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SOME CONJECTURES ABOUT THE HILBERT SERIES OF
GENERIC IDEALS IN THE EXTERIOR ALGEBRA

GUILLERMO MORENO-SOCÍAS and JAN SNELLMAN

(communicated by Larry Lambe)

Abstract
We calculate the Hilbert series of a quotient of the exterior

algebra by a generic form of even degree, and give conjectures
about the Hilbert series of other generic quotients.

To Jan–Erik Roos on his sixty–fifth birthday

1. Introduction

In the symmetric algebra K[x1, . . . , xn], the set of Hilbert series coming from
homogeneous quotients are classified by Macaulays theorem [16, 6, 3]. There is
an infinite number of possible series, but if we fix positive integers d1, . . . , dr, and
restrict our study to quotients by homogeneous ideals I of “type” or “numerical
character” (d1, . . . , dr), ie generated by forms of those prescribed degrees, then there
are only finitely many Hilbert series. Furthermore, in the affine space parametrising
these homogeneous ideals, there is a Zariski-open subset of ideals with the same
Hilbert series, and the Hilbert series obtained on this open set is minimal [9, 7].

Unfortunately, even though we know the set of all Hilbert series, we do not know
what Hilbert series arise from ideals of numerical character (d1, . . . , dr). In fact,
we do not even know the “generic” series, but it is conjectured [17, 7] that it is
〈

(1− t)−n ∏r
i=1(1− tdi)

〉

; the brackets mean “truncate before the first non-positive
coefficient”.

In the exterior algebra
∧

Vn, we also know the set of all Hilbert series of homoge-
neous quotients, by the so-called Kruskal-Katona theorem [15, 14, 5, 2]. Here, this
set is finite, so one would think that it should be easy to find the subset of Hilbert
series coming from quotients by ideals having a prescribed numerical character. In
particular, it should be easy to find the generic value. However, very little is known.

In this article, we give one new result (the series for a quotient by one form of
even degree) and several conjectures, supported by extensive computer calculations.

It is worthwhile to point out that the problem of determining the Hilbert series
of quotients by generic quadratic forms is especially interesting, since it determines
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the Koszulness of the quadratic algebras in question. We refer to the recent article
by Fröberg and Löfwall [10].

2. Notation

Let K be a field of characteristic 0. Then Q is the prime subfield of K. For
any positive integer n, let V = Vn be an n-dimensional vector space over K, with
a distinguished basis Xn = {x1, . . . , xn}. Let K[x1, . . . , xn] denote the symmetric
algebra on Vn, and let

∧

Vn denote the exterior algebra on Vn. We define S(Vn), the
square-free algebra on Vn, to be the commutative K-algebra generated by Xn, with
the relations x2

i = 0; in other words, S(Vn) = K[x1,...,xn]
(x2

1,...,x2
n) . There is an isomorphism

of graded vector spaces between
∧

Vn and S(Vn), but they are not isomorphic as K-
algebras, since the exterior algebra is skew-commutative and S(Vn) is commutative.

We shall need the following operations for formal power series.

Definition 2.1. Let f(t) =
∑∞

i=0 aiti ∈ Z[[t]], g(t) =
∑∞

i=0 biti ∈ Z[[t]]. We say
that f > g if ai > bi for all i. We define

max(f(t), g(t)) =
∞
∑

i=0

max(ai, bi)

〈f(t)〉 =
∑̀

i=0

aiti, ` = max({ i aj > 0 for j 6 i })

〉f(t)〈 =
∞
∑

i=`

aiti, ` = min({ i aj > 0 for j > i })

We use the conventions max(∅) = −1 = min(N), min(∅) = +∞ = max(N).

Let [Xn] denote the free abelian monoid on Xn, and denote by Yn the subset of
square-free monomials. Then Yn is a K-basis for both

∧

Vn and S(Vn). We define
the degree of a monomial in [Xn] (and in Yn) in the usual way, and denote by [Xn]d

and Y d
n the subset of monomials (square-free monomials) of degree d.

A form
∧

K[x1, . . . , xn] 3 f =
∑

m∈[Xn]d cmm is said to be generic if the coeffi-
cients cm ∈ K fulfil the following conditions:

1. cm 6∈ Q,

2. m 6= m′ =⇒ cm 6= cm′ ,

3. The set of all cm’s is algebraically independent over Q.

A homogeneous ideal I ⊂ K[x1, . . . , xn] is called generic if it can be minimally
generated by a finite set of generic forms, so that all of the occuring coefficients of
the forms are different, and so that the set of all occuring coefficients is algebraically
independent over Q. If the forms have degrees d1, . . . , dr, then we say that I has
“numerical character” (d1, . . . , dr). It is an important fact that any two generic
ideals of the same numerical character have the same initial ideal and the same
Hilbert series.
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Now consider the affine space V = A(n+d1−1
d1

) × · · · × A(n+dr−1
dr ) parametrising

the set of homogeneous ideals of numerical character (d1, . . . , dr). Since there are
countably many conditions to be fulfilled for an ideal to be generic, the subset of
the parameter space corresponding to generic ideals is not open, but a countable
intersection of open sets, hence dense. However, in V there is a Zariski-open subset
corresponding to ideals with the same Hilbert function, and the generic ideals are
contained in this subset [9].

We make similar definitions for the square-free algebra, and for the exterior alge-
bra. Here, a generic form is a generic linear combination of square-free monomials
of a certain degree. It is still true that the generic Hilbert series is attained on an
open component of the parameter space, and that the generic ideals are contained
in this component.

3. Hilbert series for generic principal ideals in the symmetric
and square-free algebra

3.1. Principal ideals in the symmetric algebra
If f ∈ K[x1, . . . , xn] is a non-zero form of degree d, not necessarily homogeneous,

then clearly the Hilbert series of the quotient K[x1,...,xn]
(f) is (1− t)−n(1− td).

3.2. Principal ideals in the square-free algebra
If f ∈ S(Vn) is a generic form of degree d, then there is a similar simple formula

for S(Vn)
(f) (t) (the Hilbert series of the quotient). To state the formula, we need some

additional notation.

Definition 3.1. We denote the zero series by 0, and define

∆n,d(t) =
〉

(td − 1)(1 + t)n〈

=
n

∑

v=d(n−d)/2e

((

n
v

)

−
(

n
v + d

))

tv

δn,d(t) =
〈

(1 + t)n(1− td)
〉

=
b(n−d)/2c

∑

v=0

(
(

n
v + d

)

−
(

n
v

)

)tv

The following result is due to Frberg [8].

Theorem 3.2. Let f ⊂ S(Vn) be a generic form of degree d. Then

S(Vn)
(f)

(t) = δn,d(t) (1)

Proof. By considering the graded exact sequence

0 −→ ann(f)(−d) −→ S(Vn)(−d)
·f−→ S(Vn) −→ S(Vn)

(f)
−→ 0 (2)
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in each degree r, we see that (1) holds if and only if multiplication by f , regarded
as a linear map φr from S(Vn)r to S(Vn)r+d, is injective when

(n
r

)

6
( n
r+d

)

, and
surjective when

(n
r

)

>
( n
r+d

)

.

Write f =
∑

m∈Y d
n

cmm. For 0 6 r 6 n − d, Y r
n is a basis of S(Vn)r, and Y r+d

n

is a basis of S(Vn)r+d. Thus, we must show that for each r, the matrix of φr in
this basis has maximal rank. This matrix has rows indexed by Y r+d

n and columns
indexed by Y r

n . The entry at row R, column C is

{

0 C 6 |R
cm R = mC

If we specialise this matrix, the rank can only decrease, so if we can prove that some
specialised matrix has full rank, then we are done. Putting all cm = 1, we obtain
the incidence matrix of r-subsets of [n] into r + d-subsets of [n], that is, the rows
are indexed by r-subsets and the columns by r + d-subsets, with a 1 at the a, b’th
position iff a ⊂ b, and 0 otherwise. It has been shown by combinatorialists that this
matrix has full rank [18, 13, 11].

4. Principal ideals in the exterior algebra — the difference
between even and odd degree

Let f ∈
∧

Vn be a generic form of degree d. Denote the Hilbert series of
V

Vn
f by

qn,d(t), that of the annihilator of f by an,d(t), and that of the principal ideal (f)
by pn,d(t). From the the graded exact sequence

0 −→ ann(f)(−d) −→
∧

Vn(−d)
·f−→

∧

Vn −→
∧

Vn

(f)
−→ 0 (3)

we get that

qn,d(t) = tdan,d(t)− td(1 + t)n + (1 + t)n

= tdan,d(t) + (1 + t)n(1− td)

an,d(t) = t−d (

qn,d(t)− (1 + t)n(1− td)
)

(4)

If d is even, we shall prove that the vector space map

v
∧

Vn
·f−→

v+d
∧

Vn (5)

is injective “when it can be”, ie when
(n

v

)

6
( n
v+d

)

, and surjective “when it can be”,
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ie when
(n

v

)

>
( n
v+d

)

. This leads immediately to the formulæ

qn,d(t) =
〈

(1 + t)n(1− td)
〉

= δn,d(t)

an,d(t) = t−d (

qn,d(t)− (1− td)(1 + t)n)

= t−d (

δn,d(t)− (1− td)(1 + t)n)

= t−d
n

∑

r=0

[

max
(

0,
(

n
r + d

)

−
(

n
r

))

−
((

n
r + d

)

−
(

n
r

))

]

tr

= t−d
n

∑

r=0

max
(

0,−
(

n
r + d

)

+
(

n
r

))

tr

= t−d∆n,d(t)

(6)

In particular, as n →∞, (1 + t)−nqn,d(t) → (1− td), and an,d(t) → 0, with respect
to the t-adic norm on Z[[t]].

If d is odd, then we have that f2 = 0, hence fg = 0 whenever g ∈ (f), hence
ann(f) ⊇ (f), hence an,d(t) > pn,d(t). In other words, there is a graded complex

(
∧

V
)

(−d)
·f−→

∧

V
·f−→

(
∧

V
)

(d) (7)

the graded homology of which determines an,d(t) − pn,d(t). In the (not very inter-
esting) case d = 1, then we know from [1] that this homology vanishes. For odd
d > 1, we guess that for a fixed degree r, and n very large, this homology vanishes.
Hence, in degree r, the “obstruction to injectivity” in (5) is as small as possible. An
equivalent formulation: consider the start of a minimal free graded

∧

Vn-resolution
of
V

Vn
(f) ,

∧

Vn

(f)
←

∧

Vn
·f←−

∧

Vn ←
r

⊕

j=1

(
∧

Vn)(−β2,i),

where β2,i are the graded Betti numbers. Then we guess that as n increases, and
for a fixed i 6= 2d, β2,i = 0. On the other hand, for sufficiently large n, we guess
that β2,2d = 1. Since β2,i is the dimension of the degree i− d part of a certain Tor
group, this conjecture can also be stated in terms of Cartan homology (see [2]).

We show the order (ie the smallest ` for which t` occurs with non-zero coefficient)
of an,d(t) − pn,d(t) for small n, d in Table 1. It would seem that the order of the
difference grows linearly in n, so that an,d(t)− pn,d(t) → 0 rather rapidly.

Let us turn to the consequences of this conjecture. We get that an,d(t) ∼ pn,d(t)
with respect to the (t)-adic filtration. It then follows from (4) that

qn,d(t) ∼ tdpn,d(t) + (1 + t)n(1− td) (8)

Substituting pn,d(t) = (1 + t)n − qn,d(t) and solving for qn,d(t) we get that

qn,d(t) ∼
(1 + t)ntd + (1 + t)n(1− td)

(1 + td)
=

(1 + t)n

(1 + td)
, (9)
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d 3 5 7 9 11 13 15 17
n
3 1
4 1
5 1 1
6 2 1
7 3 1 1
8 3 2 1
9 3 3 1 1
10 4 3 2 1
11 5 3 3 1 1
12 5 4 3 2 1
13 5 5 4 3 1 1
14 6 5 4 3 2 1
15 7 6 5 3 3 1 1
16 7 6 5 4 3 2 1
17 - - - 5 4 3 1 1
18 - - - - 4 3 2 1
19 - - - - - 3 3 1
20 - - - - - - 3 2

Table 1: Order of an,d(t)− pn,d(t) for small n, d

hence
V

Vn
(f) (t)

∧

(Vn)(t)
=

qn,d(t)
(1 + t)n → 1

1 + td
as n →∞. (10)

5. Principal ideals on generic forms of even degree in the
exterior algebra

If d = 2 then we can change coordinates on V and replace f with the form
x1x2 + x3x4 + · · ·, as is demonstrated in [4]. The Hilbert series of the quotient can
now be easily calculated. We get that

V

(Vn)
(f) (t) =

〈

(1 + t)n(1− t2)
〉

, which is the
same as the Hilbert series for the corresponding quotient in the square-free algebra.

Remark 5.1. It is not true that if fe =
∑

16i<j6n αijxixj is a non-generic quadratic
form in

∧

Vn, and fs =
∑

16i<j6n αijxixj is the corresponding form in S(Vn), then
V

Vn
(fe) and S(Vn)

(fs) have the same Hilbert series. For an example, consider the form
x1x2 + x1x3 + x1x4 + x3x4. The quotient of

∧

V4 by this form has Hilbert series
5t2 + 4t + 1, but the corresponding quotient of S(V4) has series t3 + 5t2 + 4t + 1.

We next show that if the degree d of f is even, then the Hilbert series of the
quotient

V

Vn
(f) is the same as for the square-free algebra. To this end, we need some

combinatorial results, which we have collected in the appendix. With the aid of
these, we can prove:
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Theorem 5.2. Let f ∈ ∧dV , with d even, be a generic form. Then the linear
transformation

∧rV
f ·−→ ∧r+dV (11)

is injective for 2r + d 6 n, and surjective for 2r + d > n.

Proof. We put k = r + d. Suppose that

f =
∑

K∈([n]
d )

cKxK (12)

The matrix of the map (11) is an
( n
r+d

)

×
(n

d

)

matrix, M̃r,r+d,n, where the rows
are indexed by (r + d)-subsets K, and the columns by d-subsets T . The entry at
position (K, T ) is

{

0 if T 6⊆ K
σ(T, K)cT if T ⊆ K

(13)

We must prove that this matrix has maximal rank. Clearly, the rank can not increase
under specialisation, so if we prove that the matrix obtained by replacing each cT

with 1 has maximal rank, then so does M̃r,r+d,n. However, the specialised matrix is
nothing but the matrix Mr,r+d,n of Theorem Appendix A.6, so it has full rank.

Theorem 5.3. Let f ∈
∧

Vn be a generic form of degree d, with d even. Then
∧

Vn

(f)
(t) =

〈

(1 + t)n(1− td)
〉

= δn,d(t) (14)

Proof. This follows from Theorem 5.2, together with (3).

6. Principal ideals on generic forms of odd degree in the
exterior algebra

Let d be an odd integer. Recall that we’ve conjectured that an,d(t)− pn,d(t) → 0
as n → ∞, and that this conjecture leads to the conclusions that pn,d(t) ∼ (1 +
t)n(1 + td)−1. In this section, we shall try to guess the exact value of qn,d(t).

Since an,d(t) > pn,d(t), an,d(t) > ∆n,d(t), it follows that an,d(t) >
max(pn,d(t),∆n,d(t)). We tabulate the difference an,d(t) −max(pn,d(t), ∆n,d(t)) in
Table 2 and Table 3.

Using the data of Table 3, we make the following conjecture:

Conjecture 6.1. Let d be an odd integer > 3. Then, putting τn,d(t) = an,d(t) −
max (pn,d(t), ∆n,d(t)),

τn,d(t) =

{

tv(v−1)/2 ∃v, s ∈ N : v > 0, n− d = −1 + 5
2v + 1

2v2, d = 5 + 2vs
0 otherwise

(15)
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Table 2: Difference between true and predicted Hilbert series of the annihilator of
a generic form of odd degree

n deg=3 5 7 9 11 13 15 17 19
3 0
4 0
5 t 0
6 0 0
7 0 t 0
8 0 0 0
9 3t3 0 t 0
10 t4 0 0 0
11 t5 t3 0 t 0
12 t6 + 12t5 0 0 0 0
13 t7 + 13t6 + t5 0 0 0 t 0
14 t8 + 14t7 + 91t6 0 0 0 0 0
15 15t8 + 105t7 0 0 t3 0 t 0
16 16t9 + 120t8 + 559t7 t6 0 0 0 0 0
17 0 0 0 t 0
18 0 0 0 0
19 t3 0 t 0
20 0 0 0
21 0 t

Table 3: Difference between true and predicted Hilbert series of the annihilator of
a generic form of odd degree > 3

n− d deg=5 7 9 11 13 15 17 19
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 t t t t t t t t
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 t3 0 t3 0 t3

7 0 0 0 0
8 0 0 0
9 0 0
10 0
11 t6
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This conjecture yields a formula for the Hilbert series, but since said formula is
very complicated, we do not write it down; instead we show how to derive qn,d(t).
From

an,d(t) = τn,d(t) + max (pn,d(t), ∆n,d(t))

qn,d(t) = an,d(t)td + (1 + t)n(1− td)

pn,d(t) = (1 + t)n − qn,d(t)

(16)

we get

pn,d(t) = (1 + t)n − qn,d(t)

= (1 + t)n − an,d(t)td − (1 + t)n(1− td)

= (1 + t)n − tdτn,d(t)− td max (pn,d(t),∆n,d(t))− (1 + t)n(1− td)

= td ((1 + t)n − τn,d(t)−max(pn,d(t), ∆n,d(t)))

(17)

Hence, writing pn,d(t) =
∑n

i=0 aiti, with the ai’s as undetermined coefficients, and
denoting the ti-coefficient of τn,d(t) by bi, we get the equation

a` =
(

n
`− d

)

− bi−` −max(a`−d,
(

n
`− d

)

−
(

n
`

)

) (18)

which we can solve recursively, using the initial values

a0 = · · · = ad−1 = 0, ad = an = 1.

For the case d = 3, we proceed differently: we tabulate qn,3(t)−wn,3(t) in Table
4, and from that, make the following conjecture:

Conjecture 6.2. The Hilbert series of
V

Vn
(f) , where f is a generic cubic form, is

given by

pn,3(t) =
tdLn(t) + (1 + t)n

1 + td

Ln(t) =



















(3t)2`−1(1 + t)2 n = 4`
c1(n)t2`−1(1 + t)(1 + (3c2(n) − 1)t + t2) n = 4` + 1
(3t)2`(1 + t)2 n = 4` + 2
(3t)2`+1(1 + t) n = 4` + 3

(19)

where c1(n), c2(n) are some positive integers.

7. Hilbert series for generic non-principal ideals in the sym-
metric and square-free algebra

Let I = (f1, . . . , fr) be a generic ideals in K[x1, . . . , xn], generated by forms of
degree d1, . . . , dr. There is a famous conjecture [17, 7] for the Hilbert series of the
quotient K[x1,...,xn]

In
.
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n qn(t)− wn(t)
3 3t(1 + t)
4 3t(1 + t)2

5 t(1 + t)(t2 + 8t + 1)
6 9t2(1 + t)2

7 27t3(1 + t)
8 27t3(1 + t)2

9 3t3(1 + t)(t2 + 26t + 1)
10 81t4(1 + t)2

11 243t5(1 + t)
12 243t5(1 + t)2

13 t5(1 + t)(t2 + 728t + 1)
14 729t6(1 + t)2

15 2187t7(1 + t)
16 2187t7(1 + t)2

Table 4: an,d(t)− pn,d(t) for a cubic generic form

Conjecture 7.1. Let I = (f1, . . . , dr) ⊂ K[x1, . . . , xn] be a generic ideal, with
|fi| = d1 for 1 6 i 6 r. Then the Hilbert series of the graded algebra K[x1,...,xn]

In
is

given by
〈

(1− t)−n
r

∏

i=1

(1− tdi)

〉

(20)

It is easy to see that if r 6 n, the generators form a regular sequence, and hence
that

K[x1, . . . , xn]
In

(t) = (1− t)−n
r

∏

i=1

(1− tdi), for n > r (21)

In particular, the conjecture holds for r 6 n. The conjecture is also know to be true
for r = n + 1.

We note that (21) implies that

lim
n→∞

K[x1,...,xn]
In

(t)

K[x1, . . . , xn](t)
=

r
∏

i=1

(1− tdi) (22)

Now suppose that I = (f1, . . . , fr) is a generic ideal in the square-free algebra,
and that fi is a generic form of degree di. Then

S(Vn)
(f1, . . . , fr)

' K[x1, . . . , xn]
(f ′1, . . . , f ′r, x

2
1, . . . , x2

n)

where f ′i can be taken to be a generic form in K[x1, . . . , xn] which maps to fi under
the canonical epimorphism K[x1, . . . , xn] � S(Vn). It seems reasonable to assume
that the Hilbert series of the quotient will not change if we replace the squares of
variables with generic quadratic forms. Conjecture 7.1 then leads to the following:
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Conjecture 7.2. Let r, n, d1, . . . , dr, and let In be a generic ideal i S(Vn) with
generators of degrees d1, . . . , dr. Then

S(Vn)
In

(t) =

〈

(1 + t)n
r

∏

i=1

(1− tdi)

〉

(23)

If this conjecture holds (our computations support this), then it follows that

lim
n→∞

S(Vn)
In

(t)

S(Vn)(t)
=

r
∏

i=1

(1− tdi) (24)

This is analogous to (22).

8. Hilbert series for generic non-principal ideals in the exte-
rior algebra

We now throw all caution to the wind to make some bold conjectures about the
Hilbert series of non-principal generic ideals. Let In = (f1, . . . , fr) be a generic ideal
in

∧

Vn, with |fi| = di, and consider the exact sequence

0 −→ ann(fr)(−dr) −→
∧

Vn

(f1, . . . , fr−1)
(−dr)

·fr−−→
∧

Vn

(f1, . . . , fr−1)
−→

∧

Vn

(I)
−→ 0

(25)
We denote the Hilbert series of

V

Vn
(I) by qn(t), that of

V

Vn
(f1,...,fr−1)

by un(t), and that
of ann(fr) by an(t). Then

qn(t) = un(t)− tdrun(t) + tdan(t). (26)

If dr is even, we conjecture that an(t) ∼ 0, hence

qn(t) ∼ (1− tdr )un(t) (27)

If dr is odd, we conjecture that the annihilator of fr is “close” to the principal ideal
on fr, hence that an(t) ∼ (un(t)− qn(t)), which yields

qn(t)(1 + td) ∼ un(t) (28)

By induction, we arrive at the following conjecture:

lim
n→∞

qn(t)
(1 + t)n =

r
∏

i=1

(

1− (−1)ditdi
)(−1)di

∈ Z[[t]], (29)

with respect to the (t)-adic topology.
One would be tempted to guess that if all di’s are even, the Hilbert series of
V

Vn
(f1,...,fr) should be exactly

(1 + t)n
r

∏

i=1

(1− tdi) (30)

However, this is not true, even for the simplest case r = 2 and d1 = d2 = 2. In
Table 5 we tabulate the difference between the true Hilbert series and (30).
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n 2 3 4 5 6 7 8 9 10 11 12 13
Diff 0 0 0 t3 0 t4 t4 t5 10t5 t6 + t5 64t6 t7 + 13t6

Table 5: Difference between the true Hilbert series and the “anticipated Hilbert
series” for generic ideals generated by two quadratic forms

Appendix A. The signed incidence matrix has full rank when
the difference in cardinality is even

We prove a “signed version” of the well-known theorem that the incidence matrix
of r-subsets of [n] = {1, . . . , n} into d + r-subsets have full rank. Our proof is a
modification of the one by Wilson [18].

To begin, let us define the “signs” involved.

Definition Appendix A.1. Let [n] = {1, . . . , n}, and let C and R be two subsets
of [n], with

C = {t1, . . . , ta}, t1 < · · · < ta
R = {k1, . . . , kb}, k1 < · · · < kb

Then define σ(C,R) to be zero if C 6⊆ R, and otherwise the sign of the permutation
which sorts [C,R \ C] in ascending order. In other words, if C ⊆ R then σ(C,R) is
the sign of the uniquely determined permutation γ such that

tγ(i) = ki, 1 6 i 6 a

kγ(j) = ka+j , 1 6 j 6 b

Definition Appendix A.2. Let [n] = {1, . . . , n}, and let A, B be two subsets of
[n], of cardinality a and b, with 0 6 a < b. For a 6 r < b, we define

sr(A,B, n) =
∑

C∈([n]
r )

A⊆C⊆B

σ(C, B) (31)

For 0 6 d 6 n, we define

sd,n =
∑

R∈([n]
d )

σ(R, [n]) = sd(∅, [n], n) (32)

Lemma Appendix A.3. With the notations of Definition Appendix A.2, put d =
b− r. We have that

sr(A,B, n) =

{

0 A 6⊆ B
(−1)dsd,b−a A ⊆ B

(33)

Proof. Put d = b− r. If A 6⊆ B then clearly sr(A,B, n) = 0. Suppose that A ⊆ B.
Then

sr(A,B, n) =
∑

C∈([n]
r )

A⊆C⊆B

σ(C, B) =
∑

C∈(B
r)

A⊆C

σ(C, B),
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so the sum is independent of n. Furthermore, we can write A ⊆ C ∈
(B

r

)

as a disjoint
union C = A ∪ (C \A), hence the sum can be written

∑

S∈(B\A
r−a)

σ(S ∪A,B) =
∑

S∈(B\A
r−a)

σ(S,B \A).

Now, since S has cardinality r−a, the set (B\A)\S has cardinality b−a−(r−a) =
b−r = d, so the permutation which transforms [S, B\A] to [B\A,S] has cardinality
(−1)d. Hence, by substituting R = (B \A) \ S, we get that the sum is equal to

(−1)d
∑

S∈(B\A
v−a)

σ((B \A) \ S,B \A) = (−1)d
∑

R∈(B\A
d )

σ(R, B \A)

= (−1)d
∑

R∈([b−a]
d )

σ(R, [b− a]),

which is the desired result.

Lemma Appendix A.4. Suppose that 0 < d 6 n, and that d is even. Then
sd,n > 0.

Proof. The lemma is trivially true for d = n. If d = 2, we note that σ({v, v + 1}, [n]) =
1 for 1 6 v < n, since the permutation transforming [v, v+1, 1, 2, . . . , v−1, v+2, v+
3, . . . , n] to [1, 2, . . . , n] is even. Furthermore, the signs of σ({v, v + `}, [n]) alternate
in sign as ` goes from 1 to n − v. Thus, for a fixed v, there are either as many
positive as negative σ({v, v + `}, [n]), or 1 more positive than negative, depending
on the parity of n − v. By summing over all v, we conclude that there are always
strictly more positive than negative signs.

Now suppose that we have shown that s2k′,n′ > 0 for all k′, n′ such that k′ < k.
We want to show that that s2k,n > 0. We have that

s2k,n =
∑

R∈([n]
2k)

σ(R, [n]),

and writing R as a disjoint union of its first two element, and the remaining elements,
this becomes

∑

16k<`6n−2

∑

R2∈({`+1,`+2,...,n}
2k−2 )

σ({k, `} ∪R2, [n])

=
∑

16k<`6n−2

∑

R2∈({`+1,`+2,...,n}
2k−2 )

σ(R2, {` + 1, ` + 2, . . . , n})

=
∑

16k<`6n−2

s2k−2,n−` > 0.

Next, we define the signed incidence matrix.
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Definition Appendix A.5. Let 0 < a < b 6 n be integers. Then Ma,b,n is the
(n

b

)

×
(n

a

)

matrix where the rows are indexed by b-subsets of [n], the columns by
a-subsets of [n], and where the entry in row B, column A is σ(A,B).

Theorem Appendix A.6. Let 0 < a < b 6 n be integers. If d = b − a is even,
then Ma,b,n has full rank.

Proof. Denote the row indexed by R ∈
([n]

b

)

by τR, then τR can be regarded as an
element in Va([n]), the free Q-vector space on the a-subsets of [n]. If we denote the
basis element corresponding to a a-subset C by εC , then

τR =
∑

C∈([n]
a )

σ(C,R)εC .

The number of rows in Ma,b,n is
(n

b

)

, and the number of columns is
(n

a

)

. There
are less rows than columns if a + b > n, as many rows as columns if a + b = n, and
more rows than columns if a + b < n.

1. If a + b > n, we must prove that the rows are linearly independent. Suppose
that there is a linear relation among the τR’s, so that

∑

R∈([n]
b )

aRτR = 0 (34)

for some numbers aR. We shall prove that all aR = 0.
Choose an I ⊂

([n]
i

)

, 0 6 i 6 a, and define a linear functional HI : Va([n]) → Q
by

fI(εC) =

{

1 I ⊆ C
0 I 6⊆ C

(35)

Then if R ∈
([n]

b

)

we have that

fI(τR) = fI







∑

C∈([n]
a )

σ(C,R)εC





 =
∑

C∈([n]
a )

σ(C,R)fI(εC)

=
∑

I⊆C⊆R

σ(C,R) = sa(I,R, n) =

{

sd,b−i I ⊆ R
0 I 6⊆ R

(36)

The last step follows from Lemma Appendix A.3. Applying fI to (34) we get
that

0 = fI







∑

R∈([n]
b )

aRτR





 =
∑

R∈([n]
b )

aRfI(τR)

=
∑

R∈([n]
b )

aRsa(I,R) = sd,b−i

∑

R∈([n]
b )R⊇I

aR (37)
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Since Lemma Appendix A.4 tells us that sd,b−i 6= 0, we conclude that
∑

R⊇I

aR = 0 (38)

Now, for any J ⊂ [n] we have, by exclusion-inclusion, that
∑

R∩J=∅

aR =
∑

I⊂J

(−1)|I|
∑

R⊇I

aR (39)

Fix R0 ∈
([n]

b

)

and put J0 = [n] \ R0. Since |J0| = n − b 6 a we have, using
(38) that

aR0 =
∑

R∩J0=∅

aR =
∑

I⊆J0

(−1)|I|
∑

R⊇I

aR = 0 (40)

Since aR0 was arbitrary, all aR are zero. This shows that the τR are linearly
independent.

2. If n = a + b, then M is a square matrix. By the previous case, the vectors τR
are linearly independent, but since there are

(n
a

)

=
(n

b

)

such vectors, they form
a basis of Va([n]); in particular, they span this vector space.

3. Finally, let us consider the remaining case n > a + b, so that there are more
rows than columns. We must prove that the rows span Va([n]). We prove this
by induction over n − a − b. The case n − a − b = 0 is already proved, and
forms the basis of the induction. We assume a, b fixed, and that the assertion
has been proved for all a + b 6 n′ < n.
Let Γ ∈

([n]
a

)

be arbitrary. If we can express α = εΓ as a linear combination of
the τR’s, we are done. To this end, put

α′ =
∑

S∈([n−1]
a−1 )

S∪{n}=Γ

εS ∈ Va−1([n− 1]) (41)

Since a − 1 + b < n − 1, it follows by induction that there are scalars
{

dJ J ∈
([n−1]

a−1

)

}

such that

α′ =
∑

J∈([n−1]
a−1 )

dJτ ′J , τ ′J =
∑

S∈([n−1]
a−1 )

S⊆J

εS (42)

For R ∈
([n]

a

)

, n ∈ R, put c′R = dR \ {n}. Define

α0 =
∑

R∈([n]
a )

n∈R

c′RτR ∈ Va([n]) (43)

If we write

α0 =
∑

C∈([n]
a )

a′CεC
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we have that for C ∈
([n]

a

)

, n ∈ C, that

a′C =

{

1 C = Γ
0 C 6= Γ

which implies that

α0 =

{

α n ∈ Γ
0 n 6∈ Γ

In either case, α−α0 has coordinate 0 in component R ∈
([n]

a

)

, unless n ∈ R.
Hence, α − α0 may be regarded as a vector in Va([n − 1]). By the induction
hypothesis, there exist c′′R such that

α− α0 =
∑

R∈([n−1]
a )

c′′RτR (44)

Defining

cR =

{

c′R n ∈ R
c′′R n 6∈ R

we get that

α = α0 + (α− α0) =
∑

R∈([n]
a )

n∈R

c′RτR +
∑

R∈([n]
a )

n 6∈R

c′′RτR =
∑

R∈([n]
a )

cRτR

Appendix B. Calculations
The computer calculations were done on the computers of the UMS Medicis, cole

Polytechnique, and on the computers at the Department of Mathematics, Stockholm
University. We have used the programme Macaulay 2 [12] to calculate Hilbert se-
ries and minimal free resolutions. To save time and memory, the calculations were
performed in characteristic 31991. The holes in the tables show that there are limits
to what we could calculate, even on a machine with 2 GB of memory.
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