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TENSOR PRODUCTS OF SPECTRA AND LOCALIZATIONS

FRIEDRICH W. BAUER

{communicated by Walter Tholen)

Abstract
1) The tensor product of two spectra, different from the A-

product, is introduced in such a way that a Kiinneth theorem
holds. 2) Localizations of spectra are treated by using the more
algebraic category of chain functors (instead of the category of
CW-spectra). 3) The localization of a given chain functor K*
can up to chain homotopy be expressed by tensoring K* with
the localization of a fixed chain functor Z*.

0. Introduction

Concerning details about chain functors we refer to [5] §4, resp. §5 for the moti-
vation.
A chain functor K* = {K*,Kl,i', I, <p, K} consists of a functor

if* : & —y ch (= category of chain complexes), (1)

& a suitable category of pairs of topological spaces or of spectra, a subfunctor
/ : K^ C if*, a natural inclusion i' : K*(A) C Kl(X,A) together with some
other structural (non-necessary natural) mappings <p : K')f{X,A) —> K*(X), K :
K*{X) —> Kl(X,A), satisfying certain properties. Every homology theory ft*( ) =
{hn( ),d,n £ Z} admits a chain functor such that the derived homology homology
H*(K*(X,A)) is naturally isomorphic to h*(X,A). In addition the boundary d :
h*(X,A) —> hn-i(A) is determined by the chain functor K. This last property
distinguishes chain functors from simple functors (1) admitting natural sequences

+Kt{X,A)^0 (2)

giving rise to a boundary operator

d : Ht{Kt{X,A)) —• #„_!(#.(A))

(called chain theories, which are only available for ordinary, but not necessarily for
generalized homology theories).
In the present paper we are dealing with the following three objectives:
1) Definition of tensor products of spectra in such a way that, unlike for A- products,
a Kiinneth-theorem holds (§1, 2).
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2) Establishing localizations of chain functors and verification of the Bousfield exact
sequence of a localization but now for chain functors instead of spectra (§5).
Finally:
3) Expressing localizations of chain functors by tensoring them with the localization
of a specific chain functor (cf. §3 resp. §6). Therefore localizations can, at least up to
a chain homotopy, be described, similar to the algebraic case of group-localization,
by means of a tensor product (cf. [11] appendix).
Although our main objective lies in the localization of CW-spectra (i.e. of elements
of the Boardman category), we deal mainly with chain functors, recalling that there
is a close relationship between CW-spectra A, the associated homology theory A*
and the chain functors C* whose related homology theory .H*(C*) is isomorphic
to A* (cf. §4 in ). More precisely: Every generalized homology theory ft* (even
on Top2 or a suitable subcategory) originates from a chain functor C* such that
ft* RJ iI*(C*) (cf. theorem 8.1. in [2]) while on the other hand, each chain functor
C* with compact carrier on CW2 = *p2, the category of CW-pairs defines a CW-
spectrum |C*| such that |C*|* « .H*(C*) (theorem 1.1. in [3]).
Together with the first result this leads to E. H. Brown's representation theorem
for homology theories.
In §1 we introduce the tensor product of chain functors K* <g> L* which is defined
in analogy to the classical <g>-product of chain complexes (cf. [8]).
Due to this fact there is a Kiinneth theorem (theorem 1.7.) for tensor products of
chain functors.
The tensor-product of spectra A, B is defined in §2 by assigning to A*, B*, the
associated homology theories, the chain functors ^C*, BC* and setting

A(g)B = \AC.<8> BC*|.

The independence of A <g> B of the choices of ^C*, BC* can be confirmed by
using the main result of [5], where among other things the concept of a chain
functor, a mapping between chain functors as well as some other relevant details are
recorded. In particular, we call chain functors, whose associated homology satisfies
an excision axiom (hence becoming in this way a generalized homology theory)
regular. Moreover there is need for structures which do not enjoy all properties of a
chain functor (in particular not of a regular one). We call, by an abuse of notation,
these structures irregular-chain-functors (cf. [5] definition 4.1.2). Unlike in [5] we
do not insist, that a regular chain functor has automatically compact carriers.
In §3 we present an example of such an irregular-chain-functor Z* (which is not
associated with any spectrum, because the realization theorem does not apply)
having the property that for any chain functor K* one obtains an isomorphism of
irregular chain functors

K*<g>Z* «K*

(theorem 3.1.). In §5 we describe the process of £-localization with respect to a
subcategory £ C .ft2 (= the category on which the chain functors are defined).
Theorem 5.5. asserts the existence of a Bousfield exact sequence for the localizations
of chain functors:

sA* —> A* —> A£*
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with £-acyclic £A* and £ - local As,*, (cf. definition 4.4. resp. 5.1.).
We may regard as a special case the category £ consisting of one single object £ 6 ^
(with the identity as single morphism) (corollary 5.6.).
If £2 is a subcategory of Top2 and E e 05 (=Boardman category) a spectrum, then
we can look upon E as a specific subcategory of & and define AE * by using this
category (corollary 5.8.).
In §6 we prove the main theorem (theorem 6.5.) asserting that the £-localization
sequence (4) in §5) can be achieved, up to a chain homotopy equivalence, by ten-
soring A* with the specific £-localization of Z*.
This constitutes the topological analogue of a well-known algebraic result about
localizations of a group at a set of primes.
Recently the authors of [9] developed another algebraic approach to stable homo-
topy theory together with an appropriate concept of a A- product.
The proofs in §5, §6 are preceeded by some general results in §4.
All notations and definitions concerning chain functors are recorded in [5] §4 to
which we freely refer without further mentioning.
The results of the present paper are reported in the expository article [4].

1. Tensor products of chain functors
The concept of a chain functor and the associated homology is recorded in §4.

Let K*, L* be regular or irregular-chain-functors as defined in [5] §4, definition
4.1., then we define their tensor product (K <g> L)* :

Suppose (X, A) 6^2 , then we set

(K®L)n(X,A) = 0 Kp{X,A)®Lq{X,A) e (1)
p+q=n

0 0 Kp{X,A)®Lq{X) e 0 Kp{X)®Lq{X,A)
p+q=n p+q=n

where the boundary

dn: (K®L)n(X,A)—*(K®L)n..1(X,A)

is defined as usual for tensor products of chain complexes.
These direct sums are to be understood as amalgamated sums whenever inclusions
like j : X C (X, A) which induce inclusions (e.g. for regular chain complexes) are
involved: So, for example,

x®y€Kp(X,A)®Lq(X)

is identified with

x<8> j#(y)€ Kp(X, A) ®Lq(X, A)

As a result for regular chain functors this reduces to:

(1') (K®L)n(X,A) = © Kp(X,A)®Lq(X,A)
p+q=n
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which is the ordinary tensor product of chain complexes (cf. [8]).
We define:

(K®L)'n(X,A)= 0 K'p(X,A)®L'q(X,A) e (2)
p+q=n

0 0 K'p(X,A) ® Lq(A,A)(B 0 KP(A,A) <g> L'g(X,A).
p+q=n p+q=n

Since -K"*(-) and £*(•) are free, we have for regular chain functors an inclusion

I: (K ® L)'t(X,A) C (K <g> L).(X,A)

For irregular-chain-functors there is still a natural / available, which is not monic.
The mappings %' : K*(A) —> K'if{X,A) resp. for L induce a chain mapping
i' : (K <S> L)* (A) —> (K <g> L)'t (X, A), which for regular K*, L* is an inclusion.
The chain mapping ip : (K <g> L)[ (X,A) —> (K <g> L)* (X) is ipK ® ipL on the
first summand of (2) (<pK, ipL denoting the corresponding maps for K*, L*) and it
is trivial on the remaining two summands 0 • • •.

p+q=n

K : (K ® L), (X) —»• (K ® L)'t (X,A)

maps the first summand of (1) by KK <S> KL .
We are now going to verify the properties of a chain functor as they were recorded
in [5], §4:
Since we have chain homotopies (pK KK ~ 1 resp. for L, the existence of a chain
homotopy (as required in Dl) [5], §4)

if K — 1

follows.
We need

1.1. Lemma: Let C* be any chain functor, d c = k z, in C* (X, A), fcgZ, then
there exist: z', d e C* (X,A), at e C* (A, A), i = 1,2, a3 e C* (A) SMC/I that

I z' + g# ai ~ z, dz' G im i'
/ c' + g # a2 = c + dw, MieC, (X, A) (3)
k z' + i' a$ = dc'.

Proof: There exists z ~ / z' + q# a\ SO that without loss of generality we are allowed
to assume that z = I z' + q# a\. Because of [5] §4 there exist non-natural chain
homotopies j# <p ~ /, ip K ~ 1, hence a chain homotopy (writing simply j for

I K<p ~ j ip K ip ~ J y ~ /.

More precisely there are due to [5], §4 chains D(z'), D(dz') such that

IK ipz' - lz' = dD(z') + D (dz1).

Since d z' e im i', we can, because of [5] §4, Dl") , assume that D(dz') = 0 so that

z = I z' + q# OL\ ~ I Kip z' + g# a\.
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By substituting z we assume without loss of generality that

Z = I K ip z' + q# Cl\.

Since kz = dc, D3) (in [5] §4) implies the existence of a e C* (A) such that

dk K ip z' = —i' da,

kz = kl K ip z' + I i' a + (q# a\ — I i' a)

= kl Kip z' + I i' a + dv

taking into account that g# ka\ — I i'd G C* (A, A) is a cycle, hence bounding
(since C* (A, A) is acyclic).
So

kz = l(kKipz' + i'a) + dv, v e C* (A, A). (4)

However, since kz, hence l{kn ip z' + V d) is bounding, D2) in [5] §4 ensures the
existence of a c[ e C[+1{X,A), b e C* (A) such that

fc« ipKipz' + Kip i'd = dc[ + i'(b).

Due to [5] §4 Dl') we can assume

Kip i' = K i = i'

hence

kKip Kip z' + Kip i' d ~ kK ip z' + i' a.

As a result we find a c'2 e C^ (X, A) satisfying

f c?C2 = kK ip z' + i' d — i' b ,_,
\ = kKipz' + i' a3, d3 e C (A) ^ '

— i' b
d3 e C* (A),

d3 = d — b.

Due to (4) and (5) we realize that

dlc'2 - dc = dlc'2 - kz e C* (A,A)

hence we detect a b\ e C* (A, A) such that

d ( / C2 — c — g # & i ) = 0 .

Because I c'2 — c— g# &i is a cycle, there exist aw' G C* (X, A), &2 G C*
satisfying

= I c2 — c

e C*
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Defining c' = c'2 — u' we conclude with a2 = &i — b2

I c' + q# a,2 = c + dw (6)

dc' = dc'2 — du' = ktvpz' + i' a3 — i' 04,

du' = i' 04 e im i'.

With

d3 = 03 — 04

we obtain

dc' = kn (p z' + i'a3. (7)

Implementing the chain homotopy of the beginning of this proof allows us to replace
K(pz' by z'.
This completes the proof of the lemma.-

1.2. Lemma r/> : if* ((if <g> L)'*')(^, A) —> H* (K ® L)(X,A) is epic (cf. [5]
%4> D2)). Proof: Suppose zK, zL are cycles in Kp (X, A) resp. Lq (X, A), then we
have relative cycles z' , z' in K'p resp. L'q as well as chains aK, aL in ifp (A, A)
resp. I/g (A, A) such that

Let us assume that we have identities (rather than homologies) in (8), then we
deduce

zK ® zL = l(z'K ® z'L) + m{aK)®lL z'L + lK z'K ® g # (aL)+

+q#(aK ® aL) = I

with z'K0L e (if ® L)t (X,A), aK®L e (if ® L)* (A, A).
Hence the homology class {x x <g> ^L} is contained in im %p.
Now it is easy to realize that the same conclusion holds in the general case (8).
Suppose that

is any cycle in (K ® L)* (X, A), then cf, cf are either cycles in if* resp. L* or
the summands are of the form zf ® cf, d cf = mzf, mzf = d cf, for m G Z.
In this case we have

d(zf ® cf + (-If'1 cf ® zf) = 0.
Now we have due to lemma 1.1. (eventually replacing a cycle by a homologous one)

z? = lK z'f + q# bf,

zf = lL z'f + q# bf,

cf = lK c'f + U af,
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cf = lL c'f + q# af

and

as a

therefore

zf ® cf +

+ Kz'f

result

® af + (-:

+ q#(bf ® •

) zf = I (z'f i

i) at (g) z ,

of) + (_i)P-i

3 c'f)

P +("

1# (a

+

-If

f «

(-1)P

, - 1 /_K

3 &f).

* = lzlK0L + q#aK®L,

This completes the proof of lemma 1.2.-

1.3. Lemma: One has (cf. [5] §4 D3))

ker ip C ker 3.

Proof: Suppose we have

j \ •* ~K K>, ~L ~K®L £- 7 ((IS" t>, T\ (V AW
a 2 Cj Q<) Cj — 2 fc / i r a ^ n Qg -ijj* 1 -̂5 ^ / / 5

then we obtain

^®L = ^ dcK ^ CL + ( _ l ) P c f 0 d c i .

Since d cf, dcf are per definitionem bounding, application of lemma 1.1. yields the
same situation as in the proof of the preceding lemma, but with all bf = bf = 0.
As a result the q#(bf <g> af + (—If af <g> bf) terms vanish and we establish

This is equivalent to the assertion of the lemma.-

1.4. Lemma: (K <g> L)* satisfies [5], §4] D2), hence there exists a

p#: imj#^(K ® L)':(X,A)

such that ip /0#* = 1 : im j * —> im j * and

Proof: We use the fact that 1) p^., p^ with the corresponding properties exist
and 2) that D2) turns out to be equivalent to

ker j * C ker p* K. (9)

We form p = p§ <g> ph : im j# —>• (if ® L)" (X, A) which implies obviously
(9).-

We summarize:

1.5. Proposition: The tensor product ((K <g> L)*,1,K,<p,i') of two (irregular)
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chain functors is an irregular-chain-functor.
Proof: The crucial points of the proofs are the subject of the preceding lemmas, the
remaining points (as [5] §4 D2), D4) to the extent in which they have not already
been treated, cf. also definition 4.1) are trivial or immediate.

1.6. Proposition: Let XK : K* —> K*, XL : L* —> L* be mappings of chain
functors, then

\ K <g> XL : (K (g) L ) . — • (K ® L)*

furnishes a mapping of chain functors in a canonical way.

Proof: Follows from the definition of a mapping of chain functors (cf. [5] §4).-

1.7. Theorem: Let K*, L* be two regular chain functors, then there exists for
any (X, A) G A2 a Kunneth formula which is natural in (X, A) as well as in K*
and L* :

0 —• (H,(Kt)(X,A) <g> H,(Lt)(X,A))n —• Hn ((K ® L),(X,A) —•

—>Tor(H.(K.)(X,A), H.(L)(X,A))n_! —»• 0.

Proof: Since according to (1') (K <g> L)* (•) RJ K*(-) <S> L*(-), this is a repetition
of the proof of the Kunneth formula for chain complexes (cf. [8]).

1.8. Proposition: The tensor product of two regular chain functors (resp. with
compact carriers) is regular (resp. has compact carriers).

Proof: The fact that (K<g>L)*( ) has compact carrier is an immediate consequence
of the same property for iC( ), L*( ). In particular are (K <g> L)* (•) free
with canonical base. Because if* (•), L* (•) are free chain complexes, inclusions as
well as i', I (for non- irregular-chain-functors) induce monomorphisms onto direct
summands.-
Let / : (X,A) —> (Y,B) be any mapping such that if*(K*)(/) = /*# as well
as H*(L*)(/) = /* i is an isomorphism. Then we have a mapping between the two
Kunneth formulae for (X, A) and (Y,B). Since

UK ® UL • (H.(K.)(X,A) ® H.(L.)(X,A))n —»• (Jf.(K.)(y,B) ® Jf.(

as well as the same expression for the torsion product are isomorphisms, and the
Kunneth formula is natural, we conclude that

/* = Hn((K ® L) . ) ( / ) : Hn((K ® L).)(X,A) —»• Hn((K ® L

is an isomorphism.
Applying this to an excision map (X, A) —> (X/A, •) assures us that the tensor
product of two chain functors satisfies an excision property, whenever both factors
do.
Since due to 1.5. (K <g> L)* are chain functors, 1.8. follows.-

1.9. Lemma: The tensor product of chain functors is up to an isomorphism asso-
ciative and commutative:

(K ® L)* <g> M* « K* <g> (L <g> M)*



Homology, Homotopy and Applications, vol. 3, No. 3, 2001 63

(K ® L), « (L ® K ) ,

Proof: This is an immediate consequence of the corresponding well-known fact for
chain complexes.-

2. Tensor products of spectra

The (Boardman) category of spectra is defined in [1] or [13]. To each such spec-
trum A there exists a homology theory A*, defined on the subcategory *p2 of CW
pairs.
According to [2] theorem 8.1. we obtain a (regular) chain functor ^C* such that
the associated homology theory .ff^^C*) is isomorphic to A*.
This is true even if A* is defined on Top2 and A not necessarily a CW spectrum.
On the other hand there exists a functorial relationship between regular chain func-
tors C* and spectra |C*|, such that .ff*(C*) ~ |C*|* (cf. [3] theorem 1.1.).
Let A, B be two spectra, then we define their tensor product by

In order
need:

to ensure the

A <g B

independence

=

of A (g) B of the choices of AC *, Bc,
(1)

we

2.1. Lemma: Suppose ^K*, A~L* (BK*, BL*) are two regular chain functors
such that there exists a mapping of chain functors

inducing isomorphisms A\* : H* (AK.*

\ A K A) ̂  . tl ^ \ ±V

i .H* (^L*) (resp. for BK). Then

is an isomorphism of homology theories.
Proof: Observe that (^A <S> BX)* is a natural transformation of homology theories.
We have short exact Kunneth sequences

H«(BK)(-))n -»• Hn(
AK

• Hn(
AL

• Tor(H.(AK)(-),

Tor(AK,BK)

fitting into the commutative diagram with isomorphisms ^A* <g BA*, Tor(A\*, BX
Hence the third morphism (^A (g BX)t, is an isomorphism for any (•) G A2. This
completes the proof of the lemma.-

2.2. Lemma: Suppose ^K*, ^L* BK*, BL* are as in 2.1. and assume that
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there exist chain transformations

(not necessarily of the same length) such that each transformation induces an iso-
morphism of the associated homology. Then there exists a chain of transformations

(A'K <g BT£) y • < • • • • y (A~L <g B~L)

such that each transformation induces an isomorphism on the homology level. Hence
there exists a natural isomorphism

(A~K <g BK)* w (^L <g BL)*. (3)

Proof: We can without loss of generality assume that the chains in (2) are of equal
length (by eventually inserting identities in one or the other direction). Application
of lemma 2.1. to each seperate step yields the result.-

2.3. Lemma: LetAK.*, BK*, ^L*, BL* be chain functors such thatAK.* andA'Lt,
(resp. for B) yield isomorphic homology theories. Then there exists an isomorphism
(3), which is induced by a chain of transformations of chain functors, each inducing
an isomorphism of homology theories.
Proof: According to theorem 1.1. in [5] there exist two pairs of transformations of
chain functors

Aj£ , _ , Aj^

BTS- , , BT

K * y • i l i*

satisfying the assumption of 2.2. So we accomplish an isomorphism

(^K (g) BK)* R; (^L (g BL)*

which is induced by a chain of transformations of chain functors.-

2.4. Corollary: The tensor product A <g B of two spectra A and'B is determined
by (1) up to an isomorphism of spectra in the Boardman homotopy category.

Proof: Since | • | is a functor such that H* (K*)(-) RJ |K*|*, every transformation
of chain functors A : K* —y L*, with A* = isomorphism induces an isomorphism
|K*| ss |L*| in the Boardman homotopy category (cf. [1] or [13]).) The assertion
follows therefore from 2.3.-

Remark: Corollary 2.4. guarantees that, due to the main result of [5], the isomor-
phism class of A (g B depends only on the isomorphism classes of the spectra A
and B, it does in particular not depend on the choices of the chain functors ^C*
resp. BC*. Since there are many different ways to detect for a given spectrum A
such a chain functor ^C* (cf. for example the remarks in [5] §5) this facts provides
us with some freedom for the individual construction of a tensor product of two
spectra.
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As an immediate corollary we deduce from 1.7., (1) and 2.4.:

2.5. Corollary: Let A, B be two spectra, then there exists a Kuenneth formula

0 —• (A*(-) ® B*(-))n —• (A ® B.)(-) —• Tor(A*(-),B*(-))n-i —• 0 (4)

which is natural in (•), as we// as in A, B .

As a first application of this tensor product let G\, G2 G Ab, be abelian groups,
K(Gi) the associated Eilenberg-MacLane spectra, then we have:

2.6. Theorem: Suppose Tor(Gi, G2) = 0, then there exists an isomorphism in the
Boardman homotopy category

. (5)

Proof: We deduce from 2.5. (Tor(- . . , . . . ) = . . . * . . . )

0 —

that the derived homology theory oi K(Gi )®K(G2) is an ordinary homology theory
with G\ ® G2 as coefficient group. Hence (1) follows.-

3. An example

We pointed out in §1 already that for irregular-chain-functors if* (X,A) <S>
L* (X, A) is not necessarily isomorphic to if* (X, A) <g> L* (X, A) 0 if* (X, A) ®
L*{X) © if* (X) (giL* (X, A). We display an irregular-chain-functor Z* such that

(K (g) Z)* « K*,

for any chain functor K* (cf. [5] §4 concerning the definition of equivalences of
irregular-chain-functors).
We set

Q...dsewhere (1)

denoting by (a) the free abelian group generated by a, and

Zn(X,A) = 0 . . . A # 0 .

Let / : (X,A) —> (Y,B) be a mapping, then we define either f#(zx) = zy or

Moreover we set Z'n (X, A) = Zn (X), <p(zx) = zx, K(ZX) = zx, whenever

j
\ 0 •••
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This furnishes the structure of an irregular chain functor.
We have (for X ^ | , the remaining case is trivial)

fit (~

Z* (X,X) is always acyclic, and I'{ZA) = zx, so that

follows. In the same way we get ker j * C ker p*K*.
On the other hand j# , / are not inclusions.
This furnishes an irregular-chain-functor Z*.
We have for any chain functor K*

(K <g Z)*(X, A) = K* (X,A) <gZ* (X,A) 0 if* (X, A) <g> Z

0 if* (X) <B> Z* (X, A) = if* (X, A),

and

(K®Z)>n(X,A) = © K^X,A)®Z'g(X,A)(B
p+q=n

0 © K'p pf,A)<gZ3(A,A) e © ifp (A,A)(g)Z'3 pf,A) (2)
p+q=n p+q=n

The inclusion A : if*(-) —> (K (g) Z)*(-) which is defined by this procedure, is a
mapping of (irregular) chain functors, i.e. compatible with the structure maps i', I
and, since Kt,{A,A) is acyclic and (K <g> Z)'* D if̂ ,, an equivalence of irregular-
chain-functors in the sense of definition 4.2. in [5]. To this end we have to observe
that the sum (2) is an amalgamated sum in the sense of the definition of the <g>-
product of chain functors (cf. §1).
Moreover Z*, Z'* have obviously compact carriers and satisfy a homotopy axiom
([5] §4 D4)).
We have

ffn (z.)(x) = | o . . . e / s e w f t e r e

and summarize:
3.1. Theorem: There exists an irregular-chain-functor with compact carriers Z*
such that for any chain functor K* there exists an equivalence of irregular-chain-
functors (cf. [5] definition 4-2)

(K (g) Z), « K,

. Remarks: 1) The chain functor Z* a) does not induce monomorphisms for inclu-
sions, b) does not admit a / : ZJ, (-X", A) —>• Z* (X, A) which is monic and c) does
not turn all excision maps into isomorphisms (e.g. (X, 0) —> (X+,-k), X ^ 0).
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So Z* is not a regular chain functor in the sense of [5] definition 4.1.-
2) There can be no regular chain functor C* such that

(K ® C). « K,

for any regular chain functor K*:
Assume to the contrary that such a C* exists, then we would have a Kunneth
formula

implying that always

Assume to this end that Hq(C*,) / 0, ̂  / 0, then we detect a K* such that
Ho(K*)(-) = 0, iJ_g(K*)(-) = Z. Such a generalized homology theory clearly exists.
This leads to a contradiction. Take on the other hand a K* satisfying Ho(K*)(-) =
Z, then i?o(C*)(-) = Z follows from the Kunneth formula.
However (3) is impossible for a homology theory.
3) In particular there does not exist a spectrum B such that

for every spectrum E.

4. Preparation of the localization process

The localization process requires some general constructions which we display in
this section:
Suppose £ C £? is a subcategory, C* a (regular or irregular) chain functor on
&2, K* a (regular or irregular) chain functor on £. Since we do not know anything
about £ (it may not contain any compact objects at all) it does not make sense to
assume that K* has compact carriers. Let a : K* —> C*|£ be a g-transformation
of chain functors (cf. [5] definition 4.3.).

4.1. Theorem There exists a chain functor K* on A2, mappings of chain functors
T : K* —> K* | £, a : K* —> C* such that
1) (<3|£)T = a, and r : K* c K* | £ is a strong deformation retract.
2) For any g-transformation j3 : L* —> C*, L* any chain functor on &2,
7 : I/*|£ —> K*, satisfying (/? | £) = a j , there exists a up to chain homotopy
unique r : L* —> K* such that ar = /3,r\£, = Tj
3) If K*, C* are regular, then /, i', ((X, A) c (Y,B))# /orK» are inclusions onto
direct summands (cf. [5] §̂  D3) *)); if all involved chain functors have compact
carriers, then K* can be assumed to have compact carriers.

Proof: The proof is a slight adaptation of the classical way to accomplish Kan ex-
tensions.
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I) Assume we are dealing not with chain functors C*, K* but merely with func-
tors C* : £2 —> ch (=category of free chain complexes with natural bases),
if* : £2 —> ch (without the additional structure of chain functors). Suppose
a e C*(X,A), (X,A) e £2, then we consider collections

a={a; af e K.(E,F)\f: (X,A)—> (E,F) e £} (1)

satisfying

<*gf = 9#af, g e Z((E,F), (E',F')) (2)

and

/# (a) = a(af). (3)

We set

Kn(X,A) = ({a|ae Cn(X,A)})

(• • •) denoting the abelian group generated by • • •. If h e 8?((X, A), (Y,B)), we
define

M a ) = (Ma); a/ftl/e &2( (Y,B), (E,F)), (E,F) e £}, (4)

and

da = {da; daf}.

Assuming that C* has compact carrier, then, by a well-known technique we equip
if* : £2 —y ch with compact carriers: We perform the previous construction only
for compact (X, A) and form the direct limit.
So K* : &2 —> ch becomes a functor with compact carrier, whenever K* and C*
have this property.
Setting <3(a) = a, yields a natural transformation a : K* —> C*.
We set

r : K, —»-K,|£

c i—y {«(c);/#(c)}

c in a base of K*(X, A), (X, A) e £ and for given j3 : L* —>• K* as in the theorem:

r : L, —»• K,

C _•{£(<;); 7 / # ( C ) } .

Since iC*(X, A) has a natural base, r, /? are natural. We deduce

ar(c) = a{a(c); /#(c)} = a(c)

and

ar(c) = /3(c), ctL*(X,A),

TJ(C) = {aj(c); /#T(C)} = {^(C
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c€Lt(E,F), f:(E,F)—t(E',F')]n£.
Moreover for (E',F'), (X,A) e £, / : (X, A) —• (E',F'), we have a

{a;af} i—y on, 1 = l(x,^)

and observe that in this case T |£ is an isomorphism.
We have a subcomplex if°(X, A) c -ftTra(X, A) consisting of all those a with a =
a (a) = 0. Now we define

K*(X,A) = K*(X,A)UconeK°(X,A).

The mappings a, r an be extended over Kn. We will deal with r : K* —y K* | £
at the end of II) of the present proof. Unlike for Kn we have a uniqueness assertion
for r:
Suppose r,f : L* —y K* be such that ar = af, then we deduce r ~f.
Proof: If f(c) = {a;a,f}, then af(c) = a = j3(c) implies f(c) = {/3(c); a /} , hence
f(c) — r(c) = {0; a/ — /#(c)} e if°, so that the existence of a chain homotopy
r ~ f follows.
II) We are now obliged to endow K* with the structure of a chain functor. This is in
a first step accomplished for K*, followed by attaching the cone over K° afterwards.
In detail we have
1) to establish non-natural mappings <p, K together with chain homotopies D\ :
(p K ~ 1, D2 : j# <p — I, such that the following additional conditions hold for

2) Every cycle z e Zn(C* (X,A)) is associated with a x e Cn+1(X,A), z' e
C'n (X,A), dz' e imi', a e Cn (A, A) such that

I z' +q# a = z + dx;

3) ker i/> C ker 5 (cf. [5] §4, i/> : Ht(C'J(X,A)) —»• Jf,(C.(X,A)), C;'(X, A) =
C:(X,A)/imi');
4) -0 is epic; ker j * C fcerp* K, p : C ,̂(X, A) —>• C"(X, A);
5) every cycle z e Zn(C*(X, X)) is bounding: da; = z.
6) Let i l : / 0 ~ / i : (X, A) —>• (Y, B) be a homotopy, then we have a chain
homotopy % : Cn (X, A) —y Cn+1 (Y, B), satisfying d\{a) + \da = /0# (a) - / i # (a),
(Property D4) in the definition of a chain functor [5] §4.)
All these objectives are achieved by a modification of the procedure in I), which we
explain in the case of 1):
To that end assume that C*, K* are endowed with the structure of chain functors
and that a is a mapping of chain functors. We change the definition of (1) in the
following way:
Instead of using continuous mappings / G $? we introduce formal arrows (X, A) —»•
X, X -^-y- (X, A) and substitute for / words

(X,A)-*h- -*2>- ••• - H (E,F) (5)
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where each fej is either of the form ip or K or a continuous mapping, whereas ip can
only appear whenever the image of a under the word (X, A) —> —> (Xi, A\)
lies in C'n{Xx,Ax).
Condition (2) in I) is replaced by the same one, but now words (5) replacing contin-
uous mappings / , while g is still assumed to be continuous. There are no relations
between the letters ip, K or between one of these and continuous mappings. So (2)
takes the form
(2') agw = g# aw,
where w is any suitable word and g is continuous.
Condition (3) reads now:

(3') w#(a) = a(aw).

We set

K'n(X,A) = <{ae Kn(X,A)\ae C'n(X,A)})

resp. for K*, and detect a natural inclusion induced by / whenever C*, if* are
regular,

/ : K't (X,A) c K* (X,A).

We define

<p(a) = {ip(a); awip}

«(a) = {n(a); aWK},

for suitable words w : X —> (E,F) resp. w : (X,A) —> (E,F) of the form (5),
realizing that this provides us with elements in K*. Observe that we still have

d{a; aw} = {da; daw}

Finally setting

%' = K i#

ensures that a is compatible with ip, K, i', I.
In a next step we have to establish chain homotopies D\ : ip K ~ 1, D<i : j# ip ~ /
and other relations 2)-5) which are required of a chain functor. This is in all cases
accomplished by translating the specific problem into that of finding suitable (with
the exception of %, non- natural) mappings 8\, 62, t], 71, 72, S, %, which in turn is
finally solved in the same way as we established K and ip before.
Let us start with 5):
By choosing a basis for the free abelian group Zn (C* (X, X)) of all cycles in C* (X, X)
we find a homomorphism 6 : Zn(C*(X,X)) —> Cn+i(X,X) satisfying d5(z) = z.
Again we form words as in (5) but now also incorporating formal arrows of the
form 6, finally obtaining a 6 : Zn(K*(X,X)) —> Kn+i(X,X) guaranteeing that
K*(X,X) and K*(X,X) are acyclic.
We have for any a = {a; aw} G K*(X,X)

SB. = {5a; aw$}

= a.
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Here for the first time we encounter a case where d{a; aw} = {da; aw} ^ {da; daw}.
The homotopy Di : (pn ~ 1 is associated with a mapping 5i : Cn(X) —> Cn+i(X)
which again is established by using the fact that all occuring abelian groups are
free, satisfying dSi(a) + Si(da) = ipn(a) — a.
We introduce a new arrow 5\ : X —> X and define for a = {a, aw}

(5i(a) = {(5i(a); awSl},

confirming that (5ia is well-defined in if*. Suppose da = {da; aw}, then we set

dSia. = {Sia; awipK — aw — a ^ ^ j } .

Because

dida = {Sida; awst},

we have
dS + SidsL = ipKSL — a.

The chain homotopy Di : j(f ~ / is treated in the same way
Dealing with 2) we have to translate this into a mapping

T) : Zn{Ct (X, A)) —• C'n(X, A) e Cn+1 (X, A) e Cn-i(A)

z^^(v
l(z),V"(z),r1'"(z))

satisfying

7 7 " 7 7 ' " :So we introduce three arrows rf, 77", 77

77«a = {77«(a);aw , )},

with the following boundary relations:

drj'a.= {dr/'a; awr,'»Ki}

drf'sL = {dr]"a; awv> + awv'"sSq —

dj]'"sL = 0.

As a result we obtain for a G Zn(K*(X,A))

drj"sL + a = 77'a + q#5s#r]"'a.

Condition 3) is easily translated into a mapping

(Bn = bounding cycles) such that dji(z) = dr)'{z).
By the same procedure we associate 4) with a mapping and ultimately with a
suitable arrow 72.
We arrive at 6):
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For any chain functor, a homotopy H : i0 ~ ii : (X, A) C (X, A) x I determines a
chain homotopy

X:Cn(X,A)-^Cn+1((X,A)xI)

satisfying

dx(a) + X(da) = «o#(a) - ii#(a).

We invent an arrow \ and set as before %a = {%a; awx. If da = {da; aw}, we define

d%a = {d%a; wwi0 — awit — awx]

accomplishing a chain homotopy

Since every homotopy H : f0 ~ /i : (X,A) —>• (F,B), H : (X, A) x J —> (Y,B)
is associated with a

we obtain a word % = H\ furnishing a chain homotopy

d\a + \da = / 0 # a - / i # a .

The final K* is now constructed by the devices of I) but with words involving all
arrows <p, K, S, SI, 82, f], 71, 72, S, x together with continuous mappings as letters.
Since the induced chain homotopies are natural, cf. [5] D4), we have to assume that
X commutes appropriately with continuous mappings. By construction this yields a
chain functor, such that a becomes a mapping of chain functors.
We form K°(X,A) and Kt(X,A) = Kt,(X,A)Ucone(K°(X,A) as in I). This yields
a chain functor; a is immediately extended over K*.
Since a and j3 are supposed to be g-transformations, we can assume without loss of
generality, i.e. up to isomorphisms (cf. [5] 4.4.), that they commute stricly with all
words w#.
Let j3 : L* —> C* be as in the theorem, and set f(c) = {/?(c); 7W# (c)} G K*(X, A)

where e e l , (X, A) observing that

f(dc)-df(c) &K°(X,A)

and

af = (3

so that there exists a D(c) e K*(X,A) with

dD(c) + D(dc) = f{dc) - df(c).
Hence r(c) = f(c) + D(c) is a chain mapping, satisfying ar = j3.
We define on the subcategory £:

f : K , —»-K,|£

b 1—y {a(b);w#(b)}
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and

{a;aw} i—

We calculate

(&) = a

9#w#(b) = (gw)#(b)

T0 f (6) = b,

T T0{a;aw} = f(ai) = {a(ai); w# oi} = {a; w# oi}.

Since f fo{a; aw} — {a; aw} G K°, the existence of a homotopy r To — 1 follows for
the corresponding

r : K, —»-K,|£

r 0 : K, |£—»-K,,

which are easily established, turning K* into a strong deformation retract of K*.
This can easily be extended to a transformation r : K* —y K*, displaying the
same property.
One has r | £ = r 7. All transformations <3, r, r commute with / and i', so turning
out to be mappings of chain functors. All K* ( ) and of course all K* ( ) are free
chain complexes with natural bases.
Suppose that K*, C* are regular: Since /, i' and ((X,A) c (Y,B))# are monomor-
phisms onto direct summands for K*, the same holds clearly for K* and this carries
immediately over to K*. As in the course of I), we can assume that K#, hence K*
have compact carriers, whenever K* has.
This settles the assertion 3) of the theorem.
The universality of K*, a follows as in I).
This completes the proof of theorem 4.1.-

4.2. Corollary: Under the same assumptions as in 4-1- 1st otl : K* —y C*,
rl : -L* —y .K"* , i = 1,2 be two solutions, then there exists a natural chain
homotopy Ki' ~ Ki' commuting with a\ r% up to homotopy. Proof: Follows im-
mediately from the uniqueness assertion (up to homotopy) in 4.1.-

One important application of the preceding assertion deals with the case that £
consists of a single object E G & ( with respect to which one is going to localize a
chain functor resp. a spectrum), with the identity as the only morphism in £.

In addition we need some simple facts about chain complexes, which are presumably
well-known:

4.3. Lemma: Let C* be any chain complex, then there exists an acyclic chain
complex U* and a chain mapping a : J7* —y C* such that for any chain mapping
/? : V* —y C*, V* acyclic, there exists a chain mapping p : V* —y U*, such that
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a p = (3. Proof: Let D* be the chain complex

Do = (x), D_! = (da;), Dn = 0, n # 0,1

((•••) = free abelian group generated by • • •).
We can take for J7* the chain complex D* <g> C* and observe that:
1) D* (g) C* is acyclic.
2) a : D* <g> C* —>• C*, a (a; <E>c) = c, a(dx <g> c) = 0 is a chain mapping
3) Let (3 : V* —> C* be a chain mapping, then we have ID, ® (3 : D*
D* (g) C* and since V* is acyclic, there exists a chain mapping 7 : V* —>
such that

(6)

is commutative, so that we are allowed to set

P = ( I D , ®

Only 3) needs proof:
We establish 7 at first on the cycles z G Vra: Since V* is acyclic there exists a
z G Vn+i such that dz = z. We set

j(z) = z ® x + {—l)n+1 z ® dx

so that dj(z) = 0. Let c G Vn be any chain, then we find dc and c G Vn+i such
that dc = c — dc, and set 7(0) = c <g> a; + (—l)ra+1 c <g> da;, so that

dj(c) = dc®x + (-1)™ c ® da; + ( - l ) n + 1 dc® dx

= dc<E> x + (—1)™ c<E> dx + (—l) r a + 1 c<g> da; + (—1)™ dc(E)dx = j(dc).

The commutativity of (6) is immediate.-

Suppose we fix a subcategory £ c .ft2 and to each (K, L) G £ a U* (K, L) =
U*(A*(K,L)) as in 4.3. The fact that C/*(C*) = D* <g> C* ensures that the con-
struction of U* as well as that of a is functorial and inherits the structure of a
chain functor from the given chain functor A*. Moreover the mapping a is a g-
transformation of chain functors (cf. [5] 4.3.).
In order to transfer 4.3. from chain complexes to chain functors, we need:

4.4. Definition: Suppose a chain functor A* is defined on a category .ft2 and
£ C .ft2 is a given subcategory. A* is £ -acyclic whenever there exists a natural
chain homotopy D between the identity 1 : A*|£ —y A*|£ and the trivial map, i.e.
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one has

dD(c) + D(dc) = c, c€A*(K,L), (K,L)e£,

and

D(c) e K

whenever ce i ' , .

This makes sense also if £ = £2. In general £ -acyclicity is stronger than the mere
requirement that i?*(A,,|£) = 0. however ist is easy to realize that in some cases
both concepts coincide:
1) Suppose £ consists of one single object E with no morphisms but the identity.
2) £ is a tower L\ —y L<i —y • • •
3) £ is any category and A* = cone B* for some chain functor B*.
This allows us to assert:

4.5. Lemma: Let A* he a chain functor on £?, £ c f n subcategory, then there
exists an £ -acyclic chain functor U* on £, a g-transformation of chain functors
a : U* —y A*|£, such that for any £ -acyclic chain functor V* on £ and transfor-
mation of chain functors (3 : V* —> A* |£ there exists a transformation of chain
functors p : V* —> U* such that

ap = 13.

Regularity of A*, V* implies that of U*.

Proof: U* as defined before is clearly £ -acyclic (not just acyclic) by construction.
Moreover a is a g-transformation. Since the assignment determined by c i—> c in
the proof of 4.3. is functorial and commutes with / : V*(X, A) —> V*(X,A), V :
V*(A) —y Vl(X,A) and the chain homotopies D(H) of [5] D4), 7 turns out to be
a transformation of chain functors, so that this part of 4.5. follows.-
The last assertion is immediate.-

Combining this with 4.1. allows us to talk about t j* and we find a morphism

cone t j* —> A* Û  cone t j*

with ( = a : V* —> A*.

4.6. Lemma: There are g-transformations U* —y A*, hence

cone U* —y A* Û  cone U* and cone U* —y A* Û  cone U*.

One has

cone U* = cone U*.

Proof. The formation of the cone is functorial so that the assertion follows from
the construction.-

On the subcategory £ c .ft2 we have the chain functor U*(A* Û  cone U*) which
belongs to A* Û  cone U*|£ in the sense of 4.3. (for each object in £ seperately).
On the other hand we have cone U* |£ and claim:
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4.7. Lemma: cone U*|£ satisfies the universality property o/U*(A* Û  cone U*)
in 4-5.

Proof: The proof is accomplished in three steps:
1) Suppose K* in theorem 4.1. is £- acyclic, then K* is £-acyclic.
Proof: According to 4.1. r : K* C K*|£ is a strong deformation retract. So 1)
follows.- 2) Let A* Û  coneU*,(K,L) (K,L) G £ be given, then there exists a
retraction

r : A* Uc cone U*(K,L) —y A*(K,L).

Proof: Since U* (K, L) is acyclic, hence (as a free chain complex) contractible, we
can deform cone U*(K,L) onto U*(K,L). This implies the assertion.-
3) Let (K, L) G £ be any object, V* an acyclic chain complex and

(3 : V* —• (A, UC cone U*)(K,L)

a given chain mapping. We are going to detect a

p: V* -^{coneU*){K,L)

such that n p = (3 , where n : cone U*(K,L) —y (A* Û  cone U*)(K,L) is induced
byC-
Proof: According to 2) we have a retraction r : A* Û  cone J7* —y A* and therefore
a, p' : V* —y U*(K,L) such that r j3 = a p'.
Suppose j3(v) = a + c, a G A*, c G cone U*, then a p'(v) = r j3(v) = a, so that
a G im a C U* C U* C cone U*, hence j3(v) G im n.
As a result we detect a /?: V* —>• cone [/* such that np = (3 as required.
Hence cone £/* (if, L) satisfies the universality condition of 4.3. and cone U* |£ that
of 4.5.-

5. Localizations
The kind of localization which we are now developing for chain functors has been

originally discovered by A. K. Bousfield [6] for spectra as well as for mappings
between spectra, and, more recently, extended for axiomatically defined stable ho-
motopy categories by the authors of [10].
Let A* be any (regular or irregular) chain functor on a category £2 of pairs of
topological spaces (or of Boardman spectra) and £ c ^ 2 any subcategory. We are
going to localize A* at £. There are localizations in the world of chain functors with
as well as in the world of chain functors without compact carriers. They can be
treated by the same procedure. In the preceding section we mentioned two interest-
ing categories £:
1) £ consists of one single object, or of one single map.
2) Let $ be a homology theory, defined on the category of all chain functors.
Associate with $ the category £ = £$ = {(K,L)\ VA*; $(A*) = 0 =>

5.1. Definition: 1) A morphism of chain functors (cf. [5] §4) V '• B* —y C* is an
£ —isomorphism whenever (n|£)* : iI*(B*)|£ -^ iJ*(C*)|£ is an isomorphism.
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2) C* is £ -local whenever one has [V*, C*] = 0 for any £ -acyclic chain functor
V* (cf. definition 4-4-) ([V*, C*] denoting the set of all chain homotopy classes of
morphisms V* —> C*, cf. [5] §4).

Alternatively C* is £ -local, whenever any £ -isomorphism / : V* —> V* induces
an isomorphism

/* : [V*, C.] ^ [V*, C.].

Observe that if the chain functor B* is associated with a spectrum B, then for any
spectrum E one has

so that the preceding definition agrees with the usual one ([1], [11], [13]).
According to 4.5. we have an acyclic U*|£ = U* and a mapping a : U* —> A*|£.
We set

£ A . = U*, (1)

where the (•) -construction stems from 4.1.

5.2. Lemma: £A* is £ -acyclic. Regularity (resp. compact carriers) of A* implies
the same for £A*.

Proof: We have

which is acyclic for any L e £, so that V* is in view of 4.5. £ -acyclic. The second
assertion will be settled in §6 (theorem 6.8. which will be independently verified). -

According to theorem 4.1. we have

C = a : U, —• A,

and define

As* = A* Û  cone CeA*) (2)

denoting by

rj : A, —• As , (3)

the mapping induced by (.
As in the preceding section, the formation of the cone over a chain functor as well as
that of the amalgamated sum carries immediately over from chain complexes ([8])
to chain functors.

5.3. Lemma: Let V* be £ -acyclic, then

[V,, A£ .] = 0,

hence A£<, is £ - local.

Proof. Let / : V* —> A* Û  cone U* be any mapping of chain functors, V* £
-acyclic. According to [5] 4.5. we can assume that / is a g-transformation. Due to
4.5. we find a factorization
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VJ£

78

U . ( A £ . | £ ) = U .

hence according to theorem 4.1. a factorization

However according to 4.7. we are allowed to use cone U* instead of U* and there-
fore, because of 4.6.,

with

So we have a factorization

cone U*

implying that / — 0, since the cone over everything is always acyclic-
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5.4. Lemma: r\ is an £ -isomorphism.

Proof: 1) To any cycle z G As,*(L), L G £ there exists a z ' ~ z , z' G im r), hence
H*(r)(L)) is epic.
Proof. Suppose v G cone U*(L), dv G C(U*), then, since U* is acyclic, dv is
bounding in J7*(L), £ - 1 (efo) = o5u, so that dv = d((u). li z = UA + V, UA G im TJ, V
as before, then we have

z = UA + (v — u) + u.

Since v — u ~ 0 (as a cycle in cone [/*) the assertion follows.
2) Let z G A* (L), L G £ be a cycle, such that z bounds, then the same argument
ensures that z bounds already in A*(L). Hence H*(n(L)) is monic-
So H*(n(L)) is an isomorphism.-

We summarize:

5.5. Theorem: Let A* be any chain functor, £ C .ft2 any subcategory, then there
exists a (with respect to A*) natural exact sequence of chain functors

£ A , -±> A, - ^ A £ . (4)

w/iere sA* is £ -acyclic, A£<, £ -/oca/ and 77 an £ -isomorphism.
As, sA* are regular (resp. have compact carriers), whenever we start with a
regular A* ('resp. tm't/i one having compact carriers).

Proof: The existence of (4) is a consequence of the preceding lemmas, while the
exactness (to be understood in an obvious sense) follows from (l)-(3). The second
assertion will be treated by theorem 6.8. (cf. 5.2.) -

5.6. Corollary: Let A* be as in 5.5., £ e S any object, then there exists an exact
sequence

B A . -^ A* -1+ \E* (5)

with E -acyclic ^ A , and E -local AE*.

In [5] we mentioned the possibility to extend the definition of a chain functor to a
category of spectra (i.e. to the Boardman category 05 resp. to the category Q52 of
pairs of spectra). We can immediately rephrase 5.6. for this case, accomplishing

5.7. Corollary: Let A* be a chain functor on 2J2, E G 58, then there exists an
exact sequence (5).

This covers the localization process described in [6] by A. Bousfield.
We return to example 2) at the beginning of this section:
If the category on which our chain functors are defined is the Boardman category 05,
any homology theory $ which is defined on 05 admits an extension over the category
of all chain functors by setting $(A*) = $(|A*|), where |A*| is the realization of
the chain functor in the sense of theorem 1.1. in [3]. Moreover $ has a classifying
spectrum E so that E* = $. Now it turns out easily that £$ -localization is the
same as E -localization.
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Suppose now that $ is a homology theory on £2 C Top2, then we define £$ =
{(K,L)\VX e &; $(X) = 0 => X*(K,L) = 0}, where X* denotes the homology
theory associated with X.
This provides us with a second access to the localization of a chain functor A*
defined on a category £ 2 ( c Top2) with respect to a spectrum E e 05 (not being
an object of .ft2!) by using the homology theory E* = <i> and localizing A* with
respect to £$ in the sense of 5.5.
As a result we get:

5.8. Corollary: Let A* be as in 5.5., E G 05 a spectrum, then there exists an exact
localization sequence (5).

6. Localizations and tensor products

In §3 we introduced a chain functor Z* to which the localization process can
be applied. Hence for given subcategory £ c £2 we obtain £Z* and Z£<,. It turns
out that for any chain functor A* the exact sequence (4) in §5 originates from the
sequence

rn C rn V rn t-t\

z£* —> £* —> £z* (.1)
by tensoring with A*.
Recall that the chain functor U* of 4.5. is isomorphic to A*|£ <g> D* (cf. proof of
4.3.).

6.1. Lemma: For any chain functor A* we have a natural homotopy equivalence

A* (g) £Z* -=» £A*.

Proof: At first we introduce and recall some notations which are mostly taken from
the proof of 4.1.:
There are elements {zx', ZK®X}, {0; ZK®dx} in £Zra(X, A), n = 0, —1 as well as
a = {a; f#(a)®x}, a = {a; af®dx}, / # (a) = 0 for all / : (X,A)—>(E,F)e£
, which are continuous mappings or words in the sense of the proof of 4.1. (II),
ae &An(X,A).
Moreover in cone K®(X, A) c &A*(X, A) we have elements A({0; a/ <g> dx}), satis-
fying dA({0; af <E>dx}) = {0; a/ <E>dx} — A({0; dcif <E>dx}). In £Z* we encounter
chains A({0; ZR <8> dx}) = A e K°(X,A) and {zx; ZR <8> x} with the same bound-
ary. We denote the cycle {zx; ZR <8> x} — A by V G £Z0(X, A).
Using these notations we define

rj : A* <g> £Z* —y £A*

by setting

r/(a ® {zx; zK ® a;}) = {a; / # ( a ) ® x)

J](a ® {0; zK ® dx}) = {0; / # ( a )

ry(a <g> A) = A{0; / # ( a )
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One checks immediately that n is a natural chain mapping.
The inverse

C : £A* —> A* ® £Z*

is defined by setting
(({a; / # (o)®a;})=o®V

while on all elements in cone if° we set £ = 0.
This establishes again a natural chain mapping.
We have

zK <8> a;}) = a <g> V = a <g> {^x; ^K ® a;} - a <g> A,

®a;}) = {o; /#(a) <g>a;} - A({0; f#(a)<8>dx}).

Here, as in all remaining cases, we observe that

resp.

are elements of A* <g> cone K® (K® understood for z^*) resp. of cone K® (now for
A*). Since cone if° (contained in &A*) as well as A* <g> cone if° are acyclic (the
latter e.g. due to the Kiinneth-formula), we conclude that

C n ~ l

This chain homotopy can of course be realized in detail, which we will accomplish
for (n(a <S> {zx', ZK ® x}), The remaining cases are settled by a similar procedure.
We need a T(u) for u = a <g> {zx; ZR <8> x} such that (n(u) —u = aT(u) + Tdu.
Observe that (n(du) = da® {z; zK®x}-{-l)n~1da®{Q; zK®dx} + {-l)n~1da®
{0; zK ® dx} - da® A. Since - ( - l )™" 1 ^ ® {0; zK ® dx} - da ® A = w is a cy-
cle in A* (gicone K®, hence bounding, there exists a T(du) in A* (gicone K®, such that

w = dT(du) = (n(du) — du

Now we have

Cn(w) -u- T(du) = -a <g> A - r(du) = w'

with t o ' e i ® cone K®. Since w' is a cycle, there exists a dT(u) satisfying dT(u) =
w' = (n(u) — u — T(du).
This can be performed in a natural way, establishing a T(u) such that

dT(u) + T(du) = (n(u) - u.

Up to this point n as well as £ are mappings of chain complexes (rather than
of chain functors). However endowing them with the structure of chain functor
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transformations is immediate.
This completes the proof of 6.1.-

6.2. Lemma: For any chain functor A* we have a natural isomorphism

A* <g cone z%* K, cone (A* <g £Z*)

Proof: We have for any chain functor C* an isomorphism

(coneC^X) « C.(X) <g E*

where -B* = ^ D* (denoting by ^ the suspension), i.e. Bi = (x), Bo = (dx), Bn =
0 elsewhere (§4). Hence we detect a sequence of isomorphisms

A* (g) cone £Z* w A* ® (£Z* ® B*) w

w (A* (g) £Z*) (g) B* w cone (A* (g) £Z*).-

6.3. Lemma PFe Ziawe a natural homotopy equivalence

Proof: We have

(A*

* ~ A* (g Z£*.

A* U^ cone (sA*) ~

cone (A* (g £Z*) RJ

Z*) « A , ® (Z* U^ cone

J A* (g Z£<,.—

Z* —>• A* <g Z^* is an £ - isomorphism. Proof:6.4. Lemma: 1A» <g n : A* <g Z*
Follows immediately.-

We summarize this in the following main theorem:

6.5. Theorem: Let A* be any chain functor, £ C £? any subcategory, then the
exact £ -localization sequence of A* is given by:

- A ,
1

+ A,
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Proof: The only remaining fact which needs proof is that 1 <8> C resp. 1 <g r\ are
in fact the mappings ( resp. T] of §5(2) for A*, but this is due to the construction
straightforward.-

6.6. Corollary: Let E G & be any object, then the exact E -localization sequence
of a chain functor takes the form

A* <g E%>* —> A* —> A* <g ZE*.

6.7. Corollary: There exist natural homotopy equivalences

A£* <gB£* ~ (A* ®B*)£* ~ A* <gB£*. (2)

Proof: One has:

(A* <g B)£* ~ (A* <g> B*) <g> Z£* ~ A* <g (B* <g Z£*).

However since (A£*)£* ~ A£* as an immediate consequence of the definition of an
£-local object in definition 5.1., in particular Z£* <gZ£* ~ (Z£*)£*, we have

A* <g> B* <g> Z£* — A* ® B* (g) Z£<, (g Z£<,

~ (A* ® Z £ , ) ® ( B , ® Z £ t ) ~ A £ «®B £ « .

Remarks: 1) Since there is no spectrum |Z*| associated with the irregular-chain-
functor Z*, theorem 6.5. has no immediate counterpart for spectra, unless one agrees
to define tensor products |B <g C*| between spectra B and chain functors C*, which
is of course possible.-
2) Corollary 6.7. ensures that, unlike the A-product, the <g- product turns out to
be compatible with localizations.

6.8. Theorem If A* is regular (resp. has compact carriers), then £A* and A£*
are regular chain functors (resp. they have compact carriers), i.e. the derived ho-
mology is a homology theory (with, resp. without compact carriers).

Proof: If the chain functors K* and C* in 4.1. are regular, we have that K* sat-
isfies the requirement that /, i' and ((X, A) c (Y,B)#) are inclusions onto direct
summands (cf. 4.1. 3)). Hence £A* has this property.
Moreover it is immediate that this property carries over to A£* (§5 (2)).
So it remains to deal with excision. To this end we retain the notation of the proof
of 6.1. and consider A* ®£Z*. Suppose that h : (X,A) —> (X/A,*) is an excision
map, then the second component in the mapping of tensor products

h# : (A*<S>aZ*)(X,A) —• (A, <g aZ*)(X/A,*)

does not change: Due to the definition of tensorproducts in §1 (1) as well as that of
Z* in §3, only h : X —y X/A enters, inducing an isomorphism even on the chain
level. So one has to deal merely with ft# on A*, which, by assumption induces an
isomorphism of the derived homology. Consequently ft# on A* <g £Z* induces an
isomorphism of the derived homology of A* <g £Z* and therefore, because of 6.1., of
£A*. By a similar argument we ensure, employing 6.3., that A£* satisfies the same
excision property as A*.
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According to 4.1. £A* = tj* can be assumed to have compact carriers; the same
holds for cone U* and consequently A* Û  cone tj* inherit this property from that
of A* and of cone U* .-

Although tensor products do not appear explicitely in the formulation of 6.8., it
nevertheless displays itself as an implication of 6.1., 6.3.. We can apply 6.8. to regain
the existence of Bousfield-localizations of spectra (rather than of chain functors):

6.9. Corollary: Let £ C A2, ^ = 0 5 be as before, A a spectrum, then there exists
an exact sequence of spectra

£ A -!» A - ^ A £ (3)

with £- acyclic &A, £- local A £ and Z-isomosphic n. Proof: The spectrum A is
associated with a regular chain functor C* = AC*. Theorem 6.8. in combination
with [3] theorem 1.1. ensure that | £C* |= ^A as well as | C^* | exists. The
remaining points are settled by standard arguments.-

6.9. Corollary: (A. Bousfield [6]) Let A, B G 05 be spectra, then there exists a
localization sequence (2), with E replacing £.

We are presently not treating the unstable localization theory of [7].
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