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METHODS OF CALCULATING COHOMOLOGICAL AND
HOCHSCHILD MITCHELL DIMENSIONS OF FINITE

PARTIALLY ORDERED SETS

A. A. HUSAINOV AND A. PANCAR

{communicated by Ronald Brown)

Abstract
Mitchell characterized all finite partially ordered sets with

incidence ring of Hochschild dimension 0,1, and 2. Cheng char-
acterized all finite partially ordered sets of cohomological di-
mension one. There are no conjectures in other dimensions.
This article contains the algorithms for calculating the dimen-
sions of finite partially ordered sets by elementary operations
over rows and columns of matrices with integer entries.

1. Cohomological dimension

Denote by N the set of nonnegative integers, Z the additive group of integers,
Ab the category of abelian groups and homomorphisms. For any subset M C N the
sup will be considered in {—1} U N U {oo}. Thus we let sup 0 = —1.

Let (X, ^) be a partially ordered set (shortly poset). We consider X as a small
category with objects ObX = X, in which for every x, y £ X the set X(x,y) of
morphisms x —¥ y consists of one element if x sj y in X, and X(x, y) = 0, otherwise.
If x sj y and x ^ y, then we write x < y. If neither x sj y nor y sj x, then
we say that x and y are incompatible. If every pair of distinct elements in X are
incompatible, then we say that X is discrete. If for every x, y £ X there exists a
sequence x0 ^ x\ ^ x2 ^ • • • ̂  x2n of elements in X such that x0 = x and x2n = V,
then X is connected. Every subset Y C X will be considered as the poset in which
J/i ^ 2/2 for t/1,2/2 £ Y if and only if t/i ^ j / 2 in I . The maximal connected subsets
of X are called the connected components.

Denote by Abx the category of functors X —>• Ab. For every F £ Abx and n £ N
we have the abelian groups

Cn(X,F)= JJ F(xn).
xo<---<xn

Considering elements of Cn(X, F) as functions with (p(xo < • • • < xn) £ F(xn), we
define homomorphisms dn : Cn(X,F) ->• Cn+1(X,F) by the formulas
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(dn(p)(x0 <•••< xn+1) = E r = o ( - 1 ) V ( a ; o < • • • < £ * < • • • < xn+1)+

( - l ) n + 1 F ( x n < x n + 1 ) ( i p ( x 0 < • • • < x n ) ) .

H e r e ( x 0 < • • • < Xi < • • • < x n + 1 ) = ( x 0 < ••• < X i - \ < x i + 1 ••• < x n + 1 ) , f o r

0 ^ i 4. n + 1.
It is well known that dn+1 o dn = 0 for all n G N.
Let Cn(X,F) = 0 for n < 0. We obtain the complex C*(X,F) =

{Cn(X,F),dn}neZ- Let limx : Abx ->• A6 be the limit functor, limj- : Abx ->• A6
its n-th right derived functors, n ^ 0. Then lim^F are natural isomorphic to groups
Hn(C*(X,F)) = Kerdn/Imdn-1.

Definition 1.1. Let X be a poset. The cohomological dimension cd X is the sup
of n e N for which limj- 7̂  0.

If X = 0 then the set of such n is empty, hence cd 0 = — 1.
Cheng [2] characterized all finite posets of cohomological dimension one.
For each abelian group A we denote by Ax A : X -»• Ab the functor with

AxA(x) = A for all x G X, and AxA(x ^ y) = \A for all x ^ y in X. We denote
Hn(X, A) = limxAx A Let pt be a poset consisting of one element. For every poset
X there is precisely one map S : X —>• pt. This map induces the homomorphisms
Hn(pt,A) -»• Hn(X, A). Let .H"ra(X, A) be cokernels of these homomorphisms. It
is not hard to see that Hn(X, A) =* #"(X,A) for all n > 0, and iI0(X,A) is the
cokernel of the homomorphism A —>• limxAx^. which carries each o f i into the
thread {a}xeX-

Let iJ-1(0,A) = A, and iJn(0,A) = 0 for all n ^ - 1 . When n < - 1 we let
ff"(I, A) = 0 for all posets X.

For any z e X we denote W(z,X) = {x e X : x < z}, X/z = {x e X : x ^ z}.
For every x,y € X the c/osed interval is the subset [cc,y] = {z e X : a; ^ z ^ j/}
of X. A subset 1¥ C X is convex if for any x,y € W the closed interval [x,j/] is
included in W.

Let A be an abelian group, W a convex subset of X. We denote by A[W] : X -»•
A& the functor such that A[W]|W = AWA and A[l¥](^) = 0 for all z £ W. If
VF = {̂ } consists of one element z we denote 4̂[{̂ }] by A[z] : X —>• A&.

Lemma 1.2. Lei A 6e an Abelian group, X a poset, z G X an element, n G N a
number. Then there is an isomorphism

WmxA[z\^Hn-1{W{z,X),A), n ^ 0. (1)

PROOF. For n ^ 2 the assertion is proved in [8, Lemma 3.1]. We will prove it
for n = 0 and n = 1. If z is a minimal element in X then limx^4[^] = 4̂ and
lim -̂Afz] = 0 for all n > 0. If z is not minimal, then limx^4[^] = 0. Therefore,
the assertion is true for n = 0. For V = X/z and W = W(z,X) there is an exact
sequence

0 ->• A[z] ->• AyA ->• A[W] ->• 0.

The long exact sequence associated with l imy gives an exact sequence

>• l imyA[z] ->• 0,
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where limyAyA = A. It follows that liniyAfz] is a cokernel of the homomorphism
A -»• limyA[W]. Hence limy A [z] = H°(W,A). It was remarked in the proof of [8,
Lemma 3.1] that limyA^] =* limJ-A^]. Therefore lim^A^] =* H°(W,A), and (1) is
true for all n ^ 0. Q.E.D.

Definition 1.3. The cohomological height c.h.X of a poset X is the sup of n G N,
for which Hn(X,Z) ^ 0.

If X = 0, or X is a nonempty totally ordered set then c.h.X = —1.
Let CnX be the free abelian group generated by the set of all sequences XQ < •• • <

xn in X. For each n^Owe define the homomorphism Cn+iX —^ CnX on elements
of basis as dn(x0 < • • • < xn+i) = Y^to(~'i-)k(.xo < • • • < xk < • • • < xn+1). It is
well known that homology groups of C*X are isomorphic to the integer homology
groups of the nerve of X [4]. We call it the integer homology groups of X and denote
by HnX. The complex Ab(C*,X, Z) is isomorphic to C*(X, AxZ). Hence we have
the exact sequence of Universal Coefficient Theorem [10, Ch.III, Theorem 4.1]

0 —• Ext(Hn-XX, A) —• H n(X, A) —• Ab(HnX, A) —• 0 (2)

Proposition 1.4. Lei J de a nonempty finite poset. Then

cdX = l + sup{c.h.W(z,X):zeX}. (3)

PROOF. Let n = cd X. The poset X is nonempty, hence n ^ 0. There is F e A&x

such that limJF ^ 0. It follows by [8, Corollary 2.2] that there are i 6 i d and
z e X satisfying limJ-A^] ^ 0, and hence Hn-x{W{z,X),A) ^ 0. For k > n
the groups lim^-A[z] are trivial, therefore Hk~1(W(z,X),A) = 0. Let n > 1. For
VF = W(z,X) the following sequence is exact by (2)

0 —• Ext(Hn_2W,A) —»• J f -^W.A) —»• A&(iJn_!l¥, A) —• 0

For every Abelian group B we have H"(W,B) = lim^+1
JB[^] = 0. Therefore, either

Hn_iW is a nontrivial free group, or Hn_2W has torsion. Each one of these condi-
tions implies Hn-1(W,Z) ^ 0. If n = 1 then H°(W, A) ^ 0, hence W is nonempty
and has more than one components, and H°(W,Z) ^ 0 in this case. Therefore,
if n = cd X ^ 1 then ^™~1(VF(^,X),Z) for some z G X, and consequently
n ^ l+c.h.W(z,X). There are isomorphisms lim -̂Z[a;] = ^ ^ " ^ ^ ( a ; , ^ ) ^ ) , hence
H ' " 1 ^ ^ , ! ) ^ ) for all a; e X and fe > n. Thus, if cd X ^ 1 then the inequality
cd X ^ 1 + c.h.W(x, X) holds for all a; e X.

We have proved cd X = 1 + sup{c.h.W(z,X) : z e X} when cdX ^ 1. If
cd X = 0 then by Laudal [9] each connected component of X contains the smallest
element. In this case Hn(W(z, X), Z) = 0 for all n ^ 0, we obtain cd W(z, X) = - 1
for all z e X. Therefore, if cd X = 0 then sup{c.h.W(z,X) : z e X} = - 1 . Thus
(3) is true for all nonempty posets X. Q.E.D.

2. Hochschild—Mitchell dimension
Let X be a poset. Let X' be denoted the set of all closed intervals in X ordered

by the inclusion:

[xi,yi] ^ [#2,2/2] & [xi,yi] c [2:2,1/2]•
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If it is convenient we consider closed intervals as pairs a ^ b ordered by (x\ ^ t/i) ^
(%2 ̂  2/2) <$ x2 ^ x\ ^ t/i ^ j/2- Baues and Wirshing [1] call X' the factorization
category.

Using [6] we take the following definition of the Hochschild-Mitchell dimension
for posets:

Definition 2.1. Let X be a poset. The Hochschild-Mitchell dimension dimX of X
is the cohomological dimension cd X' of the poset of closed intervals in X.

It has been proved in [6] that Mitchell's definition of the Hochschild-Mitchell
dimension is equivalent to the one above for partially ordered sets.

Mitchell [11] characterized the finite posets of Hochschild-Mitchell dimensions
0, 1 and 2; dim X = 0 if and only if X is discrete, dim X sj 1 if and only if X is
isomorphic to a free category. Related questions was studied in term of the incidence
algebra in [3], [5], [13].

Let X and Y be posets. The ordinal sum X + Y is the set X T] Y ordered in such
a way that x sj y for every x £ X and y G Y, and orders on X and Y are preserved.
We consider the product X°v x Y as the subset of (X + Y)' consisting of pairs x < y
with x £ X and y G Y. A nondecreasing map / : X —>• Y is called strong coinitial
if for all y e Y the integer homology groups of the subset {x e X : f(x) ^ y} are
isomorphic to homology groups of the point.

Lemma 2.2. Let X and Y are posets, T : (X + Y)' ->• Ab a functor. If T\x> = 0
and T\Y> = 0 then l i m ( x + F ) , T = 0, \im1

{x+YyT =* limT|x°i>xy, • • •, l im^ x + F ) ,T =*
limn-1T|x°i>xy, •••, V n ^ 1.

P R O O F . It is proved in [7] that inclusions X' C X' U (Xop x Y) and Y' C
Y'U(Xop x Y) are strong coinitial. Applying [7, Lemma 5.1] to the cover of (X + Y)'
by U = X'U (Xop x Y) and V = Y' U (Xop x Y) we obtain the exact sequence

0 ->• l i m ( x + F ) , T ->• limT|x< 0 limT|F«

->• l imnT|x' 0 limnT|F- ->• H m T l x ^ x F • • •

which with the conditions T\x> = 0 and T\y> = 0 gives the desired isomorphisms.
Q.E.D.

The subset ]x, y[= {z e X : x < z < y} is called the open interval. We denote
[x, y[= {z e X : x 4, z < y} &nd]x,y] = {z e X : x < z ^ y}.

Lemma 2.3. Let X be a poset, A an abelian group. Then for every a < b in X
there exist isomorphisms

lim£-,A[a < b] = Hn~2Qa,b[,A)

for all n ^ 0. If a = b then limx'^4[a ^ b] = A and limx, A[a ^ b] = 0 for n > 0.

Remark 2.4. In particular, if]a,b[= 0 then limMfa <b] = .H"~1(0, A) = A.

P R O O F . For n ^ 3 this was proved in [8, Lemma 3.2]. It follows from [8, Lemma
3.1] that lim^,A[a ^ b] = lim^)6]/A[o ^ b]. Let a < b. Application of Lemma 2.2 to
[a, b[= {x e X : a ^ x < b} and {b} provides isomorphisms

Iimpo>6],A[o < b] = \im?-b\opx{b}A[a < b] - l i m ^ A f a ] - Hn~2Qa,b[,A),
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for a ^ b. If a = b then lim[O)()]/A[o ^ b] = 0 for n > 0. The assertion is evident for
n = 0, since limX'A[a < b] = 0. Q.E.D.

Theorem 2.5. Let X be a poset which is not discrete. Then

= 2 + sup{c.ft.(]a, b[) : a <b}.

P R O O F . The poset X is not discrete, hence dimX Jj 1 [11].By Lemma 2.3
there are isomorphisms lim^,A[a < b] = Hn~2(]a, b[, A) for all n G N, a < b
in X, and A G Ab. The application of [8, Corollary 2.2] to X' gives that the
inequality n Jj dim X is equivalent to the existence of A G Ab and a < b for which
Hn~2(]a, b[, A) ^ 0. Hence, if n = dimX then there exists a <b and A, for which
Hn~2 (]o, &[, A) ̂  0. Remark that if k > n then the groups Hk~2 (]o, &[, B) are trivial
for all Abelian groups B. If n = dimX = 1 then Hi(]a, b[, A) = 0 for i ^ 0 and so
cft.Qa, &[) = - 1 . If n = dimX = 2 then we obtain #"°(]a, &[, A) ̂  0, it follows that
]a,b[ is nonconnected and consequently H°(]a,b[,Z) ^ 0. If n = d imX > 2 then
Hn~1(]a, b[, B) = 0 for all Abelian groups B, and it follows from the exact sequence
of Universal Coefficient Theorem

0 -»• Ext(Hn_3(]a,b[),A) —• iJ"-2((]a,&[), A) —• A&(iJn_2(]a,&[), A) -»• 0

that either Hn_2(]a, b[) is non trivial free, or Hn_3(]a, b[) has a torsion. Every of the
conditions implies that Hn~2{{\a, b[), Z) ̂  0. Therefore dim X ^ 2+sup{c.ft.(]a, 6[) :
a < b}. On the other hand if Hn-2((]a, b[), Z) ̂  0, for n ^ 2, then cd X' ^ n. Hence
dimX ^ 2 + sup{c.ft.(]a, &[) : a < &}. Thus the equality holds.

3. Method of calculating the cohomological height

Let V be the set of all prime numbers p > 1, Zp the additive group of integers
mod p. We introduce a p-cohomological height for the description of calculating the
cohomological height.

Definition 3.1. For p G V the p-cohomological height of a poset X is the sup of
n G N for which Hn(X, Zp) ^ 0.

Remark 3.2. The equality c.h.pX = —1 holds for every p G V if and only if the
groups Hl{X, Zp) are zero for alii > 0 and X is connected or empty. If Hl{X, Zp) =
0 for all i > 0, then the rank of the vector space H°(X, Zp) over the field Zp is equal
to J2i>o(~^y\X^\ where X^ is the set of all sequences x0 < x\ < • • • < Xk, and
\X^\ the number of these sequences. Hence in this case c.h.pX = —1 if and only
if Ei>o(- 1 )1 x ( i ) l ^ 1> and the equality Ei>o(- 1 )1 x ( i ) l = ° holds «/ and onlV «/

Lemma 3.3. Let X be an arbitrary finite poset. Then

c.h.X = swp{c.h.pX : p G V}.

P R O O F . If X = 0 then the equality is clear. Let X ^ 0 and c.h.X = —1. Then
H*(X, Z) = 0 for alH > 0 and H°(X, Z) = Z. Using the exact sequences

0 —> Ext{Hn_xX, Z) — \ Hn(X, Z) —> Ab(HnX, Z) —> 0 (4)
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we establish that H^X = 0 for alH > 0 and H0X = Z. Applying Universal Coef-
ficient Theorem (2) we obtain c.h.pX = - 1 . If c.h.X = 0, then H\X,Z) = 0 for
all i > 0, it follows from Universal Coefficient Theorem that HiX = 0 for all i > 0,
and consequently Hl{X, Zp) = 0 for all i > 0. In this case we obtain c.h.pX = 0.
Considering (4) in the case of c.h.X > 0 we obtain that either HnX is free, or
Hn-xX includes Zp for some peV.lt follows that Hn(X, Zp) ^ 0 for some p&V.
Hence swp{c.h.pX : p G V} JJ c.h.X. On the other hand, the following sequences
are exact for all k Jj n

0 —• Ext(HkX, Zp) —• Hk+1(X, Zp) —• A6(fffc+iX, Zp) —»• 0,

therefore Hk+1(X,Zp) = 0. It leads to c.h.pX ^ c.h.X for all p e V. Thus, the
equality is true. Q.E.D.

For arbitrary matrix with integer entries A = (OJJ ) the p-rank is the rank of the
matrix A mod p = (aijmodp) over the field Zp. The absolute rank is the number
rk A = inf{rkpA : p e V}. It is well known (see [14, §I.6(D)], for example) that for
every matrix A there are invertible matrices S and T, with the determinants ±1,
for which the matrix A = S o A o T has entries 6^ = 0 for i ^ j , where a;; > 0
divide 6J + IJ + I for all 1 ̂  i ^ n, where n is a largest number for which ann ^ 0.

Remark that rk A is the number of ones in A.
It is true for all n e N that rkd™"1 ^ Ei^n(-1) i"™l^ ( i )l- If ^ is a nonempty

poset then there exists n G N for which this inequality is strong, since otherwise
the equalities rkH°(X,Z) = rkd~1 =0 lead to X = 0.

Lemma 3.4. Let X be a nonempty finite poset. Denote

Let n be the largest number for which the strong inequality rkcP"1 < Kn holds. If
n > 0 then c.h.X = n. If n = 0 then

c.h.X = .
0, otherwise.

PROOF. Let TV be largest for which the set of sequences xo < x\ < • • • < XN is
nonempty. Consider complex of abelian groups Cn = Cn(X,AxZp) and homomor-
phisms

We have KerdN = CN. Hence rkpKerdN = \X^\ for all peV.Ii there is p e V
such that rkpd

N-x < |X(W)| then the equality HN(X, Zp) = CN/Im d^"1 implies
that c.h.pX = N and consequently c.h.X = N. Otherwise for every p e P the exact
sequence

0 __• KerdN~1 —• C*"1 —»• ImdN-1 —»• 0

gives the equality rkpKerdN~x = \X(N-V\-\XW\. If n > c./i.X,thenH"(X,Zp) =
0 for all p G "P and hence the following sequences are exact

0 —• Kerdn —»• Cn A • • • ̂  C^ —• 0,
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consequently rkpKerdn = \X^\ + (-l)N~n\XW\. For n = c.h.X there exists
p G V, such that rkpKerdn > rkplmdn. Therefore, for n = c.h.X there is the
inequality

rkplmd"-1 < \X^\ + (-l)N-n\X(N)\.

Thus the lemma is proved for n > 0. Let n = 0. Then H*(X, Z) = 0 for all i > 0,
consequently vkH°(X,Z) = Ko. The poset X is not empty, hence Ko > 0. If
Ko = 1, then H°(X,Z) = 0 and c.h.X = - 1 . If Ko > 1 then H°(X,Z) ^ 0 and
c.h.X = 0. Q. E. D.

4. Algorithms

Calculating the absolute rank rk A of integer matrix. We transform the ma-
trix A to the diagonal form A by the well-known algorithm (see [14], for example).
Then the absolute rank rk A is equal to the number of ones in A. Hence the process
is finished if we see an element on the diagonal of A which is not equal to 1.

An elementary column (row) operation is a composition of the following trans-
formations:

(1) interchange any two columns (rows),
(2) multiply any column (row) by — 1,
(3) add of one column (row) to another.
If S and T are square matrices with detS = ±1, detT = ±1, for which is defined

S o A o T, then the matrix A = S o AoT may be obtained from A by elementary
column and row operations.

The transformation to the diagonal form consists of the following actions:
(a) If an divides all elements of the first column and of the first row, then we

subtract from the i-th row the first row multiplied by an /an for each i ^ 1. Then
we obtain a matrix with an = 0 for alH ̂  1. Analogously we make a\j = 0 for all

(b) Let ||A|| be smallest of the |OJJ| among o^ ̂  0. We interchange two columns
and two rows in such a way that we obtain |on | = ||A||. If on < 0 then we multiply
the first row by — 1. We consider the case when (a) does not hold. Let i be a number
for which an does not divide an. If an < 0 then we multiply the i-th row by —1.
There are q > 0 and 0 < r < an such that an = anq + r. We subtract the first row
multiplied by q from the i-th row and have obtained a matrix A' with ||A'|| < ||A||.
We do analogous actions over columns if an does not divide ay for some j .

(c) Thus we can suppose that an = 0 for i > 1 and a\j = 0 for j'• > 1.
If a^ is not divided by an for some (i,j) then we add the j-th column to the first

column and subtract from i-th row the first row multiplied by q where an = auq+r,
0 < r < an. We obtain A' with ||A'|| < ||A|| and then apply (b).

We obtain that all entries are divided by an. Now, if an = 1, then we apply the
process to the submatrix without the first column and row, and if an ^ 1, then we
stop.
Calculating the cohomological height. Let X be a finite poset. If X = 0 then
c.h.X = —1. We will work with X ^ | . Let TV be the largest number for which the
set of sequences XQ < x\ < • • • < XN is not empty.
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Step 0. Let n = N, Kn = \ \
Step 1. If rk d11'1 = Kn and n > 0, then we let Kn_x = l^""1) \-Kn,n = n-l

and go to step 1.
Step 2. If n > 0, then we let c.h.X = n. If n = 0, then c.h.X = —1 in the case of

Ko = 1, and c.h.X = 0 in the case of Ko > 1.

Example 4.1. Let X be the poset depicted in the following Hasse diagram (directed
downward)

0

2

4,,

The set X^ consists of all sequences xo < x\ < • • • < Xk, for every k ^ 0. So
= {0,1,2,3,4}; XW = {0 < 2,0 < 3,0 < 4,1 < 2,1 < 3,1 < 4,2 < 4};
= {0 < 2 < 4 , 1 < 2 < 4}; X^ = 0. The homomorphism dk : C^ ->• C(fc+1)

is given by \C^\ x |C(f t+1)| matrix of integers, which is transpose of the matrix
defined by the action

k+i

< < < <Xi <••• < xi+i).

i=0

The entries of d° and d1 are given in the tables

0
1
2
3

4

0<2

-1
0
1
0
0

0<3

-1
0
0
1
0

o<4
-1
0
0
0
1

1<2

0
-1
1
0
0

1<3

0
-1
0
1
0

i<4

0
-i
0
0
1

2<4

0
0
-1
0
1

0<2
0<3
o<4
1<2
1<3
K4
2<4

0<2<4

1
0
-1
0
0
0
1

1<2<4

0
0
0
1
0
-1
1

We remark that d° and d1 will be reduced to the following diagonal matrices

d1 =

/

V

1
0
0
0
0
0
0

0
1
0
0
0
0
0

\

/

cP =

/ 1 O O O O O O \
O 1 O O O O O
0 0 1 0 0 0 0
0 0 0 1 0 0 0

y o o o o o o o /

Step 0. n = 2,K2

Step 1. We reduce d1 by elementary row and column operators to a diagonal
matrix d1 and obtain rkd1 = 2. We have rkd1 = K2, let n = 2 — 1,
K<i = 5, and go to step 1.
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Step 1. We reduce of to a diagonal matrix d° and obtain vkd° = 4. We have
rk d° = 4 < K\, and take the next step.

Step 2. n = l>0. Therefore, c.h.X = 1.

Calculating the cohomological dimension. For every x G X we compute
c.h.W(x,X) where W(x,X) = {y e X : x < y}. If X = 0 then we let cd X = - 1 ,
otherwise cd X is equal to 1 + m, where m is the largest among c.h.W(x, X).
Calculating the Hochschild—Mitchell dimension. X = 0 if and only if dim X =
—1. If X is discrete then dimX = 0. Otherwise we compute c.h.]x,y[ for all pairs
x < y. If m is the largest of c.h.Qx, y[) then we let dim X = m + 2.
Calculating the cohomological dimension of a finite topological space.
Let Xtop = (X,TX) be a topological space. The cohomological dimension cd Xtop

of a topological space is the sup of n e N, for which Hn(Xtop, —) : Sh(Xtop) -»• Ab
are not zeros. Here Sh(Xtop) is denoted the category of sheaves over Xtop, and
Hn(Xtop,J

r) cohomology groups of Xtop with coefficients in the sheaf.
Let O(x) be the smallest open subset containing x G X. We let x ^ y •& O(x) C

O(y). Then we obtain the preordered set X. It is known that cd Xtop = cd (X, ^ ) .
Cohomological dimensions of equivalent sets are equal, hence cd (X, ^) is equal to
the cohomological dimension of the corresponding poset.
Calculating the Hochschild dimension of incidence ring. Let X be a small
category. The incidence ring Z(X) consists of sums J2aeMorx

 n<*a w n e r e na € Z
are integers almost all of which are zeros. If X is a category with finite set of
objects, then by [11] the dimension dimX is equal to Hochschild dimension of the
ring Z(X). Therefore, we can calculate the Hochschild dimension of the incidence
ring of a finite poset as the Hochschild-Mitchell dimension.

References
[1] Baues H.-J., Wirshing G. Cohomology of small categories. J. Pure Appl.

Algebra. 1985. V.38, N 2/3. P.187-211.

[2] Cheng C.C. Finite partially ordered sets of cohomological dimension one J.
Algebra. 1976. V. 40, N 2. P. 340-347.

[3] Cibils C. Cohomology of incidence algebras and simplicial complexes. J.
Pure Appl. Algebra. 1989. V.56, N 3. P.221-232.

[4] Gabriel P., Zisman M. Calculus of fractions and homotopy theory. Berlin-
Heidelberg-New York: Springer-Verlag, 1967.

[5] Igusa K., Zacharia D. On the cohomology of incidence algebras of partially
ordered sets. Commun. Algebra. 1990. V.18, N 3. P.873-887.

[6] Khusainov A. A. On the Hochschild-Mitchell dimension of ordered sets.
Sib. Math. J. 1992. V. 33, N 6. P. 1140-1143; translation from Sib. Mat. Zh.
1992. V. 33, N 6. P. 211-215.

[7] Khusainov A. A. The Hochschild-Mitchell dimension of linearly ordered
sets and the continuum hypothesis. Sib. Math. J. 1994. V. 35, N 5. P.
1040-1051; translation from Sib. Mat. Zh. 1994. V. 35, N 5. P. 1171-1184.



Homology, Homotopy and Applications, vol. 3, No. 5, 2001 110

[8] Khusainov A. A. On the global dimension of the category of commutative
diagrams in an Abelian category Sib. Math. J. 1996. V. 37, N 5. P.1041-
1051; translation from Sib. Mat. Zh. 1996. V.37, N 5. P. 1181-1194.

[9] Laudal O.A. Note on the projective limit on small categories. Proc. Amer.
Math. Soc. 1972. V.33, N 2. P.307-309.

[10] Mac Lane S. Homology. Berlin: Springer, 1975.
[11] Mitchell B. Rings with several objects. Adv. Math. 1972. V. 8. P. 1-161.
[12] Oberst U. Homology of categories and exactness of direct limits. Math. Z.

1968. Bd. 107. S.89-115.
[13] Polo P. On Cohen-Macaulay posets, Koszul algebras and certain modules

associated to Schubert varietes. Bull. London Math. Soc. 1995. V.27, N 5.
P.425-434.

[14] Pontryagin L. S. Selected scientific works. Vol.Ill: Continuous groups. M.:
Nauka, 1988. (Russian)

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/
or by anonymous ftp at

ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2001/n5/n5.(dvi,ps,dvi.gz,ps.gz)

A. A. Husainov husainov@knastu.ru
Department of Computer Technologies,
Komsomolsk-on-Amur State Technical University,
prosp. Lenina, 27, Komsomolsk-on-Amur, Russia, 681013

A. Pancar apancar@samsun.omu.edu.tr

Department of Mathematics, Fen Edebiyat Faculty,
Ondokuz Mayis University,
Kurupelit, Samsun, Turkey, 55139


