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THE ETA INVARIANT AND THE “TWISTED” CONNECTIVE
K-THEORY OF THE CLASSIFYING SPACE FOR CYCLIC

2-GROUPS

EGIDIO BARRERA-YANEZ

(communicated by Jonathan Rosenberg)

Abstract
Let ` = 2ν > 2. We use the eta invariant to study the

“twisted” connective real K-theory groups kom(BZ`, ξ1) of the
classifying space BZ` for the cyclic group Z`.

1. Introduction

Atiyah [1] expressed the complex K-theory of the classifying space of Z` in terms
of the complex representation ring of Z`. Looking for a “geometric” construction
of Elliptic homology, Kreck and Stolz [11] gave a geometric characterization of
connective real K-theory. Stolz used this characterization to study when a sim-
ply connected manifold admits a metric with positive scalar curvature, see [12]
for details. Botvinnik and Gilkey [6] and Botvinnik, Gilkey, and Stolz [7] studied
when a manifold with non-trivial fundamental group admits a metric with posi-
tive scalar curvature. They defined a “twisted” geometric version of connective real
K-theory. In this paper we will express the “twisted” connective real K-theory of
the classifying space Z` in terms of the complex representation ring of Z`. Instead
of using topological methods as Atiyah did, we shall use analytical methods; our
fundamental tool is the eta invariant.

Let Z` := {λ ∈ C : λ` = 1} be the cyclic group of order ` = 2ν > 2. Let ρs(λ) = λs

define an irreducible linear representation of Z`. The ρs parametrize the irreducible
representations of Z`. Let ξ1 be the underlying real 2 plane bundle of the complex
line bundle defined by the representation ρ1. Let D(ξ1), S(ξ1) be the disk bundle
and respectively sphere bundle with respect to some fiber metric on ξ1. Let T (ξ1) =
D(ξ1)/S(ξ1) be the Thom space associated with ξ1. We use the Thom-Pontryagin
construction to define the twisted equivariant spin bordism groups and twisted
connective real K-theory groups by:

MSpinm(BZ`, ξ1) := M̃Spinm+2(T (ξ1))

kom(BZ`, ξ1) := k̃om+2(T (ξ1)).

†The author passed away on August 19, 2004.
Received January 12, 2004; published on August 9, 2006.
2000 Mathematics Subject Classification: 55N15, 58G12.
Key words and phrases: connective K-theory, eta invariant.
Copyright c© 2006, International Press. Permission to copy for private use granted.



Homology, Homotopy and Applications, vol. 8(2), 2006 106

We refer to [6, 7] for further details. Notice that if we replace ξ1 by the trivial
line bundle ξ0, then we get the standard untwisted equivariant bordism and real
connectiveK-theory groups. In Section 2.2, we shall give a more geometric definition
of these groups.

The calculations of [6] using the Adams Spectral Sequence show that the groups
ko8k+i(BZ`, ξ1) have finite order for i = 1, 3, 5, 7 and that kom(BZ`, ξ1) = 0 other-
wise. The additive structure of these groups has not been determined previously.
We note that the additive structures of the groups ko∗(BZ`) were studied in [5].

We can now state the main result of this paper. If τ : Z` → U(2k) is a fixed point
free representation, we denote the associated lens space by

L4k−1(`; τ) := S4k−1/τ(Z`).

Let RU0(Z`) be the augmentation ideal of the unitary group representation ring
RU(Z`). Let K̃Sp and K̃U be the reduced symplectic and complexK-theory groups.
Let

I = {ρ ∈ RU0(Z`) : ρ(λ̄) = −ρ(λ)}.
Theorem 1.1. Let k > 1.

1. We have that ko4k+1(BZ`, ξ1) ≈ K̃Sp(L4k+5(`, τ)) for any suitable τ .
2. We have that ko4k−1(BZ`, ξ1) ≈ I/(I ∩RU0(Z`)2k+2).

Here is a brief guide to this paper. In Section 2.3, we review the properties
concerning the eta invariant which we shall need. In Section 3, we prove the main
Theorem.
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2. The eta invariant and “twisted” connective real K-theory

2.1. Notational conventions
If ρ is a virtual unitary or symplectic representation, let Vρ be the associated

virtual flat bundle and let [Vρ] be the corresponding element in K-theory. Let M =
L4k−1(`; τ). The map ρ→ [Vρ] defines a surjective homomorphism from RU0(Z`)
and RSp0(Z`) to K̃U(M) and K̃Sp(M); see [2, 10].

2.2. A geometrical realization of connective K-theory and bordism
The equivariant spin bordism groups MSpinm(BZ`, ξ1) can also be thought of

as equivalence classes of triples (M,f, s) where M is a closed manifold of dimension
m which need not be connected, f is a Z` structure on M , and s is a spin structure
on T (M)⊕ f∗(ξ1); such a manifold M admits a spinc structure with determinant
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line bundle given by ρ1, see [4, 6] for details. We define the relation (M,f, s) ∼ 0 in
MSpinm(BZ`, ξ1) if there exists a compact manifold N with boundary M so that
the structures s and f extend over N . Disjoint union defines the group structure;
Cartesian product makesMSpin∗(BZ`, ξ1) into aMSpin∗ module. Let Tm(BZ`, ξ1)
be the subgroup of MSpinm(BZ`, ξ1) which is generated by the total spaces of
geometrical fiber bundles p : E → B with fiber quaternionic projective space HP2;
since HP2 is simply connected, we can identify Z` structures on the base with those
on the total space. We refer to Stolz [13] for the proof of the following lemma; it is
fundamental to our study since it expresses the “twisted” connective real K-theory
groups of BZ` geometrically.

Theorem 2.1. kom(BZ`, ξ1) = MSpinm(BZ`, ξ1)/Tm(BZ`, ξ1).

2.3. The eta invariant
Let D = D(M, g, s) be the Dirac operator defined by the spin structure s and a

Riemannian metric g, and let ρ be a complex representation of Z`. Let Dρ be the
Dirac operator with coefficients in the flat vector bundle Vρ defined by ρ. Let {λn}
be the eigenvalues of Dρ where each eigenvalue is repeated according to its multi-
plicity. The function η(Dρ, z) :=

∑
λn 6=0 sign(λn)|λn|−z converges to a holomorphic

function for <e(z) À 0. This function has a meromorphic extension to C. The value
z = 0 is a regular value and we define

η(M,f, s)(ρ) :=
1
2
(η(Dρ, z)|z=0 + dimker(Dρ))

as a measure of the spectral asymmetry of Dρ. We refer to [3, 9] for details. The
Atiyah-Patodi-Singer Index Theorem for manifolds with boundary [3] can be used
to establish the following result. We refer to [6] (Thm 3.1), [7] for details:

Theorem 2.2. If m = 4k + 1, let ρ ∈ RU(Z`); if m = 4k − 1, let ρ ∈ RU0(Z`). The
map M → η(M,f, s)(ρ) extends to a homomorphism ηρ from kom(BZ`, ξ1) to R/Z.

2.4. Lens spaces and lens space bundles
Let ~a = (a1, ..., ak) be a collection of odd indices and let τ = τ(~a) := ρa1 ⊕ ...⊕

ρak
define a fixed point free representation from Z` to U(k). Let L2k−1(`, τ) :=

S2k−1/τ(Z`) be the associated lens space. Let H⊗2 ⊕ (k − 1)1 be the Whitney sum
of the tensor square of the complex Hopf line bundle with (k − 1) copies of the trivial
complex line bundle over complex projective space CP1 which we identify with the
sphere S2. We let λ ∈ S1 act by multiplication by λaν on the νth summand. This
action restricts to a fixed point free action of Z` on the associated sphere bundle.
Let

X2k+1(`; τ) := S(H⊗2 ⊕ (k − 1)1)/τ(Z`)

be the associated lens space bundle over S2. We give L2k−1(`, τ) and X2k+1(`; τ)
the natural Z` structures. The lens space L2k−1(`; τ) and the lens space bundles
X2k+1(`; τ) admit a natural spinc structure; see [4, 6, 7] for details.
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2.5. Combinatorial formulas for the eta invariant

Let τ = τ(~a). We define

1. If k is even, let FL(~a;λ) = λ−|~a|/2 det(I − τ(~a)(λ)).

2. If k is odd, let FL(~a;λ) = λ−(|~a|+1)/2 det(I − τ(~a)(λ)).

3. If λ 6= 1, let GL(~a;λ) = FL(~a;λ)−1. If λ = 1, let GL(~a;λ) = 0.

4. Let GX(~a;λ) = (1 + λa1)(1− λa1)−1GL(~a;λ).

Let
∑̃

λ :=
∑

λ∈Z`,λ 6=1. The following combinatorial formulas follow from work of
Donnelly [8]:

Theorem 2.3. 1. We have η(L4k−1(`; τ))(ρ) = `−1
∑̃

λ Tr(ρ(λ))GL(τ)(λ).

2. We have η(X4k+1(`; τ))(ρ) = `−1
∑̃

λ Tr(ρ(λ))GX(τ)(λ).

The eta invariant completely detects the odd dimensional “twisted” connective
K-theory groups kom(BZ`, ξ1). We refer to [6] for the proof of the following result.
Notice that these manifolds have positive scalar curvature, therefore Â = 0.

Theorem 2.4. Let M := [(M,f, s)] ∈ kom(BZ`, ξ1).

1. If m ≡ 1 mod 8, then M = 0 if and only if η(M)(ρ) = 0 in R/Z for all ρ ∈
RU(Z`).

2. If m ≡ 3 mod 8, then M = 0 if and only if η(M)(ρ) = 0 in R/Z for all ρ ∈
RU0(Z`).

3. If m ≡ 5 mod 8, then M = 0 if and only if η(M)(ρ) = 0 in R/Z for all ρ ∈
RU(Z`).

4. If m ≡ 7 mod 8, then M = 0 if and only if η(M)(ρ) = 0 in R/Z for all ρ ∈
RU0(Z`).

Let cSp : RSp(Z`) → RU(Z`) be the natural injective homomorphism obtained
by forgetting the symplectic structure to get a complex structure.

We refer to [2, 9, 10] for the proof of the following result.

Theorem 2.5. Let M := L2k−1(`; τ).

1. Let ρ ∈ RU0(Z`). The following conditions are equivalent:

(a) ρ ∈ RU0(Z`)
k.

(b) η(M)(ρρ̃) ∈ Z ∀ ρ̃ ∈ RU0(Z`).
(c) [Vρ] = 0 in K̃U(M).

2. Let γ = cSp(ρ) for ρ ∈ RSp0(Z`). If 2k − 1 ≡ 7 mod 8, the following condi-
tions are equivalent:
(a) γ ∈ ψkcSpRSp0(Z`) where ψ = (ρ0 − ρ1)2ρ−1.
(b) η(M)(γρ̃) ∈ Z ∀ ρ̃ ∈ RU0(Z`) and (`/2)η(M)(γ) ∈ Z.
(c) [Vρ] = 0 in K̃Sp(M).
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3. Let γ = cSp(ρ) for ρ ∈ RSp0(Z`). If 2k − 1 ≡ 3 mod 8, the following condi-
tions are equivalent:
(a) γ ∈ RU0(Z`)k.
(b) η(M)(γρ̃) ∈ Z ∀ ρ̃ ∈ RU0(Z`).
(c) [Vρ] = 0 in K̃Sp(M).

3. The proof of the main theorem

We consider the free Abelian group generated by the lens spaces L4k+1(`;~a) and
by the lens space bundlesX4k−1(`;~a); we give these manifolds the natural structures
and omit these structures from the notation in the interests of notational simplicity.
Define:

1. BL4k+1(`; ·, 3) := 3L4k+1(`; ·, 3)− L4k+1(`; ·, 1).

2. BX4k−1(`; ·, 3) := 3X4k−1(`; ·, 3)−X4k−1(`; ·, 1).
This defines B on any lens space and lens space bundle. We extend B to the free
Abelian group generated by these manifolds. We define ML

m,j for 2j − 1 6 m. When
considering the lens space bundles, we assume the index “3” in question is not the
first index. Thus we define MX

m,j for 2j − 1 6 m− 4. The eta invariant is additive
with respect to direct sums and extends to this setting.

1. ML
4k+1,j := BjL4k+1(`; 3, ..., 3).

2. MX
4k−1,j := BjX4k−1(`; 1, 3, ..., 3).

Theorem 3.1. We have

ko4k+1(BZ`, ξ1) = span{ML
4k+1,j : 0 6 j 6 2k + 1}, and

ko4k−1(BZ`; ξ1) = span{MX
4k−1,j : 0 6 j 6 2k − 2}

Proof. We prove this theorem with the following lemmas.

We refer to [6] (Lemma 4.2) for the proof of the following result.

Lemma 3.2. Let
∑̃

λ :=
∑

λ∈Z`,λ 6=1.

1. If k is even, then L2k−1(`;~a) and X2k+1(`;~a) admit spin structures.

2. If k is odd, then L2k−1(`;~a) and X2k+1(`;~a) have spinc structures with deter-
minant line bundle given by ρ1.

3. We have η(L2k−1(`;~a))(ρ) = `−1
∑̃

λ Tr(ρ)GL(~a;λ) ∈ Q.

4. We have η(X2k+1(`;~a))(ρ) = `−1
∑̃

λ Tr(ρ)GX(~a;λ) ∈ Q.

We have the following integrality theorem; we refer to [6] (Lemma 4.2) for the
proof.

Lemma 3.3. Let ρ ∈ RU0(Z`)j. Let m < 2j + 1. Then

η(Lm(`; ·))(ρ) ∈ Z and η(Xm(`; ·))(ρ) ∈ Z.
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Lemma 3.4. Let ρ ∈ RU(Z`) and let ψ := (ρ0 − ρ1)2ρ−1.

1. η(BM)(ρ) = η(M)(ψρ) for M a lens space or suitable lens space bundle.

2. η(ML
m,j)(ρ) = η(ML

m,0)(ψ
jρ) and η(MX

m,j)(ρ) = η(MX
m,0)(ψ

jρ)

Proof. We see that

GL(~a, 1;λ)− 3GL(~a, 3;λ) = ψ(λ)GL(~a, 3;λ).

Consequently,
η(BL2k+1(`;~a, 3))(ρ) = η(L2k+1(`;~a, 3))(ψρ)

and assertions concerning lens spaces follow. Similarly,

η(BX2k+3(`;~a, 3))(ρ) = η(X2k+3(`;~a, 3))(ψρ)

provided that the index “3” is not the first index; the first index plays a distinguished
role in the definition of GX .

Lemma 3.5. Let α := ρ−3(ρ0 − ρ3)2 ∈ RU0(Z`)2.

1. η(ML
m,j)(αρ) = η(ML

m−4,j)(ρ).

2. η(MX
m,j)(αρ) = η(MX

m−4,j)(ρ).

3. η(ML
5,0)(αρ−2) = (`− 1)/2`.

4. η(MX
5,0)(α(ρ0 − ρ3)ρ−2) = (`− 2)/`.

5. If ρ ∈ RU(Z`), then η(ML
4k+1,k)(αρ) ∈ Z. Furthermore there exists γL

4k+1 so
that η(ML

4k+1,k)(αρ)(γL
4k+1) = (`− 1)/2`.

6. If ρ ∈ RU(Z`), then η(MX
4k+1,k)(αρ) ∈ Z. Furthermore there exists γX

4k+1 so
that η(ML

4k+1,k)(αρ)(γX
4k+1) = (`− 2)/`.

Proof. Since F(~a, 3, 3;λ) = α(λ)F(~a;λ),

η(Lm+4(`;~a, 3, 3))(αρ) = η(Lm(`;~a))(ρ)
η(Xm+4(`;~a, 3, 3))(αρ) = η(Xm(`;~a))(ρ).

The first two assertions now follow. We prove the second two assertions by comput-
ing:

η(ML
5,0)(αρ−2) = `−1∑̃

λ(1− λ3)−1

= (2`)−1∑̃
λ((1− λ)−1 + (1− λ̄)−1)

= (2`)−1∑̃
λ1 = (`− 1)/(2`)

and

η(MX
5,0)(α(ρ0 − ρ3)ρ−2) = `−1∑̃

λ(1 + λ3) = `−1∑̃
λ(1 + λ) = (`− 2)/`.

We complete the proof by establishing the final two assertions. We use Lemma
3.4 to compute
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η(ML
4k+1,k)(αρ) = η(ML

4k+1,0)(αψ
kρ), and

η(MX
4k+1,k)(αρ) = η(MX

4k+1,0)(αψ
kρ).

Then ραψk ∈ RU0(Z`)2k+2. Since dim(ML
4k+1,0) = dim(MX

4k+1,0) = 2(2k + 1)− 1,
these eta invariants take values in Z by Lemma 3.3. Similarly, we compute:

η(ML
4k+1,k)(γk,L) = η(ML

m,0)(γk,Lψ
k), and

η(MX
4k+1,k)(γk,X) = η(MX

m,0)(γk,Xψ
k).

We have ψkR(Z`) = αkR(Z`). Thus we may choose γk,L so that γk,Lψ
k = αkρ−2;

let γk,X = γk,L(ρ0 − ρ3). Then

η(ML
m,0)(γk,Lψ

k) = η(ML
m,0)(α

kρ−2) = η(ML
5,0)(αρ−2)

= (`− 1)/2`
η(MX

m,0)(γk,Xψ
k) = η(ML

m,0)(α
k(ρ0 − ρ3)ρ−2)

= η(ML
5,0)(α(ρ0 − ρ3)ρ−2) = (`− 2)/`.

Let k > 0. We define

1. ML
4k+1(`) := span06j62k+1{ML

4k+1,j} ⊂ ko4k+1(BZ`, ξ1).

2. MX
4k−1(`) := span06j62k−2{MX

4k−1,j} ⊂ ko4k−1(BZ`, ξ1).
The Pontryagin dual A∗ of an Abelian group A is the group of homomorphisms to

R/Z. Thus, for example, Z/`Z is the Pontryagin dual of Z`. Let η∗(M) be the homo-
morphism which sends ρ to η(M)(ρ). By Theorem 2.5, the eta invariant extends to
connective K-theory:

η∗ : ko4k+1(BZ`, ξ1) → RU(Z`)∗, and η∗ : ko4k−1(BZ`, ξ1) → RU0(Z`)∗.

The homomorphism which sends ρ to αρ defines a dual map α∗ from RU(Z`)∗

to RU(Z`)∗.

Lemma 3.6. Let k > 0 and assume ` > 4.

1. |η∗ML
4k+5(`)| > (2`)k+2.

2. ko4k+5(BZ`, ξ1) = ML
4k+5(`).

Proof. It is immediate that

|η∗ML
m(`)| > |α∗η∗ML

m(`)| · | kerα∗ ∩ η∗ML
m(`)|

We use Lemma 3.5 to see that

|α∗η∗ML
m(`)| > |η∗ML

m−4(`)|,
|α∗η∗ML

5 (`)| > 2`
| kerα∗ ∩ η∗ML

m(`)| > 2`.

This proves the first assertion and gives a lower bound for kom(BZ`, ξ1) if m ≡ 1
mod 4.
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The following estimates were established in Botvinnik and Gilkey [6].

1. |ko8k+1(Z`, ξ1)| = (2`)2k+1.

2. |ko8k+3(Z`, ξ1)| = (`/2)2k+1.

3. |ko8k+5(Z`, ξ1)| = (2`)2k+2.

4. |ko8k+7(Z`, ξ1)| = (`/2)2k+2.

The final assertion follows from these estimates.

Again, we begin our discussion with a technical Lemma.

Lemma 3.7. 1. η(ML
3,0)((ρ0 − ρ3)ρ−2) = (`− 1)/2`.

2. η(MX
3,0)((ρ0 − ρ3)2ρ−2) = (`− 2)/`.

Proof. We prove the first assertion by computing:

η(ML
3,0)((ρ0 − ρ3)ρ−2) = `−1∑̃

λ(1− λ3)−1

= (2`)−1∑̃
λ((1− λ)−1 + (1− λ̄)−1)

= (2`)−1∑̃
λ1 = (`− 1)/(2`).

and

η(MX
3,0)((ρ0 − ρ3)2ρ−2) = `−1∑̃

λ(1 + λ3) = `−1∑̃
λ(1 + λ) = (`− 2)/`.

Lemma 3.8. If k > 0 and if ` > 4, then

1. |η∗(MX
4k+3(`)| > (`/2)k+1.

2. ko4k+3(BZ`, ξ1) = MX
4k+3(`).

Proof. The first assertion follows from Lemma 3.7 if k = 0, so we assume k > 1
henceforth. Let δ = (ρ0 − ρ3)ρ−2 and let m = 4k + 3. Then,

η(MX
m,j(`))(δρ) = η(MX

m−2,j(`))(ρ).

Thus,

η∗MX
4k+1 ⊂ δ∗η∗MX

4k+3.

We use this equation and Lemma 3.7 to complete the proof of the first two assertions
for k > 1 by computing:

(`/2)k+1 6 |η∗(MX
4k+1(`))| 6 |η∗(MX

4k+3(`))|
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We can now complete the proof of the main Theorem. Let

ψ = −(ρ0 − ρ−1)(ρ0 − ρ1) = (ρ0 − ρ1)2ρ−1 ∈ RU0(Z`)2.

We define W 4k+5 = L4k+5(`; 3, 3, ..., 3, 1,−1). Then

η(ML
4k+1,j)(ρ) = η(ML

4k+1,0)(ψ
jρ) = η(W 4k+5)(ψj+1ρ).

Let A4k+1 be the linear span of the manifolds ML
4k+1,j for 0 6 j 6 2k + 1. Let

σ(ML
4k+1,j) := ψj+1. We extend σ linearly to A4k+1. We then have

η(M)(ρ) = η(W 4k+5)(σ(M)ρ) ∀ M ∈ A4k+1.

If [M ] = 0 in ko4k+1(BZ`, ξ1), then η(M)(ρ) ∈ Z for all ρ ∈ RU0(Z`) by 2.5 so

η(W 4k+5)(σ(M)ρ) ∈ Z ∀ρ ∈ RU0(Z`).

By Theorem 2.5(1), σ(M) ∈ RU0(Z`)2k+3. Thus by Lemma 3.6, σ induces a map

σ : ko4k+1(BZ`, ξ1) → RU0(Z`)/RU0(Z`)2k+3.

Suppose first that m = 4k + 1. If σ([M ]) = σ(M) = 0 then

η(M)(ρ) ∈ Z ∀ρ ∈ RU0(Z`).

Since we have that GL(`;~a)(λ̄) = −GL(`;~a)(λ), η(M)(ρ0) = 0. Thus we have
η(M)(ρ) = 0 for all ρ ∈ RU(Z`) so by Theorem 2.4, [M ] = 0 in ko4k+1(Z`; ξ1). Thus
σ is injective. We prove the first assertion of the main Theorem by noticing that:

cSp(RSp0(Z`)) = span{ψj+1 : j > 0}.
Suppose next thatm = 4k − 1. Let A4k−1 be the free group generated byMX

4k−1,j

for 0 6 j 6 2k − 2. Let Y 4k+3 := L4k+3(`; 1, 3, 3, ..., 3, 1,−1). We then have

η(MX
4k−1,j)(ρ) = η(MX

4k−1,0)(ψ
jρ) = η(Y 4k+3)(ψjθρ).

Where θ = (ρ0 − ρ−1)(ρ0 + ρ1). Define σ(MX
4k−1,j) = ψjθ and extend σ linearly to

A4k−1. We then have

η(M)(ρ) = η(Y 4k+3)(σ(M)ρ) for all M ∈ A4k−1.

If [M ] = 0 in ko4k−1(BZ`, ξ1), then η(M)(ρ) = 0 in R/Z for all ρ ∈ RU0(Z`). Thus
η(Y 4k+3)(σ(M)ρ) = 0 in R/Z for all ρ ∈ RU0(Z`), so σ(M) ∈ RU0(Z`)2k+2. Thus
we may regard σ a well defined map

σ : ko4k−1(BZ`, ξ1) → RU0(Z`)/RU0(Z`)2k+2.

If σ([M ]) = 0, then η(M)(ρ) = 0 for all ρ ∈ RU0(Z`) and by Theorem 2.4, [M ] = 0
in ko4k−1(BZ`, ξ1). Thus σ is injective. The set I is generated by ρs − ρ−s and by
ψj for j > 0. Since

θ = ρ1 − ρ−1 = (ρ0 + ρ1)(ρ0 − ρ−1),

I is generated by ψjθ for j > 0. As we can work modulo RU0(Z`)2k+2, we can
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restrict 0 6 j 6 k + 1 < 2k + 2. Notice that

σ(ko4k−1(BZ`, ξ1)) +RU0(Z`)2k+2 = I +RU0(Z`)2k+2.

Thus ko4k−1(BZ`, ξ1) ≈ I/(I ∩RU0(Z`)2k+2). This completes the proof of the
Theorem.
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