TRUNCATIONS OF THE RING OF NUMBER-THEORETIC FUNCTIONS

JAN SNELLMAN
(communicated by Winfried Bruns)

Abstract
We study the ring Γ of all functions $\mathbb{N}^{+} \rightarrow K$, endowed with the usual convolution product. Γ, which we call the ring of number-theoretic functions, is an inverse limit of the "truncations"

$$
\Gamma_{n}=\{f \in \Gamma \mid \forall m>n: f(m)=0\} .
$$

Each Γ_{n} is a zero-dimensional, finitely generated K-algebra, which may be expressed as the quotient of a finitely generated polynomial ring with a stable (after reversing the order of the variables) monomial ideal. Using the description of the free minimal resolution of stable ideals given by Eliahou-Kervaire, and some additional arguments by Aramova-Herzog and Peeva, we give the Poincaré-Betti series for Γ_{n}.

1. Introduction

Cashwell and Everett [2] studied "the ring of number-theoretic functions"

$$
\begin{equation*}
\Gamma=\left\{f \mid \mathbb{N}^{+} \rightarrow K\right\} \tag{1}
\end{equation*}
$$

where \mathbb{N}^{+}is the set of positive natural numbers (we denote by \mathbb{N} the set of all natural numbers) and K is a field containing the rational numbers. Γ is endowed with component-wise addition and multiplication with scalars, and with the convolution (or Cauchy) product

$$
\begin{equation*}
f g(n)=\sum_{\substack{(a, b) \in\left(\mathbb{N}^{+}\right) \times\left(\mathbb{N}^{+}\right) \\ a b=n}} f(a) g(b) \tag{2}
\end{equation*}
$$

With these operations, Γ becomes a commutative K-algebra. It is immediate that it is a local domain; less obvious is the fact that it is a unique factorisation domain. Cashwell and Everett proved this in [2] using the isomorphism

$$
\begin{align*}
\Phi: \Gamma & \rightarrow K[[X]] \\
f & \mapsto \sum f(n) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \ldots \tag{3}
\end{align*}
$$

where $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}, K[[X]]$ is the "large" power series ring of all functions from the free abelian monoid $\mathcal{M}=[X]$ (the free abelian monoid generated by X) to K, and where the summation extends over all $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots \in \mathbb{N}^{+}$. Here, and henceforth, we denote by p_{i} the i 'th prime number, with $p_{1}=2$, and by \mathcal{P} the set of all prime numbers. That (3) is an isomorphism is immediate from the following isomorphism of commutative monoids, implied by the fundamental theorem of arithmetics:

$$
\begin{equation*}
\left(\mathbb{N}^{+}, \cdot\right) \simeq \coprod_{p \in \mathcal{P}}(\mathbb{N},+) \tag{4}
\end{equation*}
$$

The author was supported by grants from Svenska Institutet and Kungliga Vetenskapsakademin, and by grant n. 231801F from Centre International des Etudiants et Stagiaires.

Received 1 November 1999, revised 19 January 2000; published on 31 January 2000.
1991 Mathematics Subject Classification: 13Dxx, 10.00
Key words and phrases: Ring of number theoretic functions, Poincaré-Betti series, stable monomial ideals (C) 2000, Jan Snellman. Permission to copy for private use granted.

The following number-theoretic functions are of particular interest (whenever possible, we use the same notation as in [2]):

1. The multiplicative unit ϵ given by $\epsilon(1)=1, \epsilon(n)=0$ for $n>1$,
2. $\lambda: \mathbb{N}^{+} \rightarrow \mathbb{N}$ given by $\lambda(1)=0, \lambda\left(q_{1} \cdots q_{l}\right)=l$ if q_{1}, \ldots, q_{l} are any (not necessarily distinct) prime numbers.
3. $\tilde{\lambda}: \mathbb{N}^{+} \rightarrow \mathbb{N}$ given $\tilde{\lambda}(1)=0, \tilde{\lambda}\left(p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}\right)=\sum a_{r} p_{r}$.
4. The Möbius function $\mu(1)=1, \mu(n)=(-1)^{v}$ if n is the product of v distinct prime factors, and 0 otherwise,
5. For any $i \in \mathbb{N}^{+}, \chi_{i}\left(p_{i}\right)=1$, and $\chi_{i}(m)=0$ for $m \neq p_{i}$. Note that under the isomorphism (3), $\Phi\left(\chi_{i}\right)=x_{i}$.

The topic of this article is the study of the "truncations" Γ_{n}, where for each $n \in \mathbb{N}^{+}$,

$$
\begin{equation*}
\Gamma_{n}=\{f \in \Gamma \mid m>n \Longrightarrow f(m)=0\} \tag{5}
\end{equation*}
$$

With the modified multiplication given by

$$
\begin{equation*}
f g(n)=\sum_{\substack{(a, b) \in\{1, \ldots, n\} \times\{1, \ldots, n\} \\ a b=n}} f(a) g(b) \tag{6}
\end{equation*}
$$

Γ_{n} becomes a K-algebra, isomorphic to Γ / J_{n}, where J_{n} is the ideal

$$
J_{n}=\{f \in \Gamma \mid \forall m \leqslant n: f(m)=0\}
$$

If we define

$$
\begin{align*}
\pi_{n}: \Gamma & \rightarrow \Gamma_{n} \tag{7}\\
\pi_{n}(f)(m) & = \begin{cases}f(m) & m \leqslant n \\
0 & m>n\end{cases} \tag{8}
\end{align*}
$$

then π_{n} is a K-algebra epimorphism, and J_{n} is the kernel of π_{n}. We note furthermore that J_{n} is generated by monomials in the elements χ_{i}.

To describe the main idea of this paper, we need a few additional definitions. First, for any $n \in \mathbb{N}^{+}$we denote by $r(n) \in \mathbb{N}$ the largest integer such that $p_{r(n)} \leqslant n$. In other words, $r(n)$ is the number of prime numbers $\leqslant n$ (this number is often denoted $\pi(n)$). Secondly, for a monomial $m=x_{1}^{\alpha_{1}} \cdots x_{w}^{\alpha_{w}}$, we define the support $\operatorname{Supp}(m)$ as the set of positive integers i such that $\alpha_{i}>0$. We define $\max (m)$ and $\min (m)$ as the maximal and minimal elements in the support of m.
Definition 1.1. A monomial ideal $I \subset K\left[x_{1}, \ldots, x_{r}\right]$ is said to be strongly stable if whenever m is a monomial such that $x_{j} m \in I$, then $x_{i} m \in I$ for all $i \leqslant j$. If this condition holds at least for all $i \leqslant j=\max (m)$ then I is said to be stable.

We can now state our main theorem:
Theorem 1.2. Let $n \in \mathbb{N}^{+}$and $r=r(n)$. Then the following holds:
(I) $\Gamma_{n} \simeq \frac{K\left[x_{1}, \ldots, x_{n}\right]}{I_{n}}$, where I_{n} is a strongly stable monomial ideal, with respect to the reverse order of the variables.
(II) Γ_{n} is artinian, with $\operatorname{dim}_{K}\left(\Gamma_{n}\right)=n$. Furthermore, if it is given the natural grading with $\left|\chi_{i}\right|=1$, then its Hilbert series is $\sum_{i} d_{i} t^{i}$ where d_{i} is the number of $w \leqslant n$ with $\lambda(w)=i$.
(III) There is a 1-1 bijection between the minimal monomial generators of I_{n} of minimal support v, and the solutions in non-negative integers to the equation

$$
\begin{equation*}
\log n-\log p_{v}<\sum_{i=v}^{r} b_{i} \log p_{i} \leqslant \log n \tag{9}
\end{equation*}
$$

(IV) If we denote by $C_{n, v}$ the number of such solutions, then the Poincaré-Betti series of the free minimal resolution of K as a cyclic module over Γ_{n} is the following rational function:

$$
\begin{equation*}
P\left(\operatorname{Tor}_{*}^{\Gamma_{n}}(K, K), t\right)=\frac{(1+t)^{r}}{1-t^{2}\left(\sum_{i=1}^{r}(1+t)^{(i-1)} C_{n, r-i+1}\right)} \tag{10}
\end{equation*}
$$

We will show this result, and also give the graded Poincaré-Betti series. For this, we define the number $C_{n, v, d}$ which counts the number of minimal generators of I_{n} of minimal support v and total degree d. We determine some elementary properties of the numbers $C_{n, v, d}$ and $C_{n, v}$.

2. The ring of number-theoretic functions and its truncations

2.1. Norms, degrees, and multiplicativity

For a monomial $\mathcal{M} \ni m=x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ we define the weight of m as $w(m)=p_{1}^{a_{1}} \ldots p_{n}^{a_{n}}$ (we put $w(1)=1$. Hence w gives a bijection between \mathcal{M} and \mathbb{N}^{+}. Furthermore, we can define a term order on \mathcal{M} by $m>m^{\prime}$ iff $w(m)>w\left(m^{\prime}\right)$. If we define the initial monomial in (f) of $f \in K[[X]]$ as the monomial in $\operatorname{Supp}(f)$ minimal with respect to $>$, then $\operatorname{in}(f)$ is easily seen to correspond to the norm $N(\alpha)$ of a number-theoretic function α, defined as the smallest n such that $\alpha(n) \neq 0$. Here, we must use w and Φ to identify \mathcal{M} and \mathbb{N}^{+}and $K[[X]]$ and Γ. As observed in [2], the norm is multiplicative: $N(\alpha \beta)=N(\alpha) N(\beta)$.

Cashwell and Everett also define the degree $D(\alpha)$ to mean the smallest d such that there exists an n with $\lambda(n)=d$ and $\alpha(n) \neq 0$. This corresponds the smallest total degree of a monomial in $\operatorname{Supp}(f)$. Furthermore, the norm $M(\alpha)$, defined as the smallest integer n with $\lambda(n)=D(\alpha), \alpha(n) \neq 0$, corresponds to the initial monomial of f under the term order obtained by refining the total degree partial order with the term order $>$.

A multiplicative function is an element $\alpha \in \Gamma$ such that $\alpha(1)=1$ and $\alpha(a b)=\alpha(a) \alpha(b)$ whenever a and b are relatively prime. Cashwell and Everett observes that a multiplicative function is necessarily a unit in Γ. One can further observe that if α is multiplicative, then $f=\Phi(\alpha)$ can be written

$$
f\left(x_{1}, x_{2}, x_{3}, \ldots\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) f_{3}\left(x_{3}\right) \cdots
$$

where each $f_{i}\left(x_{i}\right) \in K\left[\left[x_{i}\right]\right]$ is invertible. In particular, the constant function $\Gamma \ni \nu_{0}$ with $\nu_{0}(n)=1$ for all n, corresponds to

$$
\sum_{m \in \mathcal{M}} m=\frac{1}{1-x_{1}} \frac{1}{1-x_{2}} \frac{1}{1-x_{3}} \cdots
$$

Since the Möbius function is defined to be the inverse of this function, we get that it corresponds to

$$
\left(1-x_{1}\right)\left(1-x_{2}\right)\left(1-x_{3}\right) \cdots=1-\left(\sum_{i=1}^{\infty} x_{i}\right)+\left(\sum_{i<j} x_{i} x_{j}\right)-\left(\sum_{i<j<k} x_{i} x_{j} x_{k}\right)+\cdots
$$

2.2. Truncations of the ring of number-theoretic functions

Let $n, n^{\prime} \in \mathbb{N}^{+}, n^{\prime}>n$. Then there is a K-algebra epimorphism

$$
\begin{aligned}
\varphi_{n}^{n^{\prime}}: \Gamma_{n^{\prime}} & \rightarrow \Gamma_{n} \\
\varphi_{n}^{n^{\prime}}(f)(m) & = \begin{cases}f(m) & m \leqslant n \\
0 & m>n\end{cases}
\end{aligned}
$$

Hence, the Γ_{n} 's form an inverse system.
Lemma 2.1. $\lim _{\leftrightarrows} \Gamma_{n} \simeq \Gamma$.

Proof. Given any $f \in \Gamma$, the sequence $\left(\pi_{1}(f), \pi_{2}(f), \pi_{3}(f), \ldots\right)$ is coherent. Conversely, given any coherent sequence $\left(g_{1}, g_{2}, g_{3}, \ldots\right)$, we can define $g: \mathbb{N} \rightarrow K$ by $g(m)=g_{i}(m)$ where $i \geqslant m$.

As a side remark, we note that
Lemma 2.2. The decreasing filtration

$$
\begin{equation*}
J_{1} \supsetneq J_{2} \supsetneq J_{3} \supsetneq \cdots \tag{11}
\end{equation*}
$$

is separated, that is, $\cap_{n} J_{n}=(0)$.
Definition 2.3. We define

$$
\begin{equation*}
I_{n}=K[[X]]\{m \in \mathcal{M} \mid w(m)>n\}, \tag{12}
\end{equation*}
$$

that is, as the monomial ideal in $K[[X]]$ generated by all monomials of weight strictly higher than n. We put $A_{n}=\frac{K[[X]]}{I_{n}}$.
Proposition 2.4. A K-basis of A_{n} is given by all monomials of weight $\leqslant n$. Hence A_{n} is an artinian algebra, with $\operatorname{dim}_{K}\left(A_{n}\right)=n$. Putting $r=r(n)$, we have that

$$
\begin{equation*}
A_{n}=\frac{K[[X]]}{I_{n}} \simeq \frac{K\left[x_{1}, \ldots, x_{r}\right]}{I_{n} \cap K\left[x_{1}, \ldots, x_{r}\right]} \tag{13}
\end{equation*}
$$

Proof. As a vector space, $K[[X]] \simeq U \oplus I_{n}$, where U consists of all functions supported on monomials of weight $\leqslant n$. It follows that $A_{n} \simeq U$ as K vector spaces. Of course, there are exactly n monomials of weight $\leqslant n$. Finally, if $s>r$ then $w\left(x_{s}\right)=p_{s}>n$, hence $x_{s} \in I_{n}$.

We will abuse notations and identify I_{n} and its contraction $I_{n} \cap K\left[x_{1}, \ldots, x_{r}\right]$.
Lemma 2.5. $\Gamma_{n} \simeq A_{n}$.
Proof. Since A_{n} has a K-basis is given by all monomials of weight $\leqslant n$, the two K-algebras are isomorphic as K-vector spaces. The multiplication in A_{n} is induced from the multiplication in $K[[X]]$, with the extra condition that monomials of weight $>n$ are truncated. This is the same multiplication as in Γ_{n}.
Proposition 2.6. I_{n} is a strongly stable ideal, with respect to the reverse order of the variables.

Proof. We must show that if $m \in I_{n}$, and $x_{i} \mid m$, then $m x_{j} / x_{i} \in I$ for $i \leqslant j \leqslant r$. We have that $w\left(m x_{j} / x_{i}\right)=w(m) p_{j} / p_{i}>w(m)>n$.
Part I of the main theorem is now proved.
We give $K\left[x_{1}, \ldots, x_{r}\right]$ an \mathbb{N}^{2}-grading by giving the variable x_{i} bi-degree ($1, p_{i}$). Since each I_{n} is bihomogeneous, this grading is inherited by A_{n}.
Theorem 2.7. The bi-graded Hilbert series of A_{n} is given by

$$
A_{n}(t, u)=\sum_{i, j} c_{i j} t^{i} u^{j}
$$

where $c_{i j}$ is the number of $p_{1}^{a_{1}} \ldots p_{r}^{a_{r}} \leqslant n$ with $\sum a_{r}=i$ and $\sum a_{r} p_{r}=j$. Furthermore,

$$
\begin{aligned}
A_{n}(t, 1) & =\sum_{i} d_{i} t^{i} \\
A_{n}(1, u) & =\sum_{j} e_{j} u^{j}
\end{aligned}
$$

where d_{i} is the number of $w \leqslant n$ with $\lambda(w)=i$, and e_{i} is the number of $w \leqslant n$ with $\tilde{\lambda}(w)=i$. In particular, the t^{1}-coefficient of $A_{n}(t, 1)$ is the number of prime numbers $\leqslant n$.

Proof. The monomial $x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}$ has bi-degree $\left(\sum_{i=1}^{n} a_{i}, \sum a_{i} p_{i}\right)$.
This establishes part II of the main theorem.

3. Minimal generators for I_{n}

Let $n \in \mathbb{N}^{+}$, and let $r=r(n)$. We have that

$$
\begin{equation*}
x_{1}^{a_{1}} \ldots x_{r}^{a_{r}}=m \in I_{n} \quad \Longleftrightarrow \quad w(m)>n \quad \Longleftrightarrow \quad \prod_{i=1}^{r} p_{i}^{a_{i}}>n \tag{14}
\end{equation*}
$$

We denote by $G\left(I_{n}\right)$ the set of minimal monomial generators of I_{n}. For $m=x_{1}^{a_{1}} \ldots x_{r}^{a_{r}}$ to be an element of $G\left(I_{n}\right)$ it is necessary and sufficient that $m \in I_{n}$ and that for $1 \leqslant v \leqslant r$, $x_{v} \mid m \Longrightarrow m / x_{v} \notin I_{n}$. In other words,

$$
\begin{equation*}
1 \leqslant j \leqslant n, a_{j}>0 \quad \Longrightarrow \quad n<\prod_{i=1}^{r} p_{i}^{a_{i}} \leqslant p_{j} n \tag{15}
\end{equation*}
$$

Definition 3.1. For n, v, d positive integers, we define:

$$
\begin{align*}
C_{n} & =\# G\left(I_{n}\right) \tag{16}\\
C_{n, v} & =\#\left\{m \in G\left(I_{n}\right) \mid \min (m)=v\right\} \tag{17}\\
C_{n, v, d} & =\#\left\{m \in G\left(I_{n}\right)|\min (m)=v,|m|=d\}\right. \tag{18}
\end{align*}
$$

Theorem 3.2. $C_{n, v}$ is the number of solutions $\left(b_{1}, \ldots, b_{r}\right) \in \mathbb{N}^{r}$ to the equation

$$
\begin{equation*}
\log n-\log p_{v}<\sum_{i=v}^{r} b_{i} \log p_{i} \leqslant \log n \tag{19}
\end{equation*}
$$

Equivalently, $C_{n, v}$ is the number of integers x such that $n / p_{v}<x \leqslant n$ and such that no prime factors of x are smaller than p_{v}.

Similarly, $C_{n, v, d}$ is the number of solutions $\left(b_{1}, \ldots, b_{r}\right) \in \mathbb{N}^{r}$ to the system of equations

$$
\begin{align*}
\log n-\log p_{v} & <\sum_{i=v}^{r} b_{i} \log p_{i} \leqslant \log n \\
\sum_{i=1}^{r} b_{i} & =d-1 \tag{20}
\end{align*}
$$

or equivalently, $C_{n, v, d}$ is the number of integers x such that $n / p_{v}<x \leqslant n$ and such that no prime factors of x are smaller than p_{v}, and with the additional constraint that $\lambda(x)=d$.

Proof. We have that $a_{v}>0, a_{w}=0$ for $w<v$. Hence equation (15) implies that

$$
n<\prod_{j=v}^{r} p_{i}^{a_{i}} \leqslant p_{v} n
$$

Putting $b_{v}=a_{v}-1, b_{j}=a_{j}$ for $j>v$ we can write this as

$$
n<p_{v} \prod_{j=v}^{r} p_{i}^{b_{i}} \leqslant p_{v} n \quad \Longleftrightarrow \quad n / p_{v}<\prod_{j=v}^{r} p_{i}^{b_{i}} \leqslant n
$$

from which (19) follows by taking logarithms. This implies (20) as well.
We have now proved part III of the main theorem.

Figure 1: The numbers C_{n} and $C_{n, i}$.

n	Σ	$i=1$	$i=2$	3	4	5	6	7	8	9	10
2	1	1									
3	3	2	1								
4	3	2	1								
5	6	3	2	1							
6	6	3	2	1							
7	10	4	3	2	1						
8	10	4	3	2	1						
9	11	5	3	2	1						
10	11	5	3	2	1						
11	16	6	4	3	2	1					
12	16	6	4	3	2	1					
13	22	7	5	4	3	2	1				
14	22	7	5	4	3	2	1				
15	23	8	5	4	3	2	1				
16	23	8	5	4	3	2	1				
17	30	9	6	5	4	3	2	1			
18	30	9	6	5	4	3	2	1			
19	38	10	7	6	5	4	3	2	1		
20	38	10	7	6	5	4	3	2	1		
21	39	11	7	6	5	4	3	2	1		
22	39	11	7	6	5	4	3	2	1		
23	48	12	8	7	6	5	4	3	2	1	
24	48	12	8	7	6	5	4	3	2	1	
25	50	13	9	7	6	5	4	3	2	1	
26	50	13	9	7	6	5	4	3	2	1	
27	51	14	9	7	6	5	4	3	2	1	
28	51	14	9	7	6	5	4	3	2	1	
29	61	15	10	8	7	6	5	4	3	2	1
30	61	15	10	8	7	6	5	4	3	2	1

Figure 2: The numbers $C_{n, i, g}$.

n	$i=1$	$i=2$	3	4	5	6	7	8	9	
2	1									
3	2	1								
4	$u+1$	1								
5	$u+2$	2	1							
6	$2 u+1$	2	1							
7	$2 u+2$	3	2	1						
8	$u^{2}+u+2$	3	2	1						
9	$u^{2}+2 u+2$	$u+2$	2	1						
10	$u^{2}+3 u+1$	$u+2$	2	1						
11	$u^{2}+3 u+2$	$u+3$	3	2	1					
12	$2 u^{2}+2 u+2$	$u+3$	3	2	1					
13	$2 u^{2}+2 u+3$	$u+4$	4	3	2	1				
14	$2 u^{2}+3 u+2$	$u+4$	4	3	2	1				
15	$2 u^{2}+4 u+2$	$2 u+3$	4	3	2	1				
16	$u^{3}+u^{2}+4 u+2$	$2 u+3$	4	3	2	1				
17	$u^{3}+u^{2}+4 u+3$	$2 u+4$	5	4	3	2	1			
18	$u^{3}+2 u^{2}+3 u+3$	$2 u+4$	5	4	3	2	1			
19	$u^{3}+2 u^{2}+3 u+4$	$2 u+5$	6	5	4	3	2	1		
20	$u^{3}+3 u^{2}+2 u+4$	$2 u+5$	6	5	4	3	2	1		
21	$u^{3}+3 u^{2}+3 u+4$	$3 u+4$	6	5	4	3	2	1		
22	$u^{3}+3 u^{2}+4 u+3$	$3 u+4$	6	5	4	3	2	1		
23	$u^{3}+3 u^{2}+4 u+4$	$3 u+5$	7	6	5	4	3	2	1	
24	$2 u^{3}+2 u^{2}+4 u+4$	$3 u+5$	7	6	5	4	3	2	1	
25	$2 u^{3}+2 u^{2}+5 u+4$	$4 u+5$	$u+6$	6	5	4	3	2	1	
26	$2 u^{3}+2 u^{2}+6 u+3$	$4 u+5$	$u+6$	6	5	4	3	2	1	
27	$2 u^{3}+3 u^{2}+6 u+3$	$u^{2}+3 u+5$	$u+6$	6	5	4	3	2	1	
28	$2 u^{3}+4 u^{2}+5 u+3$	$u^{2}+3 u+5$	$u+6$	6	5	4	3	2	1	
29	$2 u^{3}+4 u^{2}+5 u+4$	$u^{2}+3 u+6$	$u+7$	7	6	5	4	3	2	1
30	$2 u^{3}+5 u^{2}+4 u+4$	$u^{2}+3 u+6$	$u+7$	7	6	5	4	3	2	1

Example 3.3. The first few I_{n} 's are as follows: $I_{2}=\left(x_{1}^{2}\right), I_{3}=\left(x_{1}^{2}, x_{2}^{2}, x_{1} x_{2}\right), I_{4}=\left(x_{1}^{3}, x_{2}^{2}, x_{1} x_{2}\right)$, $I_{5}=\left(x_{1}^{3}, x_{2}^{2}, x_{1} x_{2}, x_{3}^{2}, x_{1} x_{3}, x_{2} x_{3}\right)$.

We tabulate $C_{n, i}$ and $C_{n, i, d}$, the latter in form of the polynomial $u^{-2} \sum_{j} C_{n, i, j} u^{j}$ in the tables 1 and 2 .

Theorem 3.4. (1) $C_{n, v}=0$ for $v>r(n)$
(2) $\forall n \in \mathbb{N}: \forall v \leqslant r(n): C_{n, 1+r(n)-v} \geqslant v$,
(3) $\forall n \in \mathbb{N}: C_{n} \geqslant\binom{ r(n)+1}{2}$,
(4) $\forall v \in \mathbb{N}: \exists N: \forall n \geqslant N: C_{n, 1+r(n)-v}=v$.
(5) If n is even, then $C_{n, v}=C_{n-1, v}$ for all v,
(6) $C_{n, 1}=\lceil n / 2\rceil$.

Proof. (1) Obvious.
(2) and (3) It suffices to show that for any subset $S \subset\{1, \ldots, r\}$ of cardinality 1 or 2 , there is an $m \in G\left(I_{n}\right)$ with $\operatorname{Supp}(m)=S$. If $S=\{i\}$ then there is an unique positive integer a such that $p_{i}^{b-1} \leqslant n<p_{i}^{b}$, and $m=x_{i}^{b}$ is the desired generator. If $S=\{i, j\}$ with $i<j$ then we claim that there is a positive integer a such that $x_{i}^{a} x_{j} \in G\left(I_{n}\right)$. Namely, choose b such that $p_{i}^{b-1} \leqslant n<p_{i}^{b}$, then since $p_{i}<p_{j}$ one has $n<p_{i}^{b-1} p_{j}$. Hence $x_{i}^{b-1} x_{j} \in I_{n}$, so it is a multiple of some minimal generator. By the definition of b, this minimal generator must be of the form $x_{i}^{a} x_{j}$ for some a, which establishes the claim.
(6) We must show that the number of solutions in \mathbb{N}^{r} to

$$
\frac{n}{2}<\prod_{i=1}^{r} p_{i}^{b_{i}} \leqslant n
$$

is precisely $\left\lceil\frac{n}{2}\right\rceil$. Obviously, any integer $\in\left(\frac{n}{2}, n\right\rceil$ fits the bill; there are $\left\lceil\frac{n}{2}\right\rceil$ of those.
(5) The case $v=1$ follows from (6). Hence, it suffices to show that if $v>1, x \in\left(\frac{n}{p_{v}}, n\right] \cap \mathbb{N}$, and if x has no prime factor $<p_{v}$, then $x \in\left(\frac{n-1}{p_{v}}, n-1\right] \cap \mathbb{N}$. The only way this can fail to happen is if $x=n$, but then x is even, and has the prime factor $2=p_{1}<p_{v}$, a contradiction.
(4) For large enough n, the only integers $x \leqslant n$ with all prime factors $\geqslant 1+r(n)-v$ are $p_{1+r(n)-v}, \ldots, p_{r(n)}$. There is v of these, and they are all $>\frac{n}{p_{v}}$.
Theorem 3.5. 1. $C_{n, v, d}=0$ for $v>r(n)$, and for $d<2$,
2. $\forall v \in \mathbb{N}: \exists N: \forall n \geqslant N: C_{n, 1+r(n)-v, 2}=v, C_{n, 1+r(n)-v, d}=0$ for $d \neq 2$,
3. $\binom{r(n)}{2}=\#\left\{m \in \mathbb{N}^{+} \mid m \leqslant n, \lambda(m)=2\right\}$.

Proof. The first and the last assertions are obvious. The second one follows from the proof of (4) in the previous lemma.

4. Poincaré series

In [3], a minimal free multi-graded resolution of a I over S is given, where $S=K\left[x_{1}, \ldots, x_{r}\right]$ is a polynomial ring, and $I \subset\left(x_{1}, \ldots, x_{r}\right)^{2}$ is a stable ideal. As a consequence, the following formula for the Poincaré-Betti series is derived:

$$
\begin{equation*}
P\left(\operatorname{Tor}_{*}^{S}(I, K), t\right)=\sum_{a \in G(I)}(1+t)^{\max (a)-1} \tag{21}
\end{equation*}
$$

where $G(I)$ is the minimal generating set of I. Since the resolution is multi-graded, (21) can be modified to yield a formula for the graded Poincaré-Betti series (we here consider S as \mathbb{N}-graded, with each variable given weight 1):

$$
\begin{equation*}
P\left(\operatorname{Tor}_{*, *}^{S}(I, K), t, u\right)=\sum_{a \in G(I)} u^{|a|}(1+t)^{\max (a)-1} \tag{22}
\end{equation*}
$$

We will use the following variant of this result:
Theorem 4.1 (Eliahou-Kervaire). Let $I \subset\left(x_{1}, \ldots, x_{r}\right)^{2} \subset K\left[x_{1}, \ldots, x_{r}\right]=S$ be a stable monomial ideal. Put

$$
\begin{align*}
b_{i, d} & =\#\{m \in G(I)|\max (m)=i,|m|=d\} \tag{23}\\
b_{i} & =\#\{m \in G(I) \mid \max (m)=i\} \tag{24}
\end{align*}
$$

Then

$$
\begin{align*}
P\left(\operatorname{Tor}_{*}^{S}(I, K), t\right) & =\sum_{i=1}^{r} b_{i}(1+t)^{(i-1)} \tag{25}\\
P\left(\operatorname{Tor}_{*, *}^{S}(I, K), t, u\right) & =\sum_{i=1}^{r}\left((1+t u)^{(i-1)} \sum_{j} b_{i, j} u^{j}\right) . \tag{26}
\end{align*}
$$

For the Betti-numbers we have that

$$
\begin{equation*}
\beta_{q}=\operatorname{dim}_{K}\left(\operatorname{Tor}_{q}^{S}(I, K)\right)=\sum_{i=1}^{r} b_{i}\binom{i-1}{q} \tag{27}
\end{equation*}
$$

From Proposition 2.6 we have that the ideals I_{n} are stable after reversing the order of the variables. Hence, replacing max by min, and hence b_{i} with $C_{n, 1+r-i}$, we get:

Corollary 4.2. Let $n \in \mathbb{N}^{+}, r=r(n), S=K\left[x_{1}, \ldots, x_{r}\right]$. Then

$$
\begin{align*}
P\left(\operatorname{Tor}_{*}^{S}\left(I_{n}, K\right), t\right) & =\sum_{i=1}^{r} C_{n, 1+r-i}(1+t)^{(i-1)} \tag{28}\\
P\left(\operatorname{Tor}_{*, *}^{S}\left(I_{n}, K\right), t, u\right) & =\sum_{i=1}^{r}(1+t u)^{(i-1)} \sum_{j} C_{n, 1+r-i, j} u^{j} . \tag{29}
\end{align*}
$$

For the Betti-numbers we have that

$$
\begin{equation*}
\beta_{q}=\sum_{i=1}^{r} C_{n, 1+r-i}\binom{i-1}{q} \tag{30}
\end{equation*}
$$

In $[\mathbf{6}, \mathbf{1}]$ it is shown that if $S=K\left[x_{1}, \ldots, x_{r}\right]$ and I is a stable monomial ideal in S, then S / I is a Golod ring. Hence, from a result of Golod [4] (see also [5]), it follows that

$$
\begin{equation*}
P\left(\operatorname{Tor}_{*}^{S / I}(K, K), t\right)=\frac{(1+t)^{r}}{1-t^{2} P\left(\operatorname{Tor}_{*}^{S}(I, K), t\right)} \tag{31}
\end{equation*}
$$

Regarding S as an \mathbb{N}-graded ring, one can show that in fact

$$
\begin{equation*}
P\left(\operatorname{Tor}_{*}^{S / I}(K, K), t, u\right)=\frac{(1+u t)^{r}}{1-t^{2} P\left(\operatorname{Tor}_{*}^{S}(I, K), t, u\right)} \tag{32}
\end{equation*}
$$

The following theorem is an immediate consequence:
Theorem 4.3 (Herzog-Aramova, Peeva). Let $S=K\left[x_{1}, \ldots, x_{r}\right]$, and suppose that I is a stable monomial ideal in S. Put

$$
\begin{aligned}
b_{i, d} & =\#\{x \in G(I)|\max (x)=i,|x|=d\} \\
b_{i} & =\#\{x \in G(I) \mid \max (x)=i\}
\end{aligned}
$$

Then, for $R=S / I$, we have that

$$
\begin{align*}
P\left(\operatorname{Tor}_{*}^{R}(K, K), t\right) & =\frac{(1+t)^{r}}{1-t^{2} \sum_{i=1}^{r}(1+t)^{(i-1)} \sum_{j} b_{i}} \tag{33}\\
P\left(\operatorname{Tor}_{*}^{R}(K, K), t, u\right) & =\frac{(1+t)^{r}}{1-t^{2} \sum_{i=1}^{r}(1+t u)^{(i-1)} \sum_{j} b_{i, j} u^{j}} \tag{34}
\end{align*}
$$

Specialising to the case of A_{n}, we obtain:
Corollary 4.4. Let $n \in \mathbb{N}^{+}$, and let $r=r(n)$. Regard A_{n} as a naturally graded K-algebra, with each x_{i} given weight 1, and regard K as a cyclic A-module. Then

$$
\begin{align*}
P\left(\operatorname{Tor}_{*}^{A_{n}}(K, K), t\right) & =\frac{(1+t)^{r}}{1-t^{2} \sum_{i=1}^{r}(1+t)^{(i-1)} C_{n, r-i+1}} \tag{35}\\
P\left(\operatorname{Tor}_{*}^{A_{n}}(K, K), t, u\right) & =\frac{(1+u t)^{r}}{1-t^{2}\left(\sum_{i=1}^{r}\left((1+t u)^{(i-1)} \sum_{j} C_{n, r-i+1, j} u^{j}\right)\right)} \tag{36}
\end{align*}
$$

Part IV of the main theorem is now proved.
Example 4.5. We consider the case $n=5$, then $r=r(n)=3$, so $S=K\left[x_{1}, x_{2}, x_{3}\right]$ and $I=I_{5}=\left(x_{1}^{3}, x_{1} x_{2}, x_{1} x_{3}, x_{2}^{2}, x_{2} x_{3}, x_{3}^{2}\right)$. We get that $C_{5,1}=3, C_{5,2}=2, C_{5,3}=1$. According to our formulas ${ }^{1}$ we have

$$
\begin{aligned}
P_{I}^{S}(t) & =1+2(1+t)+3(1+t)^{2}=6+8 t+3 t^{2} \\
P_{K}^{S / I} & =\frac{(1+t)^{r}}{1-t^{2} P_{I}^{S}(t)}=\frac{1}{1-3 t}
\end{aligned}
$$

When we consider the grading by total degree, we have that $C_{5,1,2}=2, C_{5,1,3}=1, C_{5,2,2}=$ $2, C_{5,3,2}=1$. Hence, our formulas yield

$$
\begin{aligned}
P_{I}^{S}(t, u) & =u^{2}+2 u^{2}(1+t)+\left(2 u^{2}+u^{3}\right)(1+t)^{2} \\
& =5 u^{2}+u^{3}+\left(6 u^{2}+2 u^{3}\right) t+\left(2 u^{2}+u^{3}\right) t^{2} \\
P_{K}^{S / I}(t, u) & =-\frac{1+t u}{u^{3} t^{2}+2 t^{2} u^{2}+2 t u-1}
\end{aligned}
$$

We list the first few Poincaré-Betti series $P\left(\operatorname{Tor}_{*}^{A_{n}}(K, K), t, u\right)$ in table 3.
Conjecture 4.6. $P\left(\operatorname{Tor}_{*}^{A_{n}}(K, K), t\right)=-\frac{(1+t)^{\ell_{1}(n)}}{q_{n}(t)}, q_{n}(t)=\sum_{i=0}^{\ell_{2}(n)} h_{i}(n) t^{i}$, with

1. $q_{n}(-1) \neq 0$,
2. $\ell_{1}(n)$ is the number of odd primes p such that $p^{2} \leqslant n$,
3. $\ell_{2}(n)=\ell_{1}(n)+1$,
4. $h_{0}(n)=-1$,
5. $h_{1}(n)=r(n)-\ell_{1}(n)$,
6. $h_{\ell_{2}(n)}(n)=C_{n, 1}=\lceil n / 2\rceil$.

5. Acknowledgements

I am indebted to Johan Andersson for suggesting the idea of studying the homological properties of the truncations Γ_{n}. I thank the referee for suggesting a simplified proof of parts of Theorem 3.4.
${ }^{1}$ Here, we have used the abbreviation $P_{I}^{S}(t)=P\left(\operatorname{Tor}_{*}^{S}(I, K), t\right)$, we will also write $P_{K}^{S / I}(t)=$
$P\left(\operatorname{Tor}_{*}^{S / I}(K, K), t\right)$ et cetera.

n	Graded	Non-graded
2	$-(t u-1)^{-1}$	$-(t-1)^{-1}$
3	$-(2 t u-1)^{-1}$	$-(2 t-1)^{-1}$
4	$-\frac{1+t u}{\left(u^{3}+u^{2}\right) t^{2}+t u-1}$	$-(2 t-1)^{-1}$
5	$-\frac{1++u}{\left(u^{3}+2 u^{2}\right) t^{2}+2 t u-1}$	$-(3 t-1)^{-1}$
6	$-\frac{1+t u}{\left(2 u^{3}+u^{2}\right) t^{2}+2 t u-1}$	$-(3 t-1)^{-1}$
7	$-\frac{1+t u}{\left(2 u^{3}+2 u^{2}\right) t^{2}+3 t u-1}$	$-(4 t-1)^{-1}$
8	$-\frac{1+t u}{\left(u^{4}+u^{3}+2 u^{2}\right) t^{2}+3 t u-1}$	$-(4 t-1)^{-1}$
9	$-\frac{1+2 t u+t^{2} u^{2}}{\left(u^{5}+2 u^{4}+2 u^{3}\right) t^{3}+\left(u^{4}+3 u^{3}+4 u^{2}\right) t^{2}+2 t u-1}$	$-\frac{1+t}{5 t^{2}+3 t-1}$
10	$-\frac{1+2 t u+t^{2} u^{2}}{\left(u^{5}+3 u^{4}+u^{3}\right)^{3}+\left(u^{4}+4 u^{3}+3 u^{2}\right) t^{2}+2 t u-1}$	$-\frac{1+t}{5 t^{2}+3 t-1}$
11	$-\frac{1+2 t u+t^{2} u^{2}}{\left(u^{5}+3 u^{4}+2 u^{3}\right) t^{3}+\left(u^{4}+4 u^{3}+5 u^{2}\right) t^{2}+3 t u-1}$	$-\frac{1+t}{6 t^{2}+4 t-1}$
12	$-\frac{\left.1+u^{5}+2 u^{4}+2 u^{3}\right) t^{3}+\left(2 u u^{4}+3 u^{2} u^{3}+5 u^{2}\right) t^{2}+3 t u-1}{\left(2 u^{2}\right.}$	$-\frac{1+t}{6 t^{2}+4 t-1}$
13	$\frac{1+2 t u+t^{2} u^{2}}{\left(2 u^{5}+2 u^{4}+3 u^{3}\right) t^{3}+\left(2 u^{4}+3 u^{3}+7 u^{2}\right) t^{2}+4 t u-1}$	$-\frac{1+t}{7 t^{2}+5 t-1}$
14	$-\frac{1+2 t u+t^{2} u^{2}}{\left(2 u^{5}+3 u^{4}+2 u^{3}\right) t^{3}+\left(2 u^{4}+4 u^{3}+6 u^{2}\right) t^{2}+4 t u-1}$	$-\frac{1+t}{7 t^{2}+5 t-1}$
15	$-\frac{1+2 t u+t^{2} u^{2}}{\left(2 u^{5}+4 u^{4}+2 u^{3}\right) t^{3}+\left(2 u^{4}+6 u^{3}+5 u^{2}\right) t^{2}+4 t u-1}$	$-\frac{1+t}{8 t^{2}+5 t-1}$
16	$\frac{\left(u^{6}+u^{5}+4 u^{4}+2 u^{3}\right) t^{3}+\left(u^{5}+u^{2} u^{4}+6 u^{3}+5 u^{2}\right) t^{2}+4 t u-1}{}$	$-\frac{1+t}{8 t^{2}+5 t-1}$
17	$-\frac{1+2 t u+t^{2} u^{2}}{\left(u^{6}+u^{5}+4 u^{4}+3 u^{3}\right) t^{3}+\left(u^{5}+u^{4}+6 u^{3}+7 u^{2}\right) t^{2}+5 t u-1}$	$-\frac{1+t}{9 t^{2}+6 t-1}$
18	$-\frac{1+2 t u+t^{2} u^{2}}{\left(u^{6}+2 u^{5}+3 u^{4}+3 u^{3} t^{3}+\left(u^{5}+2 u^{4}+5 u^{3}+7 u^{2}\right) t^{2}+5 t u-1\right.}$	$-\frac{1+t}{9 t^{2}+6 t-1}$
19	$-\frac{1+2 t u+t^{2} u^{2}}{\left(u^{6}+2 u^{5}+3 u^{4}+4 u^{3}\right) t^{3}+\left(u^{5}+2 u^{4}+5 u^{3}+9 u^{2}\right) t^{2}+6 t u-1}$	$-\frac{1+t}{10 t^{2}+7 t-1}$
20	$-\frac{1+2 t u+t^{2} u^{2}}{\left(u^{6}+3 u^{5}+2 u^{4}+4 u^{3}\right) t^{3}+\left(u^{5}+3 u^{4}+4 u^{3}+9 u^{2}\right) t^{2}+6 t u-1}$	$-\frac{1+t}{10 t^{2}+7 t-1}$
21	$-\frac{\left(u^{3}\right.}{t^{3} u^{6}+3 u^{5} t^{3}+t^{2} u^{5}+3 t^{3} u^{4}+3 u^{4} t^{2}+4 t^{3} u^{3}+6 t^{2} u^{3}+8 t^{2} u^{2}+6 t u-1}$	$-\frac{1+t}{11 t^{2}+7 t-1}$
22	$-\frac{t^{3} u^{6}+3 u^{5} t^{3}+t^{2} u^{5}+4 t^{3} u^{4}+3 u^{4} t^{2}+3^{3} t^{3} u^{3}+7 t^{2} u^{3}+7 t^{2} u^{2}+6 t u-1}{}$	$-\frac{1+t}{11 t^{2}+7 t-1}$
23	$-\frac{t^{3} u^{6}+3 u^{5} t^{3}+t^{2} u^{5}+4 t^{3} u^{4}+3 u^{4} t^{2}+4 t^{3} u^{3}+7 t^{2} u^{3}+9 t^{2} u^{2}+7 t u-1}{}$	$-\frac{1+t}{12 t^{2}+8 t-1}$
24	$-\frac{1}{2 t^{3} u^{6}+2 u^{5} t^{3}+2 t^{2} u^{5}+4 t^{3} u^{4}+2 u^{4} t^{2}+t^{4} t^{3} u^{3}+7 t^{2} u^{3}+9 t^{2} u^{2}+7 t u-1}$	$-\frac{1+t}{12 t^{2}+8 t-1}(1+t)^{2}$
25		$\overline{13 t^{3}+22 t^{2}+7 t-1}$

Figure 3: Graded and non-graded Poincaré-Betti series of the minimal free resolution of K over A_{n}.

References

[1] Annetta Aramova and Jürgen Herzog. Koszul Cycles and Eliahou-Kervaire Type Resolutions. Journal of Algebra, 181(2):347-370, 1996.
[2] E. D. Cashwell and C. J. Everett. The ring of number-theorethic functions. Pacific Journal of Mathematics, 9:975-985, 1959.
[3] S. Eliahou and M. Kervaire. Minimal resolutions of some monomial ideals. J. Algebra, 129:1-25, 1990.
[4] E. S. Golod. On the homology of some local rings. Soviet Math. Dokl., 3:745-749, 1962.
[5] T. Gulliksen and G. Levin. Homology of Local Rings, volume 20 of Queen's Papers in Pure and Applied Mathematics. 1969.
[6] Irena Peeva. 0-Borel Fixed Ideals. Journal of Algebra, 184(3):945-984, 1996.

This article may be accessed via WWW at http://www.rmi.acnet.ge/hha/ or by anonymous ftp at ftp://ftp.rmi.acnet.ge/pub/hha/volumes/2000/n2/n2.(dvi,ps,dvi.gz,ps.gz)

Jan Snellman jans@matematik.su.se
School of Informatics
University of Wales
Dean Street, Bangor
Gwynedd LL57 1UT
Wales
UK

