εξ : C(ξ) → B and πξ : C(ξ) → BG(Spin). Note that εξ is an
acyclic fibration and εξ × πξ is a fibration.

Similarly, if ξ is a GF(S(p))-fibration over B, represented by the sequence ξVi of
GF(SVi

(p))-fibrations, then let C ′(ξ) denote the homotopy pullback of

B colimiB(P(ξVi),A(SVi

(p)),O)oo // BG(S(p)) .

Then again we have maps ε′ξ : C
′(ξ) → B and π′ξ : C ′(ξ) → BG(S(p)), with ε′ξ an

acyclic fibration and ε′ξ × π′ξ is a fibration.

Definition 4.3. If ξ is a (G,Spin)-bundle, then a choice of section ηξ of εξ deter-
mines a classifying map χ(ξ, ηξ) = πξ ◦ ηξ for ξ. Likewise, if ξ is aGF(S(p))-fibration,
then a choice of section η′ξ of ε′ξ determines a classifying map χ(ξ, η′ξ) = π′ξ ◦ η′ξ. In
either case, the space of all such sections is contractible by Remark 4.1, so we have a
contractible parameter space of classifying maps for ξ. When ηξ or η′ξ is understood,
we denote our classifying map by χ(ξ).
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Let Bj : BG(Spin) → BG(S(p)) denote the canonical map induced by the inclu-
sion of CG(Spin(Vi)) in A(SVi

(p)). Thus, Bj represents replacing a stable (G,Spin)-
bundle ξ by its underlying stable GF(S(p))-fibration S(ξ). We have a commutative
diagram

B C(ξ)
εξoo πξ //

Bjξ

²²

BG(Spin)

Bj

²²
B C ′(S(ξ))

ε′S(ξ)oo
π′S(ξ) // BG(S(p)).

Given a section ηξ of εξ, then ηS(ξ) := Bjξ ◦ ηξ is a section for ε′S(ξ), so that
χ(S(ξ), ηS(ξ)) = Bj ◦ χ(ξ, ηξ).

Also, let kp : BG(S(p)) → BG(Sp) be the fiberwise completion map constructed
in [9, §7], and let Bjp = kp ◦Bj : BGSpin→ BG(Sp).

A map φ : ξ1 → ξ2 of (G,Spin)-bundles, covering φ̄ : B1 → B2, induces a map
C(φ) : C(ξ1) → C(ξ2) in the diagram

B1

φ̄

²²

C(ξ1)

C(φ)

²²

ε1oo

B2 C(ξ2).
ε2oo

If η1 and η2 are sections of ε1 and ε2, then by Remark 4.2, C(φ) ◦ η1 and η2 ◦ φ̄ are
both points in a contractible parameter space of maps from B1 to C(ξ2). We may
therefore choose a homotopy between them, with any two choices of homotopy being
equivalent. We let Hφ denote such a homotopy. Of course, an analogous statement
holds for GF(S(p))-fibrations.

Definition 4.4. Define the homotopy χ(φ) from χ(ξ1) to χ(ξ2) ◦ φ̄ to be πξ2 ◦Hφ.

Remark 4.5. If φ : ξ1 → ξ2 and φ′ : ξ1 → ξ2 are two maps of GF(S(p))-fibrations, and
η1 : X → C(ξ1) and η2 : X → C(ξ2) are sections, then it follows from Remark 4.2
that C(φ) ◦ η1 and C(φ′) ◦ η1 are homotopic. Applying πξ2 to a choice of homotopy
would give rise to a path from χ(ξ1) to itself, i.e. a loop in MapG(X,BG(S(p)))
based at χ(ξ1). This loop may or may not be null-homotopic. If, on the other hand,
there is a homotopy H from φ to φ′, then we have a homotopy C(H) from C(φ) to
C(φ′) such that πξ2 ◦ C(φ) is constant. Thus, a homotopy from φ to φ′ determines
an equivalence between χ(φ) and χ(φ′).

Remark 4.6. The trivial GF(S(p))-fibration S(t) over G/H canonically determines
a 0-simplex in

colimiB(P(tVi),A(SVi

(p)),O)H ,

and hence a section ηt : G/H → C(t). A self-map ζ : S(t) → S(t) determines a 1-sim-
plex in the above colimit, which in turn determines a homotopy ζ̂ : G/H × I → C(t)
from ηt to C(ζ) ◦ ηt such that εt ◦ ζ̂ is constant. Therefore, by Definition 4.4, χ(ζ) =
πt ◦ ζ̂. Note that χ(ζ) may be thought of as an element in π1(BG(S(p))H). Since
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this is abelian, all fundamental groups for all choices of basepoint are canonically
isomorphic.

Lemma 4.7. Given maps φ1 : ξ1 → ξ2 and φ2 : ξ2 → ξ3, covering φ̄1 : B1 → B2 and
φ̄2 : B2 → B3, the homotopy χ(φ2 ◦ φ1) is equivalent to χ(φ1) · (χ(φ2) ◦ φ̄1). This
holds for GF(S(p))-fibrations or (G,Spin)-bundles.

Proof. This follows immediately from the contractibility of our parameter space of
maps from B1 to C(ξ3) and the fact that πξ3 ◦ C(φ2) = πξ2 .

Corollary 4.8. Suppose given maps φ, φ′ : ξ1 → ξ2 of GF(S(p))-fibrations or
(G,Spin)-bundles, covering the same inclusion φ̄ : B1 → B2. Suppose that for each
orbit inclusion j̄1 : Q→ B1, the restrictions of φ and φ′ to Q are homotopic. Then
the homotopies χ(φ) and χ(φ′) are 0-equivalent.

Proof. Let j̄2 = φ̄ ◦ j̄1. We then have a commutative diagram

ξ1 |Q
j1 //

φ|Q

²²

ξ1

φ

²²
ξ2 |Q

j2 // ξ2.

Here j1 and j2 are the maps induced by the inclusions j̄1 and j̄2. We have the same
commutative diagram with φ |Q and φ replaced by φ′ |Q and φ′. Now, it follows
from Lemma 4.7, that

χ(j1) · (χ(φ) ◦ j̄1) ' χ(φ |Q) · (χ(j2) ◦ idQ),

and

χ(j1) · (χ(φ′) ◦ j̄1) ' χ(φ′ |Q) · (χ(j2) ◦ idQ).

But by Remark 4.5, a homotopy between φ |Q and φ′ |Q induces an equivalence
between χ(φ |Q) and χ(φ′ |Q), and therefore an equivalence between χ(φ) ◦ j̄1 and
χ(φ′) ◦ j̄1.

4.2. The main construction
Now suppose that B = ∪Bn, where each Bn is a finite G-CW-complex, and the

inclusions īn : Bn → Bn+1 are cofibrations. Suppose given (G,Spin)-bundles ξn over
eachBn such that ξn+1 |Bn+1

∼= ξn. Let tn denote the trivial (G,Spin)-bundle onBn,
and let itn : tn → tn+1 denote the map induced by īn. We next show how to choose
sections yielding compatible classifying maps for the ξn, and hence a classifying map
g : B → BGSpin . We also show how to choose sections so that χ(tn) can be taken
to be trivial and χ(itn) can be taken to be the constant homotopy. We use this to
construct and study a null-homotopy of Bjp ◦ g.

Remark 4.9. Suppose we choose isomorphisms iξn : ξn → ξn+1. Then, in the diagram
below, the left vertical map is a cofibration and the right vertical map is an acyclic
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fibration:

Bn

īn

²²

C(iξn)◦ηξn // C(ξn+1)

εξn+1

²²
Bn+1 Bn+1.

By choosing lifts, we obtain sections ηξn+1 : Bn+1 → C(ξn+1) so that ηξn+1 ◦ īn =
C(iξn) ◦ ηξn

. Therefore, χ(ξn+1) ◦ īn = χ(ξn), and we may take χ(iξn) to be constant.
Then we get a map g : B → BG(Spin) so that g |Bn

= χ(ξn).

Lemma 4.10. There exist sections ηtn : Bn → C(tn) for each n such that

ηtn+1 ◦ īn = C(itn) ◦ ηtn
and χ(tn, ηtn) is the trivial map for each n. In particular, the homotopy χ(itn) may
be taken to be constant.

Proof. Let 〈e〉 denote the trivial group. Note that the category CG(〈e〉) is isomorphic
to the orbit category OG. Moreover, the composite

CG(〈e〉) Â Ä // CG(Spin(Vi))
P(tVi ) // U

may be identified with the functor Bn : OG → U takingG/H to BHn . Now let Ct(Bn)
be the homotopy limit of the diagram

Bn B(Bn,OG,O)oo // B(∗,OG,O) .

Let πn : Ct(Bn) → B(∗,OG,O) and εn : Ct(Bn) → Bn be the induced maps. Since
B(∗,OG,O) is contractible, πn × εn : Ct(Bn) → B(∗,OG,O)×Bn is an acyclic
fibration for each n. Now, by choosing lifts in the diagram below, we can induc-
tively define sections ηtn : Bn → Ct(Bn) such that πn ◦ ηtn is trivial and Ct(in) ◦ ηtn =
ηtn+1 ◦ īn:

Bn

īn

²²

Ct (̄in)◦ηt
n // Ct(Bn+1)

πn×εn

²²
Bn+1

//

ηt
n+1

77

B(∗,OG,O)×Bn.

Finally, let ηtn be the composite of ηtn with the natural inclusion Ct(Bn) → C(tn).

Definition 4.11. If X and Y are G-spaces, then two homotopies F1, F2 are equiv-
alent (F1 ∼ F2) if the corresponding paths in MapG(X,Y ) are path homotopic.
Two homotopies F1, F2 are 0-equivalent (F1 ∼0 F2) if for each orbit Q ⊆ X, the
restrictions of F1 and F2 to Q are equivalent.

Theorem 4.12. Suppose given maps hn : S(tn) → S(ξn) for each n such that hn+1

◦ S(itn) and S(iξn) ◦ hn restrict to homotopic maps on all orbits Q ⊆ Bn. Then there
is a null-homotopy χ(h) of Bjp ◦ g whose restriction to Bn is 0-equivalent to kp ◦
χ(hn) for each n. In particular, there is a lift g̃ of g to Fib(Bjp).
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Proof. Since χ(ξn) = g |Bn
and χ(tn) is trivial, it follows that χ(S(ξn)) = Bj ◦ g |Bn

and χ(S(tn)) is trivial. By Lemma 4.7 and Corollary 4.8,

χ(hn) · χ(S(iξn)) ∼ χ(S(iξn) ◦ hn) ∼0 χ(hn+1 ◦ S(itn)) ∼ χ(S(itn)) · (χ(hn+1) ◦ īn).
By Remark 4.9 and Lemma 4.10, χ(S(itn)) = Bj(χ(itn)) and χ(S(iξn)) = Bj(χ(iξn))
are constant, so

χ(hn+1) ◦ īn ∼0 χ(hn)

for each n. The result will follow from Theorem 4.15, which can be found in the
next subsection.

Given the hypotheses of Theorem 4.12, we have a diagram

Fib(g) //

α

²²

B
g //

g̃

²²

BGSpin

ΩBG(Sp) // Fib(Bjp) // BGSpin
Bjp // BG(Sp).

We need to understand the effect of α on components of Fib(g)H forH 6 G. Since
π1(BGSpinH) is trivial for all H 6 G, π0(Fib(g)H) is equal to the kernel of π0(gH).
Therefore, an element x ∈ π0(Fib(g)H) is determined by an orbit x̂ : G/H → Bn
for some n such that ξn |G/H ∼= tn |G/H . If δ : ξn |G/H → tn |G/H is any such iso-
morphism, then S(δ) ◦ hn |G/H is a self-map of the trivial GF(S(p))-fibration over
G/H, which is equivalent to an H-equivariant stable self-equivalence of S0

(p). By
Remark 4.6, such a map determines an element β(x) in π0(ΩBG(S(p))H).

Lemma 4.13. The completion map kp : ΩBG(S(p)) → ΩBG(Sp) takes β(x) to α(x).

Proof. First, kp ◦ χ(hn) |G/H is a null-homotopy of Bjp ◦ g ◦ x̂ which by Theo-
rem 4.12 is equivalent to χ(h) ◦ x̂. Now, let jξn : ξn |G/H → ξn and jtn : tn |G/H → tn

be the maps induced by the inclusion x̂ : G/H → Bn. Then, χ(jξn)
−1 · χ(δ) · χ(jtn)

is a null-homotopy of χ(ξn) ◦ x̂ = g ◦ x̂. Since any two null-homotopies of g ◦ x̂ are
equivalent, it follows that α(x) is given by

(kp ◦ χ(hn) |G/H) · (Bjp ◦ (χ(jξn)
−1 · χ(δ) · χ(jtn)))

= kp ◦ (χ(hn) |G/H · χ(S(jξn))
−1 · χ(S(δ)) · χ(S(jtn))).

Now,

χ(hn) |G/H · χ(S(jξn))
−1 · χ(S(δ)) · χ(S(jtn))

∼ χ(S(jtn))
−1 · χ(S(jtn)) · χ(hn) |G/H · χ(S(jξn))

−1 · χ(S(δ)) · χ(S(jtn)).

By Lemma 4.7, this is equivalent to

χ(S(jtn))
−1 · χ(hn |G/H) · χ(S(δ)) · χ(S(jtn))

' χ(S(jtn))
−1 · χ(S(δ) ◦ hn |G/H) · χ(S(jtn)).

By definition, this is β(x).
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4.3. Replacing homotopies
To complete the proof of Theorem 4.12, we need to show that given a G-map

f : B → BG(Sp), together with null-homotopies Hn of fn = f |Bn
such that for

each n, Hn+1 ◦ īn ∼0 Hn, we can construct a null-homotopy H of f such that
H |Bn

∼0 Hn for each n. As shorthand, we let Z = BG(Sp). Then Z is an equiv-
ariant commutative Hopf space, or Hopf G-space, and π0(ZH) is a group for each
H 6 G. This implies, in particular, that Z has a homotopy inverse map, so that
[A,Z]G is a group for each G-space A. Also, πn(ZH) is finite for all n > 2 and all
H 6 G.

If H : B → ZI is a homotopy from f to g, let (−H) : B → ZI be the homotopy
from g to f given by (−H)(x)(t) = H(x)(1− t). If H1 : B → ZI and H2 : B → ZI

are homotopies from f to g and g to h respectively, then we let (H1 ·H2) denote
the usual homotopy from f to h. Given a homotopy H : B → ZI from f : B → Z to
g : B → Z and an arbitrary map E : B → ΩZ, let (H + E) : B → ZI be given by

(H + E)(x)(t) = µZ(H(x)(t), E(x)(t)).

Note that (H + E) is a homotopy from f to g since the unit in Z is strict. Let
(H − E) = (H + (−E)).

Lemma 4.14. The homotopies below are all equivalent:

((H1 ·H2) + E), ((H1 + E) ·H2) and (H1 · (H2 +E)).

Also, −(H1 + E) is equivalent to (−H1) + (−E).

Proof. An explicit path homotopy in the first case is given by

(s, t) →





µZ(H1(x)(2t), E(x)( 2t
2−s )) 0 6 t 6 1

2

µZ(H2(x)(2t− 1), E(x)( 2t
2−s ))

1
2 6 t 6 2−s

2

H2(x)(2t− 1) 2−s
2 6 t 6 1.

A similar homotopy can be constructed in the second case. The last statement is
obvious.

Theorem 4.15. Suppose given null-homotopies Hn : fn ' ∗ such that for each n,
Hn+1 ◦ īn ∼0 Hn. Then there exists a null-homotopy H of f such that H |Bn

∼0 Hn

for each n.

Proof. Let iZ : Z̃ → Z be the G-universal cover of Z. That is, for each H 6 G,
πn(Z̃H) = 0 for n = 0 and n = 1, and πn(iHZ ) is an isomorphism for n > 2. Note
that ΩZ̃ is then the G-connected cover of ΩZ.

Let Kn : Bn → ΩZ be given by (−Hn) · (Hn+1 |Bn
). Our hypothesis implies that

for each H 6 G, the map π0(KH
n ) : π0(XH

n ) → π0(ΩZH) is trivial, so Kn factors up
to homotopy through ΩZ̃. For each n, we choose a factorization K̃n of Kn, yielding
an element

{K̃n} ∈
∞∏
n=1

[Xn,ΩZ̃]G.

Since ΩZ̃ has finite homotopy groups, each group [Bn,ΩZ̃]G is finite, so that
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lim1[Bn,ΩZ̃]G = 0. Therefore, the map
∞∏
n=1

[Bn,ΩZ̃]G →
∞∏
n=1

[Bn,ΩZ̃]G

taking {Ẽn} to {Ẽn+1 |Bn
− Ẽn} is surjective. Thus, there is a sequence of maps

Ẽn : Bn → ΩZ̃ such that K̃n is homotopic to Ẽn+1 |Bn
− Ẽn for each n. We let

En = ΩiZ ◦ Ẽn : Bn → ΩZ, so that

Kn = En+1 |Bn
− En. (1)

Now let H ′
n = (Hn + En), and let K ′

n = (−H ′
n) · (H ′

n+1 |Bn
). Since En factors

through ΩZ̃, H ′
n is 0-equivalent to Hn. Also, by Lemma 4.14, we have

K ′
n = (−Hn − En) · ((Hn+1 + En+1) |Bn

)

' (−Hn · (Hn+1 |Bn
)
)− (En − En+1 |Bn

)

= Kn − (En − En+1 ◦ jn).
So, K ′

n is null-homotopic by equation 1. It follows from this that H ′
n+1 |Bn

is equiv-
alent to H ′

n for each n.
Now since the inclusion of Bn in Bn+1 is a cofibration, it follows that H ′

n+1 is
equivalent to a homotopy which restricts under the inclusion Bn → Bn+1 to H ′

n. We
can then inductively define the required null-homotopy H on each Bn, and hence
on B.

5. Proof of the main theorem

Now let Πn and Wn be the G-group and the Πn-representation constructed in
Section 2.4. Choose finite subcomplexes Bn of BG(Πn) so that colim Bn = BGO(F)
and each map īn : Bn → Bn+1 is a cofibration. Let pn : Pn → Bn be the based prin-
cipal (G,Πn)-bundle associated to the inclusion Bn ⊆ BGΠn. Note that ψkWn −
Wn is a virtual Πn-representation of dimension zero. Let ξn = pn(ψkWn −Wn) =
(ψk − 1)pWn

n be the associated stable G-vector bundle over Bn. We use Remark 4.9
to choose classifying maps χ(ξn) yielding a map g : BGO(F) → BGSpin with g |Bn

=
χ(ξn) for each n.

By Theorem 3.5, there is a (stable) map hn for each n from the trivial GF(S(p))-
fibration S(tn) over Bn to S(ξn), and since the restrictions of these trivializations to
orbits of Bn are determined up to homotopy by their degrees, they are compatible
with n. Therefore, by Theorem 4.12, there is a null-homotopy of Bjp ◦ g whose
restriction to Bn is 0-equivalent to kp ◦ χ(hn) for each n, and in particular a lift g̃
of g to Fib(Bjp).

Remark 5.1. Let ψk − 1: BGO → BGSpin be the map classifying the operation of
replacing ξ by (ψk − 1)ξ. (See [9, §9] for the proof that ψk − 1 lifts to BGSpin.)
We wish to produce a lift γk of ψk − 1 to Fib(Bjp) so that γk ◦ β and g̃ induce the
same map on components of fixed point subspaces. First, note that both composites
in the diagram below, restricted to Bn, classify the (G,Spin)-bundle (ψk − 1)pWn

n ,
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so that the following diagram commutes up to homotopy when restricted to Bn:

BGO(F)
g

&&LLLLLLLLLL

β

²²
BGO

ψk−1 // BGSpin.

Since π1(BGSpinH) = 0 for all H 6 G, any two homotopies between (ψk − 1) ◦
β |Bn

and g |Bn
must be 0-equivalent. Therefore, there are homotopies between

Bjp ◦ (ψk − 1) ◦ β |Bn
and Bjp ◦ g |Bn

, which are compatible with n. Since we have
already constructed a null-homotopy of Bjp ◦ g, we can use Theorem 4.15 and
Lemma A.1 to get a null-homotopy of Bjp ◦ (ψk − 1) whose restriction to Bn ⊆
BG(O(F)) is 0-equivalent to the composite null-homotopy

Bjp ◦ (ψk − 1) ◦ β |Bn
' Bjp ◦ g |Bn

' ∗.
Therefore, as needed, we get a lift γk : BGO → Fib(Bjp) of ψk − 1, and the maps
γk ◦ β and g̃ induce the same map from π0(BG(O(F))H) to π0(Fib(Bjp)H).

In [9], we showed that the Atiyah-Bott-Shapiro orientation on (G,Spin)-bundles
induces a map

gp : BGSpin→ BG(Sp;KOp).

Since BGSpin is nonequivariantly connected, gp factors through the component
BG(Sp;KOp)0 of the basepoint. By Remark 2.9, the homotopy groups πn(BG(Sp)H)
are p-complete for all n > 1 (see also [9, 8.4]). There are therefore no phantom
maps from BGSpin to BG(Sp). Therefore, the right square of the diagram below,
which clearly commutes up to homotopy on finite subcomplexes, commutes up to
homotopy. From this, we get the induced map f on the left:

Fib(Bjp)
q //

f

²²

BGSpin

gp

²²

Bjp // BG(Sp)

Fib(q) // BG(Sp;KOp)
q // BG(Sp).

Recall from Section 2.3 that Fib(q) ' (Ω∞KOp)×.
Letting J denote the fiber of ψk − 1 as usual, we now have the following homotopy

commutative diagram:

J

αk

²²

π // BGO

γk

²²

ψk−1

((PPPPPPPPPPPP

ΩBG(Sp)
τ // Fib(Bjp)

q //

f

²²

BG(Spin)
Bj //

gp

²²

BG(Sp)

²²
(Ω∞KOp)× // BG(Sp;KOp)

q // BG(Sp).

Since J and BGO are nonequivariantly connected, αk and f ◦ γk each factor through
a component in ΩBG(Sp) ' Ω∞S×p and (Ω∞KOp)× respectively. It will follow from
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Theorems 5.2 and 5.3 below that these are both the component of 1. We denote these
components SFp and (BGO⊗)p. Let σk : BGO → (BGO⊗)p denote the factorization
of f ◦ γk.

In [9, §9,10], we constructed a map c(ψk) such that the composite below is the
map induced by ψk/1:

(Ω∞KOp)× // BG(Sp;KOp)
c(ψk) // (Ω∞KOp)× .

Restricting to the component of 1, we get a self-map ψk/1 of (BGO⊗)p. Let π : (J⊗)p
→ (BGO⊗)p denote the homotopy fiber of this self-map. We now have the following
homotopy commutative diagram, where the rows are fiber sequences:

J

αk

²²

π // BGO

σk

²²

ψk−1 // BGSpin

gp

²²
SFp //

εk

²²

(BGO⊗)p // BG(Sp;KOp)0

c(ψk)

²²
(J⊗)p

π // (BGO⊗)p
ψk/1 // (BGO⊗)p.

Our next goal is to analyze the effects of αk and εk on sets of components of fixed
point subspaces. We will show in particular that εk ◦ αk induces the same map from
π0(JH) to π0((J⊗)Hp ) as the classical map ρk, and from there we can easily show
that εk ◦ αk induces a p-completion on π0(JH).

Since π1(BGSpinH) = 0, an element in π0(JH) may be identified with a 0-
dimensional virtual orthogonal representation ofH which is fixed by ψk. Moreover, a
stable H-equivariant self-map of the p-local sphere spectrum determines an element
in π0(ΩBG(S(p))H) by Remark 4.6, and hence an element in π0(ΩBG(Sp)H) using
kp. Our next theorem then follows from Lemma 4.13, Theorem 3.5, and Remark 5.1.

Theorem 5.2. Suppose that V is a 0-dimensional virtual H-representation which
is fixed by ψk. Then αk(V ) can be represented by the stable self-map of the p-
local H-equivariant sphere spectrum S0

(p) whose degree on K-fixed points is given by
√
k

dimV K

.

Any stable H-equivariant self-map of the p-complete sphere spectrum can be
represented by an H-equivariant self-map x̃ of SVp . where V is the underlying real
orthogonal G-representation of a complex representation of dimension divisible by
4, whose action map factors through SU(V ). If x̃ has nonequivariant degree one, it
determines an element in π0(SFHp ).

Theorem 5.3. Suppose an element x ∈ π0(SFHp ) is determined by a map x̃ : SVp →
SVp where V is as above. Then the element εk(x) in π0((J⊗)Hp ) ' RO(H)ψ

k

p repre-
sents the H-representation whose Zp ⊗ C-valued character is given by

χh(εk(x)) = deg(x̃ | (SV
p )h).
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Proof. The map x̃ induces a self-map x̃∗ of K̃O
H

p (SVp ). By Remark 2.12, εk(x) ∈
RO(H)ψ

k

p is the representation x̃∗(bV )/bV , where bV is the Bott class of V . By
Proposition 5.7 in [9], if V is a complex representation of dimension divisible by 4

whose action map factors through SU(V ), and bV ∈ K̃OGp (SVp ) denotes the Bott
class of the underlying Spin representation, then the complexification of bV is
equal to bVc , the Bott class of V in K̃G

p (SVp ). By naturality of complexification,
c(x̃∗(bV )/bV ) = x̃∗(bVc )/bVc . We may now restrict to the cyclic subgroup H ′ gener-
ated by h.

Let P be the kernel of χh : R(H ′)p → Zp ⊗ C, and consider the sequence of
R(H ′)p-module maps

K̃H′
p (SVp ) // K̃H′

p (SVp )P
∼= // K̃H′

p ((SVp )H
′
)P

∼= //
(
R(H ′)p ⊗Zp K̃p((SVp )H

′
)
)
P
.

The second map is an isomorphism by the localization theorem (see the proof of
Proposition 4.1 in [17], which also applies to p-complete K-theory). The last map
is the isomorphism of Proposition 2.2 in [17]. Thus, the sequence takes bVc to some
generator b of the free (R(H ′)p)P -module

(
R(H ′)p ⊗Zp

K̃p((SVp )H
′
)
)
P

. Now, anH ′-

map x̃ : SVp → SVp induces endomorphisms of each term in the sequence, commuting
with the maps of the sequence. Moreover,

x̃∗ : K̃p((SVp )H
′
) → K̃p((SVp )H

′
)

is multiplication by d = deg x̃
∣∣∣(SV

p )H′ . Therefore, x̃∗(bVc ) maps under the sequence

to d · b, so the image of (x̃∗(bVc ))/bVc in (R(H ′)p)P is d. Since χh factors through
(R(H ′)p)P , it follows that

χh(x̃∗(bVc )/bVc ) = deg x̃
∣∣∣(SV

p )H′ .

Theorem 5.4. Suppose V is a virtual H-representation of virtual dimension 0,
which is fixed by ψk, representing an element V in π0(JH). Then, identifying
π0((J⊗)Hp ) with the set of virtual H-representations of virtual dimension 1 fixed
by ψk, we have

εk ◦ αk(V ) = ρk(V ).

Proof. We will show that for a complex representation V , χh(ρkc (V )) = kdimV h

,
and using this, we will show that for any real virtual H-representation V , we have
χh(ρk(V ))2 = kdimV h

. Assuming this for the moment, the theorem is proved as fol-
lows. We can represent a virtual representation V as a difference V1 − V2, where V1

and V2 are Spin representations of dimension divisible by 4 (see 2.10). By Theo-
rems 5.2 and 5.3, together with the above formula,

χh(εk ◦ αk(V ))2 = kdimV h

= χh(ρk(V ))2.

Thus, εk ◦ αk(V ) = ±ρk(V ). But if dimV = 0, then εk ◦ αk(V ) and ρk(V ) both
map to 1 under the augmentation homomorphism, so εk ◦ αk(V ) = ρk(V ).

Now, for our claim, we may restrict to the cyclic subgroup 〈h〉 ∼= Z/pn generated
by h. The irreducible representations of 〈h〉 are all powers of a one-dimensional
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representation L, and ψk(Lr) = Lrk for all r. By considering the invariants of ψk,
we reduce to the case where either V is trivial (where the claim is obvious), or
V = ⊕m/ps

i=1 Lp
ski

, where m = pn − pn−1 and 0 6 s 6 n− 1. Let ζ = χhL
ps

, and note
that ζp

n−s

= 1. Then

χhρ
k
cV =

m/ps∏

i=1

ζk
i·k − 1
ζki − 1

.

Since k(m/ps)+1 ≡ k mod pn−s, all numerators and denominators cancel, and we
get χhρkcV = 1 = k0. This implies our first claim, since dimV h = 0.

By Lemma 9.1 in [9], cρkr(ζ) = ρkc (ζ) if ζ is a (G,SU(W ))-bundle of complex
dimension divisible by 4, and c and r are the complexification and realification
homomorphisms. In particular, this holds if ζ is a bundle over a point, or a complex
G-representation V whose action map factors through SU(V ). But if ψkV = V ,
then the determinant representation of V coincides with its kth tensor power, and
since k − 1 is relatively prime to p, it follows that this determinant representation
must be trivial, whence the action map of V factors through SU(V ). Thus,

χh(ρk(2V )) = χh(cρk(2V )) = χh(cρk(rcV )) = χh(ρkc (cV )) = kdimV h

,

where the last equality follows from our initial claim and the fact that dimC cV =
dimR V . Since ρk is exponential, we have

χh(ρk(V ))2 = kdimV h

for all virtual representations V .

We showed in [9, §10] that if X is a compact G-space, then the action of the
Adams operations on the augmentation ideal of KOG(X)

[
1
2

]
extend to the p-adic

numbers, so that we get an action of the multiplicative group of units in Zp on
IKOG(X)p. Letting α be a primitive p− 1st root of unity, ψα generates an action
of Z/p− 1 on IKOG(X)p. Let IKOG(X)ψ

α

p denote the fixed points under this
action. We showed in [9, 10.15] that

ρk : IKOG(X)ψ
α

p → (1 + IKOG(X)p)ψ
α

is an isomorphism. This implies that ρk induces an isomorphism on the sets of
elements fixed by ψk. In particular, this holds if X ∼= G/H. Our main theorem is
now a corollary of Theorem 5.4.

Corollary 5.5. For each H 6 G, the map εk ◦ αk induces a p-completion from
π0(JH) to π0(JH⊗p).

Appendix A. Completions

By Propositions 10 and 11 in [13], if f : X → Y is a G-map between spaces
having the homotopy type of G-CW complexes, and fH induces a p̂-cohomology
isomorphism for each H 6 G, and Z is a p-complete G-nilpotent G-CW complex,
then any G-map from X to Z extends uniquely to a map from Y to Z. In particular,
if a map from Y to Z becomes null-homotopic after precomposing with f , then the
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map must have been null-homotopic to begin with. The following lemma gives us
added control over our choice of null-homotopy. Observe that we do not assume
that Z is G-connected.

Lemma A.1. Suppose given a G-map f : X → Y such that

1. For each H 6 G, fH∗ : π0(XH) → π0(Y H) is an isomorphism, and

2. The restriction of fH to each component of XH is a p̂-cohomology equivalence
to the corresponding component in Y H .

Suppose also that the G-connected cover of Z has the homotopy type of a p-complete
nilpotent G-space. Finally suppose that g : Y → Z is a G-map and K : X × I → Z
is an equivariant null-homotopy of g ◦ f . Then there is a null-homotopy K ′ of g
whose restriction to X is equivalent to K.

Proof. We first show that g is null-homotopic. Let i : Z̃ → Z be the G-connected
cover of Z. Our hypothesis implies that fH : XH → Y H induces a p̂-cohomology
isomorphism since cohomology takes disjoint unions to direct products, so f is a
p̂-cohomology isomorphism. Moreover, πn(Z̃) is p-complete for all n. Therefore, by
the above remarks, f∗ : [Y, Z̃]G → [X, Z̃]G is an isomorphism.

Now, since fH : XH → Y H induces an equivalence on π0, the map gH : Y H → ZH

induces the trivial map on π0 for each H 6 G. Therefore, there is a lift g̃ : Y → Z̃
of g. Now, since i ◦ g̃ ◦ f ' g ◦ f ' ∗, and since the fiber of i is null-homotopic, it
follows that g̃ ◦ f is null-homotopic. But since f∗ : [Y, Z̃]G → [X, Z̃]G is an isomor-
phism, it follows that g̃ (and therefore g = i ◦ g̃) is null-homotopic.

Now, suppose that K ′′ : Y × I → Z is a null-homotopy of g. Then K ′′ ◦ (f × I)
and K are two null-homotopies of g ◦ f . The difference of these null-homotopies
determines a map X → ΩZ ' ΩZ̃. Since Σf : ΣX → ΣY induces a p̂-cohomology
isomorphism, it follows that any map ΣX → Z̃ lifts to ΣY , so any map X → ΩZ
lifts to Y . Adding this to K ′′ gives a null-homotopy K ′ of g whose restriction to X
is equivalent to K.
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