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THE COHOMOLOGY RING OF FREE LOOP SPACES

LUC MENICHI

(communicated by Lionel Schwartz)

Abstract
Let X be a simply connected space and k a commutative

ring. Goodwillie, Burghelea and Fiedorowicz proved that the
Hochschild cohomology of the singular chains on the space
of pointed loops HH*S*(£IX) is isomorphic to the free loop
space cohomology H*(XS ). We prove that this isomorphism
is compatible with the usual cup product on H*(XS ) and the
cup product of Cartan and Eilenberg on HH*S*,(flX). In par-
ticular, we make explicit the algebra H*(XS ) when X is a
suspended space, a complex projective space or a finite CW-
complex of dimension p such that T̂ ZJTT G k.

1. Introduction

Let Xs (respectively CtX) be the space of free loops (respectively of pointed
loops) of the space X. We work over an arbitrary commutative ring k and for any
space Y, we denote by S*(Y) the normalized singular chains with coefficients in k.

Recall that the diagonal map 7 4 7 x 7 induces a natural diagonal 5* (Y) —>•
S*(7x7)-> S*(Y) (g)S*(Y) such that S*(Y) is a differential graded coalgebra. The
homology of the dual algebra S*(Y) = Hom(S*(Y),k) is the singular cohomology
of Y. The induced product on H*(Y), called the cup product, makes H*(Y) into a
commutative graded algebra.

Now recall from the book of Cartan and Eilenberg [8, XI.6] that, if A denotes
an algebra (over k) equipped with a diagonal A —>• A <g> A then the Hochschild co-
homology of A (with coefficients in Av = Hom(A,k) [29, 1.5.5]), denoted HH*(A),
is naturally equipped with a cup product. If A is a Hopf algebra, HH*(A) becomes
a graded algebra with this product. These results extend to the case when A is
a differential graded algebra. In particular, since S*(£IX) is a differential graded
Hopf algebra, HH*(S*(ClX)) is naturally a graded algebra. Our main result reads
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Theorem A(Theorem 2). If X is a path connected space, the isomorphism of graded
modules

established by Goodwillie in [19], Burghelea and Fiedorowicz in [7], preserves cup
products.

We emphasize that Theorem A allows us to compute the algebra H*(XS )
from the cellular structure of X and from a cellular approximation of the di-
agonal map. Indeed, if we consider the Adams-Hilton model [1] of the space X,
A(X) -^> S* (HX) and the natural diagonal map

x X) ^A(X) (g> A(X)

as defined in [2, Lemma 8.2], then we prove
Theorem B(Theorem 11). If X is a simply connected CW complex then the two
graded commutative algebras

HH*(A(X)) and H*(Xsl)

are isomorphic.
With Theorem B, we are reduced to a purely algebraic problem: computing the

algebra HH* (A) when A is a free graded algebra which is also a differential graded
Hopf algebra up to homotopy (notion defined page 203). In section 5, using the
Perturbation Lemma, we construct a small algebra up to homotopy whose homology
is isomorphic to HH*(A).

In section 6, we make explicit this algebra up to homotopy in the following
particular case. Consider a cocommutative differential graded coalgebra C. Its dual
Cv = Hom(C, k) is a commutative differential graded algebra. Recall that for any
commutative algebra A, its Hochschild homology denoted HH* (A) is endowed with
the shuffle product [8, XI.6]. So HH*(CV) is a commutative graded algebra. On
the other hand, the cobar construction on C, denoted fiC, is a cocommutative
differential graded Hopf algebra [39, 0.6 (2)]. So the cup product of Cartan and
Eilenberg is defined on HH*(flC).

Theorem C (Theorem 18). Let C be a simply connected cocommutative differential
graded coalgebra k-free of finite type. The isomorphism of graded modules established
by Jones and McCleary in [26, Theorem A] (See also [21, Theorem II] and [38,
Theorem 1.1])

is a morphism of commutative graded algebras.
In the last two sections, we give explicit computations of free loop spaces co-

homologies. In section 7 we consider the case X = T,Y, the suspension of a space
Y.
Theorem D(Theorem 27). Let Y be a path connected space such that H*(Y) is
k-free of finite type. Then the cup product on H*(Y) determines a product on
HH*(H*(EY)) such that HH*(H*(Y,Y)) becomes a commutative graded algebra.
This algebra is naturally isomorphic to the algebra H* ((EY)S J.
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Notice that if the cup product on H*(Y) is trivial then this product on
HH*(H*(EY)) is the shuffle product (Corollary 28). In section 8, we give two other
cases where the algebra H* (Xs ) is isomorphic to the Hochschild homology of a
commutative differential graded algebra.

First X = CP™, the n-dimensional complex projective space or X = HP", the
n-dimensional quaternionic projective space.
Theorem E(Proposition 36). There exists isomorphisms of commutative graded
algebras

H* ((CFn)sl) =* HH*(H*(CPn))

and
H*

Secondly, consider a simply-connected C W-complex X of finite type such that all
the integers in the range [2, dimension of X) are units in k. When k = Q, Sullivan
constructed a cochain algebra APL(X), called the polynomial differential forms [18,
§10], and proved with Vigue-Poirrier [41] that there is a natural isomorphism of
commutative graded algebras

Over an arbitrary commutative ring k, Anick [2, Proposition 8.7(a)], extending Sul-
livan's result, constructed a cochain algebra C*(L(X)) weakly equivalent as cochain
algebras (in the sense of [17, page 832]) to the singular cochains on X, S*(X). We
extend the result of Sullivan and Vigue-Poirrier in this new context:

Theorem F(Theorem 39). For X as above, there is a natural isomorphism of graded
commutative algebras

When k is a field, this Theorem has been first proved by Dupont and Hess [12, 13].
We now compare our results to others. Indeed the problem of computing the

algebra H*(XS ) has been considered by many people.
The algebra H*(XS ) can sometimes be computed via spectral sequences. For

example, Kuribayashi and Yamaguchi [27], by solving extensions problems by appli-
cations of the Steenrod operations, were able to compute, via the Eilenberg-Moore
spectral sequence, the algebra H*(XS ) for some simple spaces. Using fibrewise ho-
motopy technics [10], Crabb and James have, before us, computed the cohomology
with integer coefficients H* ((Cfn)s ; Z J. In [9], Cohen gives a combinatorial model

for the free loop space on a suspension, (EY)S . It should be interesting to see if
one can deduce from this model, the algebra structure or the Steenrod operations
onH* ( (XF) s l ) .

Another approach is to use algebraic models like us. Suppose that k is a field.
Given an Adams-Hilton model of X, A(X), equipped with its diagonal, Dupont and
Hess [14] have constructed, with some indeterminacy, a cochain complex equipped
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with a product whose homology is isomorphic to the algebra H*(XS ). They don't
mention any relation between their complex and the Hochschild complex on A(X).
Again, when k is a field, Ndombol and Thomas [35] have found an "Eckmann-Hilton
dual" to our main result (Theorem A): using the "strongly homotopy commutative"
structure on S*(X), they constructed a product on the Hochschild homology of
S*(X) and proved that the isomorphism of Jones [25] H*(Xsl) =* HH*(S*(X))
is an isomorphism of algebras. The equivalence between their result and our main
result has by now been proved by Idrissi [24].

We thank S. Halperin, J.-C. Thomas and M. Vigue for their constant support.
The main results of this paper were expound in September 1999 at the GDR Topolo-
gie algebrique meeting in Paris Nord.

2. Algebraic preliminaries and notation

We work over a commutative ring k. We denote by pk and -^ respectively the
kernel and cokernel of the multiplication by p in k.

DGA stands for differential graded algebra, DGC for differential graded coalge-
bra, DGH for differential graded Hopf algebra and CDGA for commutative DGA.
The denomination "chain" will be restricted to objects with a non-negative lower
degree and "cochain" to those with a non-negative upper degree.

The degree of an element x is denoted |cc|. The suspension of a graded module V
is the graded module sV such that (sV)j+i = Vj. Let C be an augmented complex.
The kernel of the augmentation is denoted C.

The exterior algebra on an element v is denoted Ev. The free divided powers
algebra on an element v, denoted Tv, is

• the free graded algebra generated by y*(v), i G N*, divided by the relations
(i + ?)!

yl(vW(v) = —.,., 'Y+3(v), if \v\ is even,

• and is just Ev when \v\ is odd.

The tensor algebra on a graded module V is denoted TAV. The tensor coalgebra
is denoted TCV. Their common underlying module is simply denoted TV. Given a
conilpotent coalgebra C then any morphism ip : C -¥ V lifts uniquely to a unique
morphism * : C -¥ TCV of coaugmented coalgebras. The formula for * is given by

+ OO

*(c) = ^ ^ i o A ® i " 1 ( c ) , c e C (1)

where A^"1 : C —>• C is the iterated reduced diagonal of C.

Let A be an augmented DGA. The bar resolution of A, denoted B(A; A; A), is the
unique (A, A)-bimodule (A<8>T(sA)<8>A, di+dz) such that d\ denote the differential
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obtained by tensorization and such that, for any [sa\\ • • • \sak] G T(sA)

d2[sa1\---\sak] = o i [ s a 2 | • • • \sak]

fc-i

+ ^ ( - l ) l ' O l l + - + l ^ l [ 8 o i | • • • \saiai+1\ • • • \sak]

The (reduced) bar construction on A, denoted B(A), is the coaugmented DGC
(TCsA,di + d2) whose underlying complex (TsA,di + d2) coincides with k®A
B(A; A; A) ®A k [17, §4]. The cyclic bar construction or Hochschild complex is the
complex A ®A®A°V B(A; A; A) denoted C(A). Explicitly C(A) is the complex (A ®
T(sA),di + d2) with d\ obtained by tensorization and

• \sak] =(-l)'o 'aai[sa2 | • •• \sak]
fc-i

+ ^]( - l ) £ i a[sa i | • • • |sajaj+i| • • • \sak]

The Hochschild homology is the homology of the cyclic bar construction:

HH*(A) :=#*(C(A)).

The Hochschild cohomology is the graded module

HH*(A) :=H*(Rom{AtA)(B(A;A;A),Aw))=H*(C(A)w)

where Av is considered as an (A, A)-bimodule.
Let A and B be two augmented DGA's. The Alexander-Whitney map is the

unique morphism of (A ® B, A ® B)-bimodules

AW : B(A ®B;A®B;A®B)^>- B(A; A; A) ® B(B; B; B)

such tha t the image of a typical element [s(ai <E> bi)\ • • • \s(ak <E> bk)} is

J J ( ~ 1) [son| • • • |saj]aj+i • • • ak ® b\ • • • bi[sbi+i\ • • • \sbk].

i=0

Here [32, 3.7]

k i-1

¥ is natural and associative exactly. It is also commutative up to a homotopy of
,A®.B)-bimodules. So we get an Alexander-Whitney map for the cyclic bar

construction

AW : C(A ® B) ->• C(A) ® C(B).

Consider an augmented DGA K equipped with a morphism of augmented DGA's
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A : K -»• K <S> K. Then the composite

A : C(K) °-^ C(K ®K)^> C(K) ® C(K)

is a morphism of augmented complex. Therefore HH*(K) has a product. This is
the cup product of Cartan and Eilenberg [8, XI.6], also called Hopf wedge product
by Mac Lane [30, VIII.4.(4.5)]. In particular, if if is a DGH then C(K) is a DGC
and HH* (K) is a graded algebra.

3. From the chains on the based loops to the chains on the
free loops

The object of this section is to prove the following theorem linking the chains on
the based loops of a space to the chains on its free loops.

Theorem 2. Let X be a path connected pointed space. Then there is a natural DGC
quasi-isomorphism

In particular, HH*S*(SIX) = H*(XS ) as graded algebras.

Goodwillie [19], Burghelea and Fiedorowicz [7] proved the isomorphism
HH*St,(flX) = H*(XS ) as graded modules only. To obtain our theorem, we will
follow their proofs. We introduce first some terminology about simplicial objects.

Let C be a category. A simplicial C-object X is a non-negative graded object
together with morphisms dj : Xn -»• Xra_i and Sj : Xn -»• Xn+i, 0 ̂  i ^ n satisfying
some well-known relations [30, VIII.5.2]. A cosimplicial C-object is a non-negative
graded object together with morphisms Si : Xn~x -»• Xn and Ui : Xn+1 ->• Xn,
0 ^ i ^ n satisfying the opposite relations [6, X.2.1(i)]. If C is a category equipped
with a tensor product <g> (more precisely a monoidal category [31, VII.1]) then the
tensor product of two simplicial C-objects X = (Xn,di,Si) and Y = (Yn,di,Si) is
the simplicial C-object X <g> Y = (Xn ®Yn,di <8>di,8i <S> si).

Consider C to be the category of complexes. To any simplicial C-object (i.e. sim-
plicial complex) X, we can associate a complex in the category C (i.e. a complex
of complexes) denoted K^{X) known as the normalized chain complex of X [30,
VIII.6 for the category of modules]. Consider two simplicial complexes A and B.
We have an Alexander-Whitney morphism of complexes of complexes [30, VIII.8.6]
AW : KN(A <S> B) —Y KN(A) <S> K^{B). Every complex of complexes can be con-
densated [30, X.9.1] into a single complex. So by composing the functor KN and
the condensation functor, we have a functor, called the realization and denoted | |,
from the category of simplicial complexes to the category of complexes, equipped
with an Alexander-Whitney morphism of complexes AW : \A <g> B\ —y |A|<g>|.B|
for any simplicial complexes A and B. In particular, | | induces a functor from
the category of simplicial DGC's to the category of DGC's (Recall that a simplicial
DGC can be defined either as a simplicial object in the category of DGC's or as a
coalgebra in the category of simplicial complexes.).
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Given any two topological spaces X and Y, the caligraphic notations

are reserved for the standard normalized Alexander-Whitney map and to the stan-
dard normalized Eilenberg-Zilber map concerning singular chains [11, VI. 12.27-8].

Example 3. The cyclic bar construction for differential graded algebras. Let A be a
DGA. Then there is a simplicial complex TA defined by TnA = A(g>- • -<g>A = A®n+1,

doa[a\\ • • • \an] = aa,i[a,2\ • • • \an],

d j a [ a i | • • • \an] = o [ a i | • • • |ajOj+i | • • • \an] for 1 ^ i ^ n — 1,

dna[ai| • • • \an] = ana[ai\ • • • | a n_i] ,

Sja[ai| • •• \an] = a[ai| • •• |a j | l | a i + i | •• • |on] for 0 ^ i ^ n.

The complex |FA| is exactly (signs included) C(A) the cyclic bar construction of A.
If if is a DGH then TK with the diagonal

TK r ( A g ) ) r( i f <g>.

is a simplicial DGC and \TK\ is the DGC C(K) denoted in section 2.

Example 4. Let G be a topological monoid. The cyclic bar construction of G [29,
7.3.10] is the simplicial space TG defined by TnG = G x • • • x G = Gn+1 and with
the same formulas for dj and Sj as in the cyclic bar construction for DGA's. Since
the normalized singular chain functor 5* is a functor from topological spaces to
DGC's, S*(TG) is a simplicial DGC. Therefore |5*(rG)| is a DGC.

The following Lemma compares the DGC's given by the previous two examples.

Lemma 5. (Compare [19, V.I.2]) Let G be a topological monoid. Then there is a
natural DGC quasi-isomorphism \TS*(G)\ =¥ |S*(rC?)|.

Proof. The Eilenberg-Zilber map £Z : S*(G)®n+1 -»• 5<,(Gn+1) is a DGC quasi-
isomorphism and therefore defines a morphism of simplicial DGC's rS*(G) -»•
5*(TG). So, applying the functor | |, we get a DGC quasi-isomorphism. •

Let A™ be the standard geometric simplex of dimension n. Let Si : A™"1 —>• A™
and Gi : An+1 -»• A™ be the i-th face inclusion and the i-th degeneracy of A™. Then
^ = (An,Si,<Ji) is a cosimplicial space [6, X.2.2(i)]. The geometric realization [33,
11.1] of a simplicial space X is defined as

\X\=(]]_XnxAA / ~

where ~ is the equivalence relation generated by

(dix,y) ~ (x,8iy), x e Xn, y e A""1

and (siX,y) ~ (a;,ajt/), x e -X"n, y e A n + 1 .

Recall that |5*(X)| is a DGC whose diagonal is the composite

\S.(X)\ lS'-^)l \S.(X x X)\ lAV \S.(X)
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Lemma 6. (Compare [5, Theorem 4-1] and [18, 17(a)J) Let X be a simplicial space,
good in the sense of [37, A.4J. Then there is a natural DGC quasi-isomorphism

Proof. Let irn : Xn x An -» \X\ be the quotient map. The morphism / is defined
as the composite

£Z

where nn e Sn(A
n) is the singular simplex ic?A"- By a Theorem of Moore [5,

Theorem 4.1], / is a quasi-isomorphism of chains complexes. The diagonal map of
\X\ is equal to the composite

\X\ ^ \ \X x X\ ( |p ro i l | 'br° i2 | )) \X\ x \X\

where Ax is the simplicial diagonal of X and where proji and proj2 are the sim-
plicial projections on each factors. To check that / is a DGC morphism, we have to
show:

( /« . / ) o AW o \AW\ o |S.(AX)| = AW o S.((|proji|, |proj2|)) o S.(|AX|) ° /•

By naturality of / , it suffices to show that / behaves well with respect to products
of simplicial spaces.

Let X and Y be two simplicial spaces. Then S*(X) and S*(Y) are two simplicial
complexes. So we have an Alexander-Whitney map

s.(Y)\A^ \s.(x)\

Its formula is given by

,(dg) : 5,(Xn) ® 5,(yn) -

where dq : Xn —y- Xp is the composite dp+i o • • • o dn (d denotes the "last" face
operator) and dg : Yn —y Yq is the iterated composite of do- In the diagram page 201,
there was not enough space for sums ^ an<i direct sums 0 . So we use the indices
p and q with the convention p + q = n and the indices j and k with the conventions
that j + k = i. We use also the maps

,59 = Sn o • • • o 6P+1 : AP -y An and 5% : A« ->• A™.

Both the interchange of factors of a tensor product of modules and of a product
of spaces are denoted by r .

Consider the diagram page 201.
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Let's check the commutativity of each subdiagram involved in it.

• 1 commutes since

(AW o Sn(A)) (Kn) =
p+q=n p+q=n

• 2 commutes obviously.
• 3 commutes by naturality of £2.
• 4 commutes by compatibility of £Z and AW [18, I.4.b)].
• 5 and 6 commute by naturality of (£2 <S> £2) o (id <S> T <S> id).
• 7 commutes since

(\proji |, |proj2|) ° irn = (Tn X ^n) ° (id x r x id) o (id x A).

• 8 commutes by naturality of AW.
• By definition of the equivalence relation ~ defining the geometric realisation

of a simplicial space,

TTp o (d9 X id/^p) = T^n ° (idXn X ^ ' ) Slid 7Tg O (OQ X id/^q) = T^n ° (idYn ^ ^o)"

So 9 commutes.
Finally, we have

1
h\,\proj2\)) °f.

•
Lemma 7. [29, 7.3.15] Let X be a path connected pointed space. Then there is a
natural homotopy equivalence \TQX\ ^ Xs .

Proof of Theorem 2. Applying Lemma 5 to the Moore loop space flX, Lemma 6 to
TflX and Lemma 7, we obtain the sequence of DGC quasi-isomorphisms:

—y \S*,(TQ,X)\ —y S*,(\TQ,X\) —y S*,(X ) .

•

4. HAH models

In order to compute the algebra structure of HH*S*(£IX), it is necessary to
replace S*(£IX) by a smaller Hopf algebra. Let's first remark that the cyclic bar
construction preserves quasi-isomorphisms.

Property 8. [29, 5.3.5] (Compare [17, 4.3(iii)]) Let / : A —y B be a quasi-isomorphism
of augmented DGA's. If A and B are k-semifree then C(/) : C(A) 4 C(B) is a
quasi-isomorphism of complexes.

Let / , g : A —y B be two morphisms of augmented DGA's. A derivation homotopy
from / to g is a morphism of graded modules of degree +1, h : A —y B such that
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doh + hod = f - g and h(xy) = h(x)g(y) + (-l)Wf(x)h(y) for x,y e A. A
derivation homotopy from / to g is denoted by h : f « g. We say that / and g are
homotopic if there is a derivation homotopy between them.

Lemma 9. Let f, g : A —>• B be two morphisms of augmented chain algebras.
Suppose that A is k-free. If f and g are homotopic then the morphisms of chain
complexes C(/), C(g) : C(A) -»• C(B) are chain homotopic.

Proof. We first prove the lemma assuming that A is a chain algebra of the form
(TAV, d) where V is a k-free graded module. Consider the Baues-Lemaire cylinder
of A. This is an augmented chain algebra IA equipped with a commutative diagram
of augmented chain algebras

A
idA

The derivation homotopy between / and g correspond to an morphism of augmented
chain algebra H : IA -»• B such that H o i0 = f and H o ix = g ([4, 1.7.12]
or[17, 3.5]). Since p : IA -» A is a quasi-isomorphism, by Property 8, C(p) is a
quasi-isomorphism. Since C(p) o C(io) = C(p) o C(ii) and C(A) is a k-free chain
complex, C(i0) and C(ii) are chain homotopic. Therefore C(/) = C(H) o C(i0) and
C(p) = C(il) o C(ii) are chain homotopic.

If A is not a chain algebra of the form (TAV, d), consider a quasi-isomorphism
of augmented chain algebras 0 : (TAV, d) ^ A where V is k-free. Since there is a
derivation homotopy between 0 o / and 0 o g, C(0) o C(/) and C(0) o C(/) are
chain homotopic. If A is k-free, C(0) : C(TAV, d) ^ C(A) is a quasi-isomorphism
between k-free chain complexes and so is a chain homotopy equivalence. Therefore
C(/) and C(g) are chain homotopic. •

A Hopf algebra up to homotopy, or HAH, is a DGA K equipped with two mor-
phisms of DGA's A : K ->• K <g> K and e : K ->• k such that (e ® idK) ° A = idK =
(idx ® E ) » A (counitary exactly), (A ® 1) o A « (1 ® A) o A (coassociative up to
homotopy) and r o A « A (cocommutative up to homotopy).

Let K, K' be two HAH's. A morphism of augmented DGA's / : K —>• K' is a
HAH morphism if A/ « (/®/) A (/ commutes with the diagonals up to homotopy).

Definition 10. Let X be a pointed topological space. A HAH model fox X is a chain
algebra of the form (TAV, d), where the graded module V is k-free, equipped with
a structure of Hopf algebras up to homotopy and with a HAH quasi-isomorphism
0 4

Suppose that X is a simply-connected CW-complex. Its Adams-Hilton model
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A(X) equipped with its diagonal

X x X) ^A(X) (g> A(X).

is a HAH model for X [2, Proposition 8.3].

Theorem 11. Let X be a path connected pointed space. Let (TAV, d) be a HAH
model for X. There is a isomorphism of graded algebras

HH*(TAV,d) ^H*(Xsl).

Proof. Let 0 : (TAV,<9) 4 S*(flX) denote the HAH quasi-isomorphism. By Prop-
erty 8, C(0) is a quasi-isomorphism. According Lemma 9,

C((0 ® 0) o ATAy) « C(As,(nx) ° ©)•

By composing with AW and by applying Theorem 2, the quasi-isomorphisms of
chain complexes

C(TAV,d) ^K CS.(fiX) 4 S* (Xs1)

commutes with the diagonals up to chain homotopy. •

5. A smaller coalgebra than the cyclic bar construction

The goal of this section is to replace the huge algebra up to homotopy C(TAV, d)v

by a smaller one in order to be able to compute the algebra HH* (TAV,d). When k
is a field, Micheline Vigue in [40] gives a small complex ((k © sV) <g> TV, 5) whose
homology is the vector space HH* (TAV, d). In fact, in this section, we show that over
any commutative ring k, the complex ((k©sV) <S>TV,8) is a strong deformation
retract of C(TAV, d).

Definition 12. Let (Y, d) be a complex. A complex (X, d) is a strong deformation
retract of (Y,d) if there exist two morphisms of complexes V : (X,d) <-)• (Y,d),
f : (Y, d) -» (X, d) and a chain homotopy $ : (Y, d) -»• (Y, d) such that /V = idx
and V/ — idy = d$ + $d. The map / is called the projection and the map V is
called the inclusion.

We first consider the case where the differential d on (TAV, d) is just obtained
by tensorization of the differential of a complex V and is so therefore homogeneous
by wordlength.

Consider the tensor algebra TAV on a complex V. Define the augmentation on
TAV such that the augmentation ideal TAV is

T+V = ®i^V®\

The bar resolution B(TAV;TAV;TAV) contains a subcomplex (TV <g> (k© sV) <g>
TV,di +d2), since

d2(a(g> sv (Sib) = (-l)l°l(ai! (gib-a
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Proposition 13. [29, Proposition 3.1.2] The (TAV, TAV)-bimodule (TV®
(k © sV) <g> TV, di + d2) is a strong deformation retract of the bar resolution
B(TAV;TAV;TAV).

Proof. Define the projection / : B(TAV; TAV; TAV) -» TV <g> (k © sV) <g> TV on its
components /„ : TV <g> (sT+V)®" <g> TV ->• TV <g> (k © sV) <g> TV:

The map / 0 : TV <g> TV ->• TV <g> TV is the identity map.

We define / i : TV <g> sT+V <g> TV ->• TV <g> sV <g> TV by

n

fi(a[svi • • -Vn]b) = ^2(-l)^Vl'"Vi-^avi • • -i>i-i ® SUJ <g> i>j+i • • -vnb
i=l

for a, b e TV, «i, • • • , un e V and n e N*.

For n ^ 2, /„ is the zero map. An easy calculation shows that c^/i = / o ^ -
Since /i(a[saia2]&) = /i(a[sai]a2&) + (-l) | o i | / i(aai[sa2]&), / id 2 = 0. Therefore /
commutes with d2 and is a morphism of complexes.

Of course, / V = «c?TV<g>(kesV)<g>TV- The components

$„ : TV ® (sT+V) 0 n ® TV -)• TV <g> ( sT+V) 0 n + 1 ® TV

of the chain homotopy $ are defined by:

• \san-! \sv]b) = 0,

• • \san-i\sanv]b) = —(—l)£"a[sai| • • • |san|su]&

+$ r a(a[sai | • • • \san]vb)

for a, b G TV, v £ V and oi, • • • , an G T + V. Recall that £ra = |a| + |sai | + - • - + |sara|.
By a double induction first on n and then on the wordlength, check that d$n +

$n-id = V/ra— id, n e N. At the beginning for n = 1, use the formula /i(o[sait;]&) =
l l ® sv ®b. D

Consider now an augmented DGA (TAV, d) such that TAV = T+V. The dif-
ferential d decomposes uniquely as a sum d\ + d2 + • • • + di + • • • of derivations
satisfying di(V) C W = V®\ The differential dx is called the linear part of d.

To pass from the case d = d\ to the general case, we'll use the well-known
perturbation Lemma. For an abundant and recent bibliography, see [28] or [22].

Theorem 14 (Perturbation Lemma) . Let (X,d) ^ (Y,d) (3 $ be a strong
v

deformation retract of chain complexes satisfying / $ = 0, $V = 0 and $ 2 =
0. Suppose moreover that this strong deformation retract is filtered: there exist on
X and on Y increasing filtrations bounded below preserved by d, d, f, V and $ .
Consider a filtration-lowering linear map t: Y —>• Y of degree —1 such that d + t is
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a new differential on Y (Such t is called a perturbation). Then

/oo

are well defined linear maps and (X, 9^) ^ (Y, d+t) (5 $oo is a strong deformation

retract.
By applying the Perturbation Lemma to Proposition 13 we rediscover

Theorem 15. [40, Theoreme 1.4] Let (TAV, d) be a chain algebra. Suppose that V
is a graded module concentrated in degree greater than or equal to one. Define the
linear map of degree +1

S : TV ® TV ->• TV ® sV ® TV

Consider the chain complex (TV ® (k © sV) ® TV, D) where

-D|TV<g>TV = d, D\TV0SV0TV = di + C?2,

di(a® sv®b) = da® sv®b- S(a<E>dv).b - (-l)\av\a® sv ® db

and d2(a®sv®b) = (-l)|o|(a-y ®b-a®vb) for a,b e TV, v e V.

Then (TV ® (k © sV) ® TV, D) is a strong deformation retract of the (TkV, TkV)-
bimodule B(TAV,TAV,TAV).

Proof. By Proposition 13 (TV ® (k© sV) ®TV,d\ +d2) is a strong deformation
retract of B ((TAV,dx), (TAV,dx), (TAV,dx)) where di denotes the linear part of d.
The annihilation conditions are satisfied:

$i(a[sv]b) = 0 and $0 = 0, therefore <J?V = 0.
The projection / is null on TV ® (sT+V)0^2 ® TV and $0 = 0. Therefore

/ $ „ = 0 for n e N.
Since $ra+i$ra(a[sai| • • • \sanv]b) = $ra+i$ra(a[sai| • • • \san]vb), by induction on

wordlength $ra+i$ra = 0 for n ^ 1.
Let k e Z. An element a[sa\\ • • • \san]b is said to have a filtration degree — k if and

only if the sum of the wordlengths of a, a\, ..., an and b is greater than or equal
to k. The filtrations are bounded below since V = V^i. The maps V, / , $, d\ and
c?2 respect wordlengths. Therefore the strong deformation retract is filtered. Define
the perturbation t to be equal to the differential of B ((TAV, d), (TKV, d), (TKV, d))
minus the differential of B ((TAV,di), (TAV,di), (TAV,di)). Since d^2 = d - d±

increases wordlength by 1 at least, t is filtration-lowering.
So finally we can apply the Perturbation Lemma and (TV ® (k © sV) ® TV, 9oo)

is a strong deformation retract of B ((TAV, d), (TAV, d), (TAV, d)).



Homology, Homotopy and Applications, vol. 3, No. 9, 2001 207

The composite t$n maps TV®(sT+V)®n®TV into TV ®(sT+V)®n+1 ®TV, $ 0

is null. Therefore f(t$)k = 0 for k ^ 1. So / = /<x> (The projection is unchanged)
and D := doo = d + ftV = d2 + fd\ V where d\ is the linear part of the differential
of B ((TAV, d), (TAV, d), (TAV, d)). Set dx := / 4 V .

dx(a ® sv® b) = da ® sv® b - (-l)l°l/i(a<g> sdv <g> fr) - (-l)^avU ® sv <g> db.

S(a®dv).b= (-l) |o|/i(a<g>scfo <g>b).

a

Corollary 16. [40, Theoreme 1.5] Let (TAV, d) be a chain algebra such that V =
V^i. Define the linear map of degree +1

5 : TV ® TV -)• sF <g> TV

Consider the complex ((k© sV) <S>TV,8) where

S\TV = d,

5(sv®a) = (-l)\a^l®av- l®va+(

Then ((k © sV) ® TV, 6) is a strong deformation retract of C(TAV, d).

Proof. Tensor by - ®TAV®TAV°I> TV [40]. D

Suppose that (TAV, d) is a HAH model of a path connected space X. Using the
inclusion V<x> and the projection / ^ = / of the strong deformation retract given
by Corollary 16, it is now easy to transport the diagonal of C(TAV, d), denoted
A c ( T A y > a ) , to ((k © sV) <S> TV,5). Define the diagonal of ((k © sV) <S> TV, 5) simply
as the composite (/ <S> / ) ° AC(TAF,9) ° Voo- Now ((k © sV) <S> TV, 5) is an algebra
up to homotopy whose homology is isomorphic to HH* (TAV, d) as graded algebras.
This algebra up to homotopy is the smallest that computes in general the cohomol-
ogy algebra of the free loop space H*(XS ). But the formula for the diagonal of
((k © sV) ® TV, 8) is very complicated: it involves in particular the formula for the
inclusion Voo given by the Perturbation Lemma.

We will now limit ourself to two important cases where the HAH structure on
(TAV, d) is simple:

• The differential d is the sum d\ + d2 of only its linear part d\ and its quadratic
part c?2- The elements of V are primitive: TAV is a primitively generated Hopf
algebra. This will be the subject of Section 6.

• The differential d is equal to its linear part d\ (hypothesis of Proposition 13).
The reduced diagonal A of TAV is such that A(V) C V <g> V. This will be the
subject of Section 7.



Homology, Homotopy and Applications, vol. 3, No. 9, 2001 208

6. The isomorphism between HH*(QC) and HH*{Cy)

Let C be a coaugmented DGC. Denote by C the kernel of the counit. The cobar
construction on C, denoted flC, is the augmented DGA (TA(s~1C), d\ + 0I2) where
d\ and 0I2 are the unique derivations determined by

d\s~1c = —s~1dc and

d2s~1c =

where the reduced diagonal Ac = \ J Xi <8> y%. We follow the sign convention of [16].
i

When restricted to conilpotent coaugmented DGC's, the cobar construction Q, is
a left adjoint functor to the bar construction B [16, Proposition 2.11]. Denote by
ac • C ^ BfiC the adjunction map.

Theorem 17. (Compare with [26, Theorem A], [21, Theorem II] or [38, Theorem
1.1]) Consider a coaugmented DGC C k-free of finite type such that C = k(B C^2-
Then there is a chain complex of the form (C <S> fiC, 5) such that:

i) The composite

, 5) T^¥ nc®c QC^C nc

is a quasi-isomorphism of chain complexes.

ii) The dual of this complex (C <g> ClC,S) is isomorphic to C(CV).

In particular, there is a natural isomorphism of graded modules

We give again the proof of Jones and McCleary since we want to check care-
fully the signs. We have explicited the isomorphism in order to transport later the
algebra structure. Remark that already at the level of complexes, there is a quasi-
isomorphism from C(ftC)v to C(CV).

Before beginning the proof, we precise the signs convention used in this paper:
We have chosen to make constant use of the Koszul sign convention. For example,
let ip : M -»• TV be a linear map. If / G Hom(7V, k) then

In particular, if (M, d) is a complex, the dual complex is (Mv,dv).

Proof. By Formula 1, the adjunction map ac '• C —V BfiC is given by
+00

ac{c) = J2 $][ss" l c il""" Isa^Ci+i], c e C
i=0

where the iterated reduced diagonal A c = ^2 c\ <S> • • • <S> Cj+i. We consider the
inclusion map
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of the strong deformation retract given by Theorem 15 when the chain algebra
(TAV,d) is the cobar construction Q,C. Since the perturbation t is here the ten-
sorization of the d2 of the cobar construction, using the formulas for $ given in
the proof of Proposition 13, an induction on k shows that V<x> is fiC <8> ac ® fiC,
the tensor product of the identity maps and the adjunction map. Tensorization by
- ®fic®fic°p f̂ C gives i).

We now check ii). By applying Corollary 16 when the chain algebra (TAV,d) is
the cobar construction flC, we obtain a strong deformation retract of the cyclic bar
construction C(flC) of the form (C <S> flC,S). The differential S is given by

da = daa, a e ClC,

a) = dc <g> a + (-l)'c'c<g> da

Therefore (C<S>ClC,8) is the complex (C®Ts~1C,di+d<2) where d\ is just obtained
by tensorization and d2 : C <g> ( s" 1 ^)®"- 1 -)• C ® (s" 1^)®" is the sum of n + 1
terms (50, <5i, . . . , 5n given by

(J4 = C ® (a-1^)®*-1 ® [(s"1 ® s"1) o A o a] ® ( a " 1 ^ ® " - 1 - * , 1 < * < n -

and «5n = [C ® (s-'C)^-1 ® s"1] o r ^ ^ ^ , ^ . , ° [A ® (s"1^)®"-1] .

Let A denote the augmented DGA Cv . The differential d2 : A ® (sA)0n ->• A ®
(sA)^n~1 is also the sum of n + 1 terms do, d\, ..., dn (compare to Example 3)
given by

do = [fi°(A® s"1)] (

The isomorphism 0 : s(CW) 4 (s" 1 ^) 7 is such that (s"1)7 o 0 = s"1 [20, p. 276].
For any two complexes V and W, the map $ : Vy ® Wy ->• (V ® W)y given by
®{f®9) = A(ko(/®!7) is a morphism of complexes and is associative, commutative,
natural with respect to linear maps of any degree. Therefore the composite

A® (sA)®n ^ T Cw ® [ ( a " 1 ^ ] ® " 4 [C® (s"1^)®"]7

commutes with di and 5/ for 0 ^ i ^ n. So finally

$ o [A ® T(0)] : C(A) 4 (C ® fiC, (5)v

is an isomorphism of complexes. •

Let V be a graded module. The tensor algebra TAV can be made into a cocom-
mutative Hopf algebra by requiring the elements of V to be primitive [39, 0.5 (10)].
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We will call the resulting diagonal the shuffle diagonal. Dually the tensor coalgebra
TCV equipped with the shuffle product is a commutative Hopf algebra. The shuffle
product is defined by

[V! | . . . \vp] • [Vp+11 . . . \vp+q] = ^ a • [V! I . . . \vp+q]
a

where the sum is taken over the (p, g)-shuffles a and a permutation a acts on
[vi\... \vp+q] by permuting the factors with appropriate signs ([20, Appendix] or
[39, 0.5 (8)]). Suppose that V is k-free of finite type and V = V^i. Then the map
$ : TC(VV) 4 (TAV)V is an isomorphism of Hopf algebras.

Let C be a cocommutative coaugmented DGC. Then the cobar SIC =
(TA(s-1C),d1 + d2) equipped with the shuffle diagonal is a DGH [39, 0.6 (2)\ Du-
ally, let A be an augmented CDGA. Consider the multiplication on A(g>TC(sA) <g> A
obtained by tensoring the multiplication of A and the shuffle product of TJC(sA).
Then the bar resolution of A, B(A; A; A) = (A® TC(sA) <g> A, dx + d2) is a CDGA.
The cyclic bar construction C(A) = (A® TC(sA),dx + d2) is also a CDGA. There-
fore the Hochschild homology of a CDGA A, HH*(A), has a natural structure
of commutative graded algebra [29, 4.2.7]. The reduced bar construction of A,
B(A) = (TC(sA),di +d2) is a commutative DGH [39, 0.6 (1)].

Theorem 18. Under the hypothesis of Theorem 17, if C is cocommutative then
the isomorphism HH*(flC) = HH*(CW) is an isomorphism of commutative graded
algebras.

This theorem has by now been extended by Idrissi [24] to the more general case
where C is a "strongly homotopy commutative" coalgebra.

Property 19. Let if be a graded Hopf algebra. Consider KerA the primitive elements
of K and the graded coalgebra K($>TC(sKevA) ®K obtained by tensorization. Then
the canonical map K <g> TC(sKerA) <g> K —>• B(K;K;K) is a morphism of graded
coalgebras.

Proof of Theorem 18. In the proof of Theorem 17, we have seen that

nC®ac®ttC : (flC ® C ® flC, S) 4 B(flC; flC; SIC)

is a strong deformation retract. The adjunction map ac is the composite of two
morphisms of graded coalgebras:

C 3- TC(ss-1C) 4 TC [sT+is^C)] = BflC.

Consider the coalgebra structures obtained by tensorization on flC ® C ® flC and
QC ® TC(ss-1C?) ® QC. Obviously

nc ® ai ® nc -. nc ® c ® nc -»• nc ® ic(sS-1c) ® nc
is a morphism of graded coalgebras. Since s~1C C KerAnc> by Property 19,

is an inclusion of graded coalgebras. Finally, we have proved that flC ® ac ® SIC is
both a morphism of complexes and of graded coalgebras. Since (SIC ® ac ® SIC)®2
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is a monomorphism, the coalgebra Q.C <g> C <g> fiC obtained by tensorization is a
sub DGC of B(fiC; fiC; ClC). After tensoring by — <E>nc®nc°r> &C and dualizing, we
obtain the natural DGA quasi-isomorphisms

C(CV) 4 (C ® fiC, (5)v

n

7. The free loop space on a suspension

In this section, we show how to compute the cohomology algebra of the free
loop space on any suspension, H* ((T,Y)S J (Theorem 27). A more precise result is
given in Theorem 25: we construct a finite type cochain algebra weakly equivalent
to S* ( (XF) s l ) .

First we introduce some terminology. Let C be a coaugmented DGC. The com-
posite C -? C <g> C <-)• TAC <g> TAC extends to an unique morphism of augmented
DGA's

^ : TAC -»• TAC <g> TAC.

This DGH structure on the tensor algebra TAC is called the Hopf algebra struc-
ture obtained by tensorization of the coalgebra C. Dually, let A be an augmented
DGA. The composite TCA <g> TCA -» A <g> A ^4- A lifts to an unique morphism of
coaugmented DGC's

3 : TCA (g) TCA -»• TCA.

This DGH structure on the tensor coalgebra TGA is called the Hopf algebra structure
obtained by tensorization of the algebra A. Using formula 1, we see that the product
VTGA °f tw 0 elements [oi| • • • \ap] and [&i| • • • \bq] admits the following description:

A sequence a = ((0,0) = (xo,yo), (xi,yi), • • •, (xn,yn) = (p,q)) defined by

{ (XJ-I+l , j / j_i) or

(XJ_I , t/i_i + 1) or
(Xi_i +l,t/i_i + l),

is called a siep 6t/ step path of length n from (0,0) to (p,q). To any step by step
path a of length n, we associate ca = [c\ \ • • • \cn] G A by the rule

if (xi,yi) = (xi-x + l,t/j_i), ith step is toward right,
if (XJ, j/j) = (XJ_I,J/J_I + 1), i*ft step is toward up,

® bVi) if (XJ, t/j) = (xi-! + 1, t/i_i + 1), ith step in diagonal.
Then a straightforward computation establishes

where the sum is taken over all the step by step paths a from (0,0) to (p,q) and
where ± is the sign obtained with Koszul rule by mixing the a\, • • • , ap and the
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&i,--- ,bq. In particular, when the product of A is trivial, the product /UTC^ is the
shuffle product considered on page 210.

Suppose that the DGC C is k-free of finite type and such that C = k © C^i.
Then the map

is a DGH isomorphism.

The starting observations of this section are the following consequences of the
Bott-Samelson Theorem (see [23, A2.Theorems 1.4 and 1.5] and [34, 7.1] for de-
tails).

Lemma 21. Let Y be a path connected space. Consider the Hopf algebra struc-
ture on TAS*(Y) obtained by tensorization of the coalgebra S*(Y). Then there is a
natural DGH quasi-isomorphism

TAS*(F)

Lemma 22. Let Y be a path connected space such that H*(Y) is k-free of finite
type. Consider the Hopf algebra structure on TAH+(Y) obtained by tensorization
on the coalgebra H*(Y). Then there is a HAH quasi-isomorphism

eY : TAH+(Y) 4 S.(fiEy).

In particular, the Hopf algebra on TCH+ (Y) obtained by tensorization of the algebra
H*(Y) is isomorphic to H*(QT,Y).

We can choose @Y to be natural in homology. By the lifting lemma [17, 3.6],
such ®Y is natural up to homotopy of algebras.

Lemma 23. Let C be a chain coalgebra k-free of finite type such that C =
Consider the Hopf algebra structure on TAC obtained by tensorization of the coalge-
bra C. Denote by A the cochain algebra dual of C. Then there is a natural structure
of DGA on the cyclic bar construction C(k© s~1A) on the trivial cochain algebra
(k© s~1A) such that the quasi-isomorphism of complexes given by Theorem 17

becomes a DGA quasi-isomorphism. The product on C(k© s~1A) satisfies the fol-
lowing definition:

Definition 24. Let A be an augmented DGA. Consider the Hopf algebra structure
on TCA obtained by tensorization of the algebra A. Consider the complex (k©s - 1A)



Homology, Homotopy and Applications, vol. 3, No. 9, 2001 213

equipped with trivial product. The formulas

(1 <8 m).(l <8 TO') =1 <8 /UTC^(TO <8 TO'),

(s~1a <8 m).(l ® OI . . . an) = s - 1 a <8 /zTC^(m <8 ct\... an)

± s~1iiA(a <8 an) ® /UTC^(TO <8 a i . . . a n _i) ,

(1 <8 a\... an).(s~1a <8 TO) = ± s - 1 a <8 / ^ ^ ( a i . . . an <8 TO)

± s~Vvi(«i <8 a) <8 /UTC:4(a2 . . . an <8 TO)

and

(s - 1 a <8 m ) . ^ " 1 ^ <8 TO') =0.

for a, a' G A, TO, TO' and o i . . . an G TA and where ± are the signs obtained exactly
by the Koszul sign convention, define a product on C(k ©s~1A) = (k ©s~1A) <s>TA,
the cyclic bar construction on (k©s - 1 A) . We call this product on C(k©s - 1 A) and
the resulting product in HH*(k(B s~1A), the products perturbed by the algebra A.
If the product on A is trivial, these products reduce to the shuffle products.

We can now state the main results of this section.

Theorem 25. Let Y be a path connected space. If S*(Y) is weakly equivalent as
k-free chain coalgebra to a chain coalgebra C k-free of finite type such that C =
k © C ^ i . Then the singular cochains on the free loop spaces on the suspension ofY,
S*{{TY)S ) is weakly equivalent as cochain algebras to the cyclic bar construction
C(k© s~1Cv) equipped with the product perturbed by the algebra C v .

Remark 26. If Y is a simply connected CW-complex of finite type then Y satisfies
the hypothesis of Theorem 25. Indeed, S*(Y) is weakly equivalent as k-free chain
coalgebras to the bar construction B5* (flY) and so to the bar construction of the
Adams-Hilton model of Y, BA(Y).

Theorem 27. Let Y be a path connected space such that H*(Y) is k-free of finite
type. Consider the Hochschild homology on H*(T,Y), HH*(k(Bs~1H+ (Y)), equipped
with the product perturbed by the algebra H*(Y) (Definition 24). Then there is

natural isomorphism of graded algebras H* ((T,Y)sl J = HH*(H*(T,Y)).

It is worth noting the following particular case of Theorem 27.

Corollary 28. Let Y be a path connected space such that Ht,(Y) is k-free of fi-

nite type. If the cup product on H*(Y) is trivial, then H* ((EY)S J is naturally

isomorphic as graded algebras to HH* (H*(EY)) equipped with the shuffle product.

This Corollary of Theorem 27 can be proved more easily by applying just Lem-
ma 22, Theorem 11 and Theorem 18.

We show now that the algebra H*((EY)S ) has a particular form.
Let V be a graded module. The circular permutation to the right r acts on TnV

by
r . [«i | . . . \vn] = ( -I)!"-!!"1-"-1![«n |« i | . . . K _ i ] .
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Define the module of invariants under r by

TnVT ={xe TnV, T.X = x} and TVT =
ra=0

Define the module of coinvariants under r by

TnV
TnVT = -r ^-^ and TVT ={x-T.x,xeTnV}

Definition 29. [36, 2.2.11] Let R be a graded algebra. Let M be a (R, i?)-bimodule.
The graded module R(BM, product of R and of M equipped with the multiplication

(ri,mi)(r2,m2) = {nr2,r1 •m2+m1 • r2)

is a graded algebra called the trivial extension of R by M.

Remark that a graded algebra of the form R®M where R and M are two graded
modules is a trivial extension of R by M if and only if R is a subalgebra of R © M
and the product of elements of M is always null.

Property 30. Consider a DGA of the form (R © M, d) where the underlying graded
algebra is a trivial extension of a graded algebra R by a (i?, i?)-bimodule M. If the
differential d satisfies

d{R) C M and d|M = 0.

Then

i) Ker(d|i{ : R —>• M) is a graded subalgebra of i?.

ii) The graded algebra H(R © M,d) is a trivial extension of ker(d|_R : R ->• M)
by coker(d|fl : i? ->• M).

Corollary 31. Lei Y be a path connected space such that H*(Y) is k-free of finite
type.

i) The invariants of the Hopf algebra TJCH+(Y) =* H*(flT,Y) form a graded
subalgebra, denoted TCH+ (Y)T.

ii) The algebra H* ((EY)S J is isomorphic to a trivial extension o/TCH"+(Y)r

by s"1 [T+H+(Y)T], that is the graded module of coinvariants of positive length
up to a desuspension of degree.

When k = Q and Y is a wedge of spheres, this Corollary has been proved by
Parhizgar [36, Theorems 2.2.4 and 3.2.2].

Proof. The cyclic bar construction on (k (B s'1 H+(Y)), C(H*(EY)), equipped
with the product perturbed by the algebra H*(Y), is a cochain algebra (Lemma 23).
The underlying graded algebra of C (H* (£ Y)) is a trivial extension of R = TCH+ (Y)
by

M = s^H+iY) ® TH+(Y) = s'1 [T+H+(Y)] .



Homology, Homotopy and Applications, vol. 3, No. 9, 2001 215

The differential d of C (#*(£Y)) is given by

d{s~1y[yi\...\yn]) = Q and

<%i| • • • \yn]) = s ' V N • • • \yn] - s^ r . [2/11 ... \yn]

for y, j / i , . . . , yn G H+(Y). Therefore, by Property 30, the Hochschild homology on
H*(EY), HH*(k(Bs~1H+(Y)), equipped with the product perturbed by the algebra
H*(Y) is a trivial extension of TCH+(Y)T by s"1 [T+H+(Y)T]. By Theorem 27,

this trivial extension is isomorphic to the algebra H* ((EY)S 1. •

Property 32. Let if be a graded Hopf algebra. The diagonal of the coalgebra
B(K; K; K) restricted to K <g (k © sK) <g K is the (K, iQ-linear map given by

A[sx] = [sx] ® [] + [sy] (E>z\} + (-l)M[]y ® [sz] + [] ® [sx],x e Tt

where the reduced diagonal Aa; = Y^ V ® z-

Proof of Lemma 23. The tensor algebra TAC is equal as DGA to the cobar on the
DGC k © sC with trivial coproduct. Therefore by Theorem 17, we get immediately
a natural quasi-isomorphism of cochain complexes

But we have to remember how this morphism decomposes in order to transport the
multiplication from C(TAC)V to_C(k© s'1^).

Since the differential on TAC is only linear, by Proposition 13, the canonical
inclusion

TC ® (k © sC) ® TC 4 B(TAC; TAC; TAC)

is a quasi-isomorphism of complexes. Since the reduced diagonal of TAC, ATA(^
embeds C into C_<g> C, by Property 32, TC ® (k © sC) ® TC is a sub DGC of
B(TAC; TAC; TAC). By tensoring by - ®TAc,g,TAC TAC<' w e obtain the DGC (k ©
sC) ® TC with differential given by Corollary 16 and diagonal given by

A(sx®c) =sx ® c' ® 1 ® c" + (-l)|c||2|st/(g)c'(g)l(g)c"^

+ (-i)\v\+WU»*\i (g, yc' ®sz® c" + (-l)lc ' IMl ® c'<8> ax <8> c"

for x e C, c e TC and where the reduced diagonal Aa; = J2y<E>z and the unreduced
diagonal Ac = ^ c' ® c" • The canonical inclusion

(k © sC) ® TC 4 C(TAC)

is a DGC quasi-isomorphism.
In order to dualize (for details, review the proof of Theorem 17), we see that the

diagonal on (k © sC) ® TC is the sum of three terms,

ATAU : TC ->• TC ® TC,

Ai : sC ® TC -»• sC ® TC ® TC

and
A2 : sC (g TC -)• TC (g sC (g TC.
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The first term ATA^ is just the diagonal of TAC. The second term Ai is the com-
posite

5 ) o (C <g TC <g TC <g i) o (C <g rC ) T^0 T^) o (Ac <g ATA^) o (s"1 <g TC)

where i denotes the inclusion C M- TC. The third term A2 is the composite

C ® S ® T<^) ° (* ® TC,TC ® TC) ° (AC ® ATA^) o (s"1 (g) TC).

Therefore the product on (k © s~1A) <g TA is the sum of three terms: the product
lir^-j of TCA, the dual of Ai : s"1]? ® TA ® T l -> s"1]? (g TA and the dual of
A2 : TA ® s " 1 ! ® T l -> s " 1 ! ® T l •

Proof of Theorem 25. By Lemma 21 and Theorem 2, there is a natural DGC quasi-
isomorphism

Since the cyclic bar construction (Property 8), dualizing and tensorization pre-
serve quasi-isomorphisms between k-free chain complexes, C(TAS*(Y))V is weakly
equivalent as cochain algebras to C(TAC)V. By Lemma 23, there is a DGA quasi-
isomorphism

C(TAC)v4C(k©s-1CV).

Therefore C(k © s^W) is a weakly DGA equivalent to S*((T,Y)sl). •

proof of Theorem 27. Using Lemma 22, Theorem 11 and Lemma 23 with C =
H*(Y), we obtain the natural isomorphism of graded algebras

H* ((Y,Y)sl\ =* HH*(TAH+(Y)) =* HH*(H*(YY)).

D

Example 33. Y = Sd, d ^ 1. If d ^ 2 using Remark 26, 5*(5d) is weakly DGC
equivalent to B£lH*(Sd), therefore to H*(Sd). By [17, 7.3], there is a DGH quasi-
isomorphism i l^S 1) 4 S^S1). So by Theorem 25, as DGA

5* ((5 d + 1 ) s l ) ~ CH*(Sd+1) = (E(s-1v)®TCv,d2)

where v is an element of degree d. If d is even in k, as DGA

S*

and

as graded algebras. We suppose now that d is odd. By dualization, TCi> = Ev
TC(f2) as graded algebras. So as cochain algebras

S* ( (S d + 1 ) s l ) ~ Eis^v) ® Ev ®r(v2),d2jk(v2) = 2(s-1v)vlk-1{v2),k > 1.
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Therefore, over any commutative ring k, the graded algebra H* ((T,Sd)sl j is the
module

k 0 (2k)r+(t;2) 0 k?;.r(?;2) 0 k(S-\;).r(?;2) 0 (^.(s^v).^2)

equipped with the obvious products. In particular, if \ e k, all the products are
trivial.
Example 34. Comparison of Y = QPd and Y = S2 V • • • V S2d, d^l. The Adams-
Hilton model of CPd is QH,,(CFd). Therefore (Remark 26), S*(CPd) is weakly DGC
equivalent to .ff*(QP ). So by Theorem 25, as cochain algebras

S* ((XCPd)sl) ~ C(H*(T,CFd)).

Similarly as cochain algebras

S* ( ( S 3 V • • • V S2d+1)s1^ ~ C(H*(S3 V • • • V S2d+1)).

The cochain algebras C(H*(Y,CFd)) and C(H*(S3 V • • • V S2d+1)) have the same
underlying cochain complex. But the product on C(iJ*(SCPd)) is the product per-
turbed by the algebra H* (QPd) and is far more complicated than the shuffle product
onC(H*(S3 V---V S2d+1)).

Remark 35. Theorem 27 claims that the algebra H* ((T,Y)SJ depends functorially

on the algebra H*(Y). But it is useful to remember that H* n £ Y ) s l J depends
functorially on the Hopf algebra structure of the loop space homology H*(flY,Y) =
TAH+(Y).

For example, if we return to Example 34, we obtain the weak equivalences of
cochain algebras

S* ((Y,CFd)sl) ~ C (TAH+(CFd)Y ~ CH*(T,CFd)

and

S* ( ( 5 3 V • • • V S2d+1)sl^j ~ C (TAH+(S2 V • • • V S2d))V ~ CH*(S3 V • • • V S2d+1).

If ji e k then by a Theorem of Anick [2, 3.12]

TAH+(CFd) =* TAH+(S2 V • • • V S2d)

as graded Hopf algebras. And so we have the isomorphism of cochain algebras

C (TAH+(CFd)\ V =* C (TAH+(S2 V • • • V 52d))V .

So finally, if 2,.. . , d are units in k, we have the isomorphism of graded Hopf algebras

H*(flT,CFd) =* H* (fl(S3 V • • • V

and the isomorphism of graded algebras (Compare with Theorem 39 or equivalently
the Theorem in [13])

H* ((T,CFd)sl\ =* H* ((S3 V • • • V S2d+1)sl) .
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The converses can be proven easily (Compare with [34, 9.9], [12, §4] or [35,
4.4]). Denote by x2 the generator of H2(flT,CFd) =* H2 (fl(S3 V • • • V S2d+1)). In
H*(nT,CFd), xi, £ 0. If d\ = 0 in k, xi, = 0 in H* (fl(S3 V • • • V S2d+1)). Therefore,
when d\ = 0 in k, there is no isomorphism of graded algebras between H*(flT,CF )
and H* (fl(S3 V • • • V S2d+1)). For any space X such that H*(X;1) is Z-free of
finite type,

X;—) 9* H*(X; k) <g>k —dlkj dlk

as graded algebras. So we have the implications:

H*(nT,CFd;k) =* # * (ft(S3 V • • • V 5 2 d + 1 ) ;k) as graded algebras

=> # * (ftXCPd; -^-) =* # * [Q(S3 V • • • V 52 d + 1) ; -^- ) as graded algebras
d'.k \ d'.kj

k 1
—r— is the null ring => — G k.
o!k o!

We prove now that if d\ has no inverse in k, there is no isomorphism of graded

algebras between H* ( (XCP d ) s l ) and H* ((S3 V • • • V S2d+1)sl). We have the se-

quence of isomorphisms of modules [29, 5.3.10]

- HHt (TA(a;2,...,x2dj) - T(x2,...,

Since x2,..., x2d are elements of even degree, H* n S Q P d ) s ;Z j is Z-free of finite
type. So as for the loop spaces, the proof for the free loop spaces reduces to the case
where d\ = 0 in k. For X = SCPd or S3 V • • • V S2d+1, by Serre spectral sequence,
the inclusion QX ^ Xs induces in cohomology an isomorphism in degree 2 and a

monomorphism in even degree. Therefore if d\ = 0 in k, xd ^ 0 in if* n S C P d ) s l J

whereas a;̂  = 0 in if* ((S3 V • • • V 5 2 d + 1 ) s l V

8. The Hochschild homology of a commutative algebra

If a HAH model of a path connected pointed space X is the cobar construction on
a cocommutative chain coalgebra C k-free of finite type such that C = k © C^2, by
Theorems 11 and 18, the free loop space cohomology of X, H*(XS ), is isomorphic
as graded algebras to the Hochschild homology of the CDGA C v . In this section,
we give various examples of such a space X.

Denote by A the cochain algebra C v . We suppose now that A is strictly com-
mutative (i. e. a2 = 0 if a e Aodd) and that A is k-semifree. We start by giving a
method as general as possible to compute the Hochschild homology of A.

Let V be a k-free graded module of finite type. The free strictly commutative
graded algebra on V is denoted AV. The free divided powers algebra on an element
v has already been defined page 196. Using the formula T(V © W) = TV <S> TW
and an argument of direct limit, we define the free divided powers algebra on V,
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denoted TV. A decomposable Sullivan Model of A is a cochain algebra of the form
(AV, d) where V = {V}j^2 is k-free of finite type and d(V) C A^2V, equipped
with a quasi-isomorphism of cochain algebras (AV, d) ^ A If k is a principal ideal
domain, by Theorem 7.1 of [20], A admits a minimal Sullivan model. When k is a
field, minimal Sullivan models are the decomposable ones [20, Remark 7.3 i)].

Anyway, suppose now that we have somehow obtained a decomposable Sullivan
model (AV, d) of A over our arbitrary commutative ring k. Proposition 1.9 of [15]
(See also [21, p 320-2]) is valid over any commutative ring k, since it is proved "
by induction on a basis of V ordered by increasing degree ". Therefore consider the
multiplication of (AV, d):

fj,: (AV,d) ® (AV,d) ->• (AV,d).

By induction on the degree of V, we can construct a factorization of /x:

(AV',d) ® (AV,d) A (AV ® AV ®TsV,D) -^ (AV,d)

such that

(i) D(sv) - (v' - v") e A(V<n) ® A(V<n) ® rS(V< n) for v e Vn,

(ii) D(jk(sv) = D(sv)jk-1(sv) for v e Vodd and

(iii) <p(T(sV)+) = 0.

Moreover, any such factorization satisfies

(iv) i is an inclusion of CDGA's such that (AV ® AV ® TsV,D) is (AV',d) ®
(AV",d)-semifree,

(v) <j> is a CDGA quasi-isomorphism and

(vi) ImD c (AV ® AV")+ ® TsV.

By push out in the category of CDGA's, the multiplication of A extends to a
CDGA quasi-isomorphism from

(A ® A) ®{AV,d)®(Av,d) (AV ® AV ® TsV, D),

which is AgA-semifree, to A The multiplication of A also extends to a CDGA quasi-
isomorphism B(A; A; A) ^ A. Since A is k-semifree, the bar resolution B(A; A; A)
is also A ® Asemifree. Therefore the cochain algebras

C(A)=A®A0AB(A;A;A),

(A ® TsV,D) =A ®A®A (A ® A) ®(Ay,d)®(Ay,d) (AV ® AV ® TsV,!))

and

') = [Al / , d) (&)(Av,d)®(AV,d) (.Av ® AV (

are weakly equivalent as CDGA's ([30, VIII.2.3], for details [34, Section 8] or [3,
2.3.2]). So finally, we have the isomorphisms of graded algebras

HH* (A) ^H*(A® TsV, ~D) =* H* (AV ® TsV, D).
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Proposition 36. The free loop space cohomology on the complex projective space
CP™, H*((CFn)s ), is isomorphic as graded algebra to the Hochschild homology of
H*(€Fn).

The same result (same proof) holds for the quaternionic projective space HP™.

Lemma 37. [2, 8.1g),h)][l, Corollary 2.1] [34, part 1. of Theorem 6.2] Let X <-+
Y be an inclusion of simply-connected CW-complexes. Consider an Adams-Hilton
model of X, equipped with a HAH model structure for X, A(X). Consider an
Adams-Hilton model of Y, AiY) extending the Adams-Hilton model of X. Then
there is an structure of HAH model for Y on AiY) that extends the HAH model
structure for X of A(X).

Proof of Proposition 36. By induction on n, we suppose that the Adams-Hilton
model of QP™"1 equipped with its HAH model structure is the cobar construction
flH^QP""1) equipped with the shuffle diagonal, denoted As. Denote by A the
diagonal on flH*(QP") = TA(z1}.. .,z2n-1}d2) obtained by Lemma 37. This diag-
onal A is different from the shuffle diagonal As only on the top generator z2n-i.
So (As - A)z2n-i is a cycle. Since QCfn « S1 x SIS2""1, for degree reason, it is a
boundary. Therefore, we can construct a derivation homotopy from As to A. •

A decomposable Sullivan model of ̂ TFI is (A(x2,y2n+i),d) with dy2n+i = x"+1-
x2

Using the general method described above, HH*(H*(CFn)) is the cohomology al-
gebra of

/ j j rx i N

—^TT tS>Tsx2,sy2n+1,D

with Dsy2n+1 = sx(n + l)xn. Therefore the graded algebra H*((CFn)sl) is the
module

ke 0 kx^isy)® 0 kxpsxf{sy)

iSN ^ ' ieN*

equipped with the obvious products. When k = Z, this is exactly Proposition 15.33
of [10] (Set ct{ = xji(sy) and /?j = sxji(sy) to make the correspondence). In
particular, if n + 1 = 0 in k, we obtain the isomorphism of graded algebras

H*((CFn)sl) =* H*(CFn) ® H*((flCFn)).

To compute the Hochschild cohomology of a universal enveloping algebra of a
Lie algebra is equivalent to computing the Hochschild homology of a commutative
algebra:

Consider a differential graded Lie algebra (in the sense of [20, l.l(i)]) L such
that L = {Li}i^i is k-free of finite type. The universal envelopping algebra of L,
denoted UL, has a natural structure of DGH [20, l.l(ii)]. If \ e k, the reduced
bar construction B(UL) contains a quasi-isomorphic sub-DGC C*(L) = (TsL,di +
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dk). Its dual, denoted C*(L), is a CDGA called the (reduced) Cartan-Chevalley-
Eilenberg complex. Since C*(L) is cocommutative, the cobar construction ClC*(L)
equipped with the shuffle diagonal is a DGH. The composite of natural DGA quasi-
isomorphisms

nC*(L) 4 flB(UL) 4 UL

is a DGH morphism. By Theorem 18, we get immediately

Lemma 38. Suppose that \ G k. Let L be a differential graded Lie algebra such
that L = {Li}i^i is k-free of finite type. Then there is a natural isomorphism of
commutative graded algebras

HH*(UL)^HHt,(C*(L)).

We give now a large class of spaces which admit the universal enveloping algebra
of a differential graded Lie algebra as a HAH model:

Let r ^ 1 be a fixed integer. Let p ^ 2 be an integer (possibly infinite) such that
v-̂ jjy e k. Consider a r-connected CW-complex X of finite type and of dimension

sj rp. We want to compute the free loop space cohomology algebra H*(XS ). If
p = 2 then, by the Freudenthal Suspension Theorem and Proposition 27.5 of [18],
X is the suspension of a co-H space. And so we have already seen in Section 7,
particularly using Corollary 28, how to compute its free loop space cohomology
algebra H*(XS ). Therefore, we can suppose that p ^ 2. The Adams-Hilton model
of X, A(X), is a chain algebra of the form (TAV,d) on a k-free graded module V
concentrated in degrees between r and rp — 1, endowed with a structure of HAH
model for X. Therefore, by a deep Theorem of Anick [2, 5.6], there exists a free
graded submodule W C TAV such that d(W) embeds into the free graded Lie
algebra generated by W, hW C TAV and such that the DGA morphism

U(hW,d) 4 (TAV,d)

is a HAH isomorphism. This free differential graded Lie algebra (hW, d) is the model
of Construction 8.4 of [2]. By Lemma 38, we have

Theorem 39. With the above hypothesis and notations, there is a natural isomor-
phism of graded algebras

H*(Xsl)^HHt,(C*(L(X))).

This Theorem extends the rational case given by Vigue and Sullivan [41]. When
k is a field, this Theorem has been first proved by Dupont and Hess [13]. We had
the idea of studying free loop space for " large primes" after studying fibrations for
"large primes" in [34].
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