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WEAK CORESTRICTION PRINCIPLE FOR NON-ABELIAN
GALOIS COHOMOLOGY

NGUYÊÑ QUÔĆ THǍŃG

(communicated by Hvedri Inassaridze)

Abstract
We introduce the notion of (Weak) Corestriction Principle

and prove some relations between the validity of this principle
for various connecting maps in non-abelian Galois cohomology
over fields of characteristic 0. We also prove the validity of
Weak Corestriction Principle for images of coboundary maps
H1(k, G) → H2(k, T ), where T is a finite commutative k-group
of multiplicative type, G is adjoint, semisimple and contains
only almost simple factors of certain inner types.

Introduction.

Let G be a commutative algebraic group defined over a field k of characteris-
tic 0. Let Hi(k, G) denote the usual Galois cohomology Hi(Gal(k̄/k), G(k̄)). It is
well-known that there exists corestriction homomorphism Cores := Coresk′/k :
Hi(k′, G) → Hi(k, G) for any i > 1 and any finite extension k′ of k, which gives rise
to a map of functors (G 7→ Hi(k′, G)) → (G 7→ Hi(k, G)). In particular, if

1 → A
j→ B

p→ C → 1

is an exact sequence of commutative algebraic k-groups, {α1, α2, ...}
(resp. {α′1, α′2, ...}) denotes the sequence of homomorphisms appearing in the long
exact sequence of cohomology deduced from (∗) as cohomology of Gal(k̄/k)-modules
(resp. as Gal(k̄/k′)-modules), then we have

Cores ◦ α′m = αm ◦ Cores

for all m > 1. However, if in (∗) one of the groups is not commutative, then it turns
out that there is no corestriction map between these two long exact sequences in
general. (In [R1], C. Riehm has found some sufficient conditions for the existence
of corestriction map.) It leads us to the following definition. Let A,B be algebraic
groups defined over k. Assume that we are given a map of functors f : (L 7→
Hi(L,A)) → (L 7→ Hj(L,B)), where L denotes a field extension of k, i.e., a collection
of maps of cohomology sets fL : Hi(L, A) → Hj(L,B), where fL is functorial in L.
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Assume further that among A,B, only B (resp. A) is a commutative algebraic
k-group and 0 6 i 6 1 (resp. 0 6 j 6 1).

Definition. We say that the Corestriction Principle over k holds for the image
(resp. the kernel) of fk if we have

Coresk′/k(Im (fk′)) ⊂ Im (fk)

(resp.

Coresk′/k(Ker (fk′)) ⊂ Ker (fk))

for any finite extension k′ of k. We call a map Hi(k, A) → Hj(k, B) connecting
if it is the usual connecting map appearing in the long exact sequence of Galois
cohomology deduced from an exact sequence of k-groups involving A and B. It
is natural and important to investigate whether or not the Corestriction Principle
always holds for connecting maps. In the case i = 1, j = 2, Rosset and Tate [RT]
constructed an example showing that, in general, Corestriction Principle for the
image (or kernel) does not hold. Namely, let

1 → µn → SLn → PGLn → 1

be the exact sequence of algebraic k-groups, where µn denotes the center (=n-th
roots of 1) of the special linear group SLn. Then they showed the following. Assume
that µn ⊂ k and consider any finite extension k′/k. Any element of the image of
the connecting (boundary) map ∆′ : H1(k′, PGLn) → H2(k′, µn) will be called a
(cohomological) symbol over k′. Then via the corestriction map Coresk′/k, the image
of a symbol is a sum (in the corresponding group) of elements from the image of ∆
and may not be in the image. Thus the norm (corestriction) of a (cohomological)
symbol may not be a symbol, though it is a sum of symbols. In other words, a weaker
statement holds true : the corestriction of a symbol over k′ lies in the group generated
by the symbols over k . (In view of Merkurjev and Suslin’s Theorem [MS], if k
contains a primitive n-th root of 1, then we have the following stronger statement :
the image of the connecting map ∆ : H1(k, PGLn) → H2(k, µn) = nBr(k) generates
the whole n-torsion subgroup nBr(k) of the Brauer group Br(k) of k.)

So for a connecting map αk : Hp(k, G) → Hq(k, T ), where G, T are connected
reductive k-groups, T is a torus, 0 6 p 6 1, 0 6 q 6 2 and for a collection of
connecting maps αk′ : Hp(k′, G) → Hq(k′, T ) for finite extensions k′ of a field k, it
is natural to ask if the above generation phenomenon always holds.

Definition. We say that Weak Corestriction Principle holds for the image of αk,
if

Coresk′/k(Im (αk′)) ⊂ 〈Im (αk)〉,
where 〈A〉 denotes the subgroup generated by A in the corresponding group and
Coresk′/k denotes the corestriction map for the corresponding cohomology groups
for the finite extension k′/k.

Similarly, one may consider (Weak) Corestriction Principle for the kernel of a
connecting map. Notice that some particular cases of the Corestriction Principle (in
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other terminology, Norm Principle), was proved to hold in [Gi], [Me2], [T1], [T2]
under certain restrictions either on the group G, or on the arithmetic nature of the
field k.

In this paper we show that the above observation made by Rosset and Tate
holds in fact for a large class of groups. We would like to make a conjecture that
Weak Corestriction Principle always holds over any field. Our first main result
(see Theorems 2.10, 2.11) shows some interrelation between the validity of (Weak)
Corestriction Principle for different kinds of connecting maps. As applicationis, one
can get other counterexamples to the Corestriction Principle (e.g. for i = j = 1).

As a second main objective of this paper, we investigate the Weak Corestric-
tion Principle for images of connecting maps coming from Galois cohomology of
reductive groups. Our second main result (see Theorem 4.1) is the following Weak
Corestriction Principle.

Let k be a field of characteristic 0 and let ∆ : H1(k,G) → H2(k, F ) be the
coboundary map between cohomology sets where F is the center of a semisimple
k-group G1, G = G1/F is the adjoint k-group of G1. Assume that G contains only
almost simple factors of classical, inner types 1A, B,C, 1Dn (n even). Let k′ be
a finite extension of k and assume that k contains (m + 1)th-roots of unity if G
contains a 1Am-factor. Then

Coresk′/k(Im (∆⊗ k′)) ⊂ 〈Im (∆)〉.
After some preliminary results in Section 1, in Section 2 we prove some equivalent

conditions (in the form of reduction theorems), which show how different statements
about (Weak) Corestriction Principle are related and how useful they are in reducing
the problem to a simpler one. In Section 3 we reduce the problem to the quasi-split
case. In Section 4 we prove the second main result mentioned above.

1. Preliminary results

In this section we present some necessary facts related with the well-known
crossed-diagram construction given by Ono (which was also the notion of z-exten-
sions used by Langlands), and we make some preliminary reductions. We will need
the following lemmas.

Lemma 1.1. Assume that we have the following commutative diagram

A′

β

²²

p′ // B′

γ

²²

q′ // C ′

A
p // B

q // C,

where A, B, A′, B′ are groups, the left diagram is a commutative diagram of groups.
Let e′ = q′(1), e = q(1), where 1 is the identity element of the corresponding groups.
Then if γ(q′−1(e′)) ⊂ q−1(e) then

β(r′−1(e′)) ⊂ r−1(e),
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with r′ = q′p′, r = qp.

The proof is easy so we omit it.

Recall that a connected reductive k-group H is called (after Langglands) a z-
extension of a k-group G if H is an extension of G by an induced k-torus Z, such
that the derived subgroup (called also the semisimple part) [H,H] of H is simply
connected. For a field extension K/k and an element x ∈ H1(K, G), a z-extension
H of G over k is called x-lifting if x ∈ Im (H1(K, H) → H1(K, G)).

Lemma 1.2 ([T2]). Let G be a connected reductive k-group, K a finite extension
of k, x an element of H1(K, G). Then there is a z-extension

1 → Z → H → G → 1,

of G, where all groups and morphisms are defined over k, which is x-lifting.

Lemma 1.3 ([T2]). Let α : G1 → G2 be a homomorphism of connected reductive
groups, all defined over k, x ∈ H1(K, G1), where K is a finite extension of k. Then
there exists a x-lifting z-extension α′ : H1 → H2 of α, i.e., Hi is a z-extension of
Gi (i = 1, 2), and we have the following commutative diagram

H1

²²

α′ // H2

²²
G1

α // G2,

with all groups and morphisms defined over k.

We need the following extension of a lemma of Borovoi ([Bor], p. 45).

Lemma 1.4. Let
1 → G1 → G2 → G3 → 1

be an exact sequence of connected reductive groups over a field k of characteristic 0,
k′ a finite extension of k and x ∈ H1(k′, G3). Then there exists a z-extension of this
sequence, which is x-lifting, i.e., an exact sequence of connected reductive k-groups

1 → H1 → H2 → H3 → 1,

such that each Hi is a z-extension of Gi, H3 is x-lifting and the following diagram
commutes

1 // H1

²²

// H2

²²

// H3

²²

// 1

1 // G1
// G2

// G3
// 1
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Proof. By Lemma 1.2 there exists a z-extension H3 of G3 defined over k, which
is x-lifting. Now we apply the same proof of Lemma 3.10.1 of [Bor] to get the
result.

Lemma 1.5. Let A (resp. A′) be a pointed set, B (resp. B′) and C (resp. C ′)
be groups with homomorphisms NB : B′ → B,NC : C ′ → C. Let f : A → B
and h : A → C (resp. f ′ : A′ → B′ and h′ : A′ → C ′) be maps of pointed sets and
g : B → C, g′ : B′ → C ′ be homomorphisms such that h = g◦f, h′ = g′◦f ′, NC ◦g′ =
g ◦NB. If

NB(Im f ′) ⊂ 〈Im f〉,
then

NC(Im h′) ⊂ 〈Im h〉.
The proof is easy and is omitted.
Next we consider a reduction theorem for (Weak) Corestriction Principle for non-

abelian Galois cohomology. Namely we show that it is possible to reduce the problem
of proving the Corestriction Principle (CP) (resp. Weak Corestriction Principle
(WCP)) for connecting maps related with an exact sequence of connected linear
algebraic groups to the same problem where only connected reductive groups are
involved. We refer the readers to [Bo] for basic notions of algebraic groups. For a
linear algebraic group G we denote by G◦ its identity component.

Theorem 1.6. Let α : Hp(k, G) → Hq(k, T ) be a connecting map of Galois co-
homology, which is induced from an exact sequence of connected linear algebraic
groups

(∗) 1 → A → B → C → 1,

where all of them are defined over k and T is commutative. Then there is a connect-
ing map α1 : Hp(k, G1) → Hq(k, T1), with T1 commutative, induced from an exact
sequence of connected reductive k-groups 1 → A1 → B1 → C1 → 1 canonically
attached to (∗), such that if the CP (resp. WCP) holds for the image of α1 then the
same holds for α. The same is true for the connecting map H1(k, G) → H1(k, T ),
induced from a k-morphism of connected k-groups f : G → T , where T is commu-
tative.

Proof. The proof consists of a case-by-case consideration, depending on the values
of p, q.

Case p = q = 0. Since p = q, we are given an exact sequence of linear connected
algebraic groups

1 → G1 → G
π→ T → 1.

Here G1 is considered as a subgroup of G. We have T = Ts × Tu, where Ts is the
maximal torus of T and Tu is the unipotent part of T , all are defined over k. Let
G = L.U be a Levi decomposition of G, where U = Ru(G) the unipotent radical of
G and L is a maximal connected reductive k-subgroup of G. Since the image of U
(resp. of L) via π is a unipotent (resp. reductive) group, it follows that π(L) = Ts,
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π(U) = Tu. Let k′/k be any finite extension of k, g′ ∈ G(k′). Since G = LU is a
semidirect product we have G(k′) = L(k′)U(k′), so g′ = l′u′, l′ ∈ L(k′), u′ ∈ U(k′).
Let N = Nk′/k : T (k′) → T (k) be the norm map. Then N induces the norm
maps, denoted also by N , N : Ts(k′) → Ts(k), and N : Tu(k′) → Tu(k). Let
π(u′) = v′ ∈ Tu(k′), N(v′) = v ∈ Tu(k). Denote by Ku the kernel of the restriction of
π to U . Then Ku is a connected unipotent normal k-subgroup of U . It is well-known
that the first Galois cohomology of unipotent k-groups over perfect fields is trivial
(see [Se], Chap. III), so from this it follows that π(U(k′)) = Tu(k′), π(U(k)) = Tu(k).
So we have

N(π(g′)) = N(π(l′u′))

= N(π(l′)π(u′))

= N(π(l′))N(π(u′))

= N(π(l′))π(u)

where u ∈ U(k). Therefore to prove that N(π(g′)) ∈ π(G(k)) is equivalent to
proving that N(π(l′)) ∈ π(G(k)). If N(π(l′)) = π(lv), with l ∈ L(k), v ∈ U(k),
then π(v) = 1, since N(π(l′)) ∈ Ts(k), so N(π(l′)) = π(l). Thus to prove that
N(π(G(k′))) ⊂ π(G(k)) is equivalent to proving that N(π(L(k′))) ⊂ π(L(k)). Now
we consider the following commutative diagram

1 // (G1 ∩ L)◦

²²

// L

=

²²

π′ // T ′

r

²²

// 1

1 // (G1 ∩ L) // L
π // Ts

// 1

Here T ′ = L/(G1∩L)◦ is a torus. For x ∈ L, we have x(G1∩L)◦x−1 = (G1∩L)◦,
since G1 ∩ L is a normal subgroup of L. Furthermore, if V is the unipotent radical
of (G1 ∩L)◦ then xV x−1 = V as it is not hard to see. Thus V ⊂ Ru(L) = {1}, and
(G1∩L)◦ is a connected reductive subgroup of L. Now the decomposition π = r ◦π′

shows that the (CP) for the image of π follows from that for π′, hence one may pass
further to the case where all groups involved are connected and reductive.

Case p=0, q=1. We are given an exact sequence 1 → T → G1 → G → 1 of
connected groups with T commutative. Let T = Ts×Tu be the decomposition of T
into semisimple and unipotent parts. We have the following commutative diagram

1 // Ts

²²

// G1

²²

π′ // G∗

²²

// 1

1 // Ts × Tu
// G1

π // G // 1

where T is embedded into G1, G∗ = G1/Ts. Since T is normal in G1, as in the case
p = q = 0 we see that Tu is also normal in G1, so G ' G∗/Tu (Tu is embeded into
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G∗). Since the cohomology of Tu is trivial, this case is clear.
Case p = q =1. We are given an exact sequence 1 → G1 → G

π→ T → 1, with T
commutative and all of them are connected linear algebraic k-groups. As in the case
p = q = 0, we let T = Ts × Tu, Ts is the maximal torus of T , Tu is the unipotent
part of T , G = LU is a Levi decomposition of G. So π(L) = Ts, π(U) = Tu. If S
denotes the connected center of L, then L = S[L,L], thus we have π(S) = Ts. Let
g ∈ H1(k′, G), t = π∗(g) ∈ H1(k′, T ). We know that since the 1-Galois cohomology
of unipotent groups are trivial, there is canonical bijections H1(k′, G) ' H1(k′, L),
H1(k′, T ) ' H1(k′, Ts). Hence we may use the same commutative diagram as in
the case p = q = 0 to reduce our problem of proving the CP (resp. WCP) for the
image of the connecting map H1(k, G) → H1(k, T ) to that of the connecting map
H1(k, L) → H1(k, Ts). Then, with the same notation used there, it suffices to prove
the CP (resp. WCP) for the image of the connecting map H1(k, L) → H1(k, T ′),
where Ker (L → T ′) is now a connected reductive k-group, and we are done.

Case p=1, q=2. We use the same notation as in the case p = 0, q = 1. We are
given an exact sequence 1 → T → G1 → G → 1 with T commutative. We arrive
again at the following commutative diagram as in the case p = 0, q = 1 :

1 // Ts

²²

// G1

=

²²

// G∗

²²

// 1

1 // Ts × Tu
// G1

// G // 1

Since Tu is commutative, we have H2(k, Tu) = 0 by a theorem of Serre ([Se],
Chap. III), so we have canonical isomorphism H2(k, Ts × Tu) ' H2(k, Ts). Hence
G∗/Tu ' G (here Tu is embedded into G∗) and we have the following exact sequence
for any extension l/k

H1(l, G∗)
p→ H1(l, G) → H2(l, Tu) = (0),

and the following commutative diagram

H1(l, G∗)

p∗

²²

∆∗ // H2(l, Ts)

j '
²²

H1(l, G) ∆ // H2(l, Ts × Tu)

We have a similar diagram where l is replaced by k′ and k, where k′ is a finite
extension of k. Since p∗ is surjective for any extension l/k, it is clear that to prove
CP for the image of ∆ it suffices to prove the same thing for the image of ∆∗.
We claim that the same is true for WCP. Indeed, let k′/k be a finite extension,
g′ ∈ H1(k′, G). Let g∗ ∈ H1(k′, G∗) such that p∗(g∗) = g′. Assuming the WCP for
∆∗, we have

Coresk′/k(∆∗(g∗)) =
∑

i

∆∗(g∗i ),
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where g∗i ∈ H1(k, G∗) for all i. Due to the functoriality we have

Coresk′/k(∆(g′)) = Coresk′/k(∆p∗(g∗))

= Coresk′/k(j(∆∗(g∗))

= j(Coresk′/k(∆∗(g∗)))

= j(
∑

i ∆∗(g∗i ))

=
∑

i j(∆∗(g∗i ))

=
∑

i ∆p∗(g∗i )

=
∑

i ∆(gi)

with gi = p∗(g∗i ) as required.

Next we consider the validity of CP (resp. WCP) for the kernel of a connecting
map. In a similar way we have the following result.

Theorem 1.7. Let α : Hp(k, T ) → Hq(k,G) be a connecting map of Galois co-
homology, which is induced from an exact sequence of connected linear algebraic
groups

(∗) 1 → A → B → C → 1,

where all of them are defined over k and T is commutative. Then there is a connect-
ing map α1 : Hp(k, T1) → Hq(k, G1), with T1 commutative, induced from an exact
sequence of connected reductive k-groups 1 → A1 → B1 → C1 → 1 canonically
attached to (∗), such that if the CP (resp. WCP) holds for the kernel of α1 then the
same holds for α. The same is true for the connecting map H1(k, T ) → H1(k,G),
induced from a k-morphism of connected k-groups f : T → G, where T is commu-
tative.

Proof. Since α is a connecting map in the long exact sequence of Galois cohomology
of algebraic groups, there are two possibilities : either Ker (α) = Im (β) for some
other connecting map β, or there is no such a β. In the first case we are reduced to
Theorem 1.1, hence we need only consider the second case. Then we have p = q.

Case p = q = 0. We are given a k-morphism of algebraic k-groups T
f→ G, where

T is commutative. Let S1 = Ker (f), S2 = Im (f), so we have the following exact
sequence 1 → S1 → T → S2 → 1, and this case becomes trivial.
Case p = q = 1. The above morphism f induces the connecting map f∗ : H1(k, T ) →
H1(k, G). Notice that it induces also the following sequence of groups

1 → S1 → T
p→ S2

i→ G,

and f = i ◦ p. Now the assertion follows from Lemma 1.1.
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From Theorems 1.6 and 1.7 it follows that in the study of (weak) corestriction
principle we may restrict ourselves to the case of connected reductive groups.

2. (Weak) Corestriction Principle : equivalent relations

In this section we will discuss some relations between the validity of (Weak)
Corestriction Principles for connecting maps of various types. For simplicity we
consider only connected reductive groups. If G is a connected reductive k-group,
there exist canonical maps abi

G : Hi(k, G) → Hi
ab(k,G) (i = 0, 1). Here H∗ab denotes

the abelianized Galois cohomology in the sense of Borovoi - Kottwitz theory and
ab∗G denotes the canonical map between the cohomologies. We refer the reader to
[Bor] for basic notions and properties of abelianized Galois cohomology of linear
algebraic groups.

2.0. Let k be a field of characteristic 0 and for a connected reductive k-group
G, we use the following notation. Denote by G̃ (resp. Ḡ) the simply connected cov-
ering (resp. the adjoint) group of the semisimple part G′ := [G,G] of G, and denote
by F̃ = Ker (G̃ → Ḡ), F ′ = Ker (G′ → Ḡ) the corresponding kernels. We consider
the following statements.

a) The (Weak) Corestriction Principle holds for the image of any connecting map
α : Hp(k, G) → Hq(k, T ), where G, T are connected reductive k-groups, with T a
torus and with given p,q satisfying 0 6 p 6 1, 0 6 p 6 q 6 p + 1.

b) The (Weak) Corestriction Principle holds for the image of the functorial map
abp

G : Hp(k, G) → Hp
ab(k, G), for any connected reductive k-group G and given p,

0 6 p 6 1.

c) The (Weak) Corestriction Principle holds for the image of the coboundary map
Hp(k,G) → Hp+1(k, T ), for any exact sequence 1 → T → G1 → G → 1 of reductive
k-groups, where G1 is connected, G is semisimple, T is a central subgroup, and p is
given , 0 6 p 6 1.

d) The same statement as in c), but G1 and G are supposed to be semisimple
groups.

e) The (Weak) Corestriction Principle holds for the image of the coboundary map
Hp(k, Ḡ) → Hp+1(k, F ′), for any exact sequence 1 → F ′ → G1 → Ḡ → 1 of reduc-
tive k-groups, where G1 is semisimple, Ḡ is adjoint, F ′ is a finite central subgroup
and p is given , 0 6 p 6 1.

f) The (Weak) Corestriction Principle holds for the image of coboundary map
Hp(k, Ḡ) → Hp+1(k, F̃ ), for any adjoint group Ḡ with fundamental group F̃ and for
given p, 0 6 p 6 1.
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For the statements a) - f) considered above, let us denote by x(p, q) (resp. y(p))
the statement x) (resp. y)) evaluated at (p, q), for 0 6 p 6 q 6 2. For example,
a(1, 2) means the statement a) with p = 1, q = 2, or f(1) means the statement f)
with p = 1. We say that the statement x) holds if for any possible values of (p, q),
the corresponding statement is true. Note that for any p, 0 6 p 6 1, we have obvious
imlications : c(p) ⇒ d(p) ⇒ e(p) ⇒ f(p), i.e., c) ⇒ d) ⇒ e) ⇒ f).

The relations between these statements are given in the following results. We will
give the proof only in the case of Weak Corestriction Principle since all proofs hold
true simultaneously for Corestriction and Weak Corestriction Principles, except
possibly Proposition 2.9. (There, in the part b), we have to restrict ourselves to
Corestriction Principle only.)

Proposition 2.1. For a given connected reductive k-group G, and a given p with
0 6 p 6 1, if the (Weak) Corestriction Principle holds for the image of abp

G then
it also holds for any connecting map (if any) Hp(k,G) → Hq(k, T ) where T is a
k-torus and 0 6 q 6 2. In particular, if b(p) holds for any p then a(p, q) holds for
any pairs (p,q) which make sense.

Proof. The proof follows immediately from the functoriality of the maps abp
G :

Hp(k,G) → Hp
ab(k, G), p = 0, 1, proved in [Bor].

Proposition 2.2. For a given connected reductive group G, with a z-extension H,
if the (Weak) Corestriction Principle holds for abp

H for some p (0 6 p 6 1) then the
same holds for G. In particular, if b(p) holds for connected reductive k-groups with
simply connected semisimple parts then b(p) holds itself.

Proof. For any finite extension k′ of k let θ ∈ Hp(k′, G) be any element. We choose
a θ-lifting z-extension, all defined over k : 1 → Z → H → G → 1, which is possible
due to Lemma 1.2. Recall that H is a connected reductive k-group with simply
connected semisimple part and Z is an induced k-torus. Let denote the induced
(connecting) maps

φ : Hp(k, H) → Hp(k,G),

ψ : Hp(k′,H) → Hp(k′, G),

and let φ′ and ψ′ stand for similar maps where Hp is replaced by Hp
ab.

We have the following commutative diagram, where two skew (south - east)
arrows are corestriction maps for abelian Galois cohomology. Here all the vertical
maps are the maps ab′, where ab′ will denote the same map when we restrict to k′:
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Hp(k, H)

²²

ψ // Hp(k, G)

²²

Hp(k′,H)

²²

φ // Hp(k′, G)

²²

Hp
ab(k,H)

ψ′ // Hp
ab(k, G)

Hp
ab(k

′,H)

33hhhhhhhhhhhhhhhhhhhhh φ′ // Hp
ab(k

′, G)

33hhhhhhhhhhhhhhhhhhhhh

Let η ∈ Hp(k′,H) such that φ(η) = θ. Then

ab′G(θ) = ab′G(φ(η)) = φ′(ab′H(η)).

Assuming that d) holds for H, then there are αi ∈ Hp(k, H) such that
∑

i

abH(αi) = Cores(ab′H(η)).

Hence

Cores(ab′G(θ)) = Cores(ab′G(φ(η)))

= Cores(φ′(ab′H(η)))

= ψ′(Cores(ab′H(η)))

= ψ′(
∑

i abH(αi))

=
∑

i abG(ψ(αi))

as required.

Proposition 2.3. Assume that for any k-morphism G → T of connected reductive
k-groups, with T a torus, the (Weak) Corestriction Principle holds for the image of
the induced connecting map Hp(k,G) → Hp(k, T ), and for some p, 0 6 p 6 1. Then
the same holds for abp

G : Hp(k,G) → Hp
ab(k,G), i.e., a(p, p) ⇒ b(p). In particular,

if a) holds, then b) holds.

Proof. By Proposition 2.2, we may assume that G′ is simply connected. By [Bor]
we have

Hp
ab(k, G) = Hp(k, G/G′),

hence abp
G becomes just connecting map (p = 0, 1). Since G/G′ is a torus, the

proposition follows.
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Proposition 2.4. If the statement a) holds for p=q=0 (resp. p=q=1 ) then it also
holds for p=0, q=1 (resp. p=1, q=2 ), i.e., we have a(0, 0) ⇒ a(0, 1), a(1, 1) ⇒
a(1, 2).

Proof. It follows from the equivalence a) ⇔ d) above, Proposition 2.2, from the func-
toriality of the map abG : Hp(k,G) → Hp

ab(k, G) and the fact that for a connected
reductive k-group H with H ′ := [H, H] simply connected, Hp

ab(k, H) = Hp(k, H/H ′)
(by definition) (see [Bor]).

Proposition 2.5. Let Ḡ be an adjoint semisimple k-group with fundamental group
F̃ and let F be a subgroup of F̃ . If for some p, 0 6 p 6 1, the (Weak) Corestriction
Principle holds for the image of the coboundary map δ : Hp(k, Ḡ) → Hp+1(k, F̃ )
then the same holds for the image of δ1 : Hp(k, Ḡ) → Hp+1(k, F ). In particular, we
have e(p) ⇔ f(p).

Proof. We need only show that f) ⇒ e). Let G = G̃/F , F ′ = Ker (G → Ḡ).
Consider the following commutative diagram.

Hp(k′, G̃)

²²

q′ // Hp(k′, Ḡ)

=

²²

δ′ // Hp+1(k′, F̃ )

γ′

²²
Hp(k′, G′) π′ // Hp(k′, Ḡ)

δ′1 // Hp+1(k′, F ′).

Recall that G̃ is the simply connected covering for both Ḡ and G′.) One sees that
δ′1 = γ′δ′. Thus, if the Weak Corestriction Principle for images holds for δ, then by
Lemmas 1.1 and 1.5, the same holds for δ1.

Proposition 2.6. Assume that a(p,q) holds for all G with simply connected semisim-
ple part G′. Then a(p,q) holds itself.

Proof. For p = 0 the assertion follows easily by considering any z-extension of G.
For p = q = 1, it follows from Lemma 1.3 that for any finite extension k′ of k and
any element x ∈ H1(k′, G), there exists a x-lifting z-extension of π : G → T , all
defined over k :

H1

²²

π1 // H2

²²
G

π // T

Here H2 is a torus and H1 has simply connected semisimple part. By assump-
tion, the Weak Corestriction Principle holds for the image of the induced map
π∗1 : H1(k, H1) → H1(k, H2). Let α : H1(k, G) → H1(k, T ) be the connecting
map. By chasing on suitable diagrams one sees that the image of x in H1(k, T )
via Cores ◦ α lies in the subgroup generated by the image of H1(k,G). Hence the
Weak Corestriction Principle for images holds for α.

The case p = 1, q = 2 is considered in a similar way.
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Proposition 2.7. Let 1 → T → G1
π→ G → 1 be an exact sequence of k-groups,

where G is semisimple and T is a central subgroup of a reductive k-group G1. Let
G1 = G′1S1, where G′1 = [G1, G1], S1 is a central torus and F := S1 ∩ G′1. If for
some p, 0 6 p 6 1, the (Weak) Corestriction Principle holds for the image of the
coboundary map δ : Hp(k, G) → Hp+1(k, F ), then the same holds for the image
of the coboundary map Hp(k, G) → Hp+1(k, T ). In particular, d(p) ⇒ c(p), i.e.,
c) ⇔ d).

Proof. It follows from the assumption that G1 is also connected and π(G′1) = G.
It is clear that T is a central subgroup of G which contains S1. We consider the
following commutative diagram

1 // F

²²

// G′1

²²

// G

=

²²

// 1

1 // T // G1
// G // 1

Now the proposition follows easily from this diagram as in the proof of Proposi-
tion 2.5, by combining with Lemmas 1.1 and 1.5.

Proposition 2.8. Assume that for some p, 0 6 p 6 1, the (Weak) Corestriction
Principle holds for the image of the connecting map Hp(k,H) → Hp(k, T ) for any
k-homomorphism H → T of connected reductive k-groups H, T, with T a torus.
Then the same holds for the image of the coboundary map Hp(k,G) → Hp+1(k, F ′)
deduced from any isogeny 1 → F ′ → G1 → G → 1 with kernel F’ and connected
reductive k-group G, i.e., a(p, p) ⇒ d(p). In particular, if a) holds then d) holds.

Proof. To prove the assertion, we use the following Ono’s crossed diagram (see
[O] for details) which allows one to embed an exact sequence with finite kernel of
multiplicative type (i.e., isogeny) into another one with induced k-torus as a kernel.
We will denote all maps in the following diagrams (over k and k′) by the same
symbols:

1

²²

1

²²
1 // F

²²

// G1

²²

α // G

=

²²

// 1

1 // T1

γ

²²

// H

γ

²²

α // G // 1 (∗)

T

²²

= T

²²
1 1
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where T1 is an induced k-torus. From this diagram we derive the following com-
mutative diagram

1

²²

1

²²

T (k′)

δ

²²
1 // F (k′)

²²

// G1(k
′)

²²

λ // G(k′)

=

²²

β // H1(k′, F )

θ

²²
1 // T1(k

′)

γ

²²

// H(k′)

γ

²²

α // G(k′) // 1 (∗′)

T (k′)

δ

²²

= T (k′)

ζ

²²
G(k′)

β // H1(k′, F )
i∗ // H1(k′, G1).

We need the following lemma due to Merkurjev, which is valid for any cross-
diagram (∗) above, where T is not necessarily an induced torus.

Lemma 2.8.1. [Me2] We have the following anti-commutative diagram

H(k′)

γ

²²

α // G(k′)

β

²²
T (k′) δ // H1(k′, F )

for any field extension k ⊂ k′.

We continue the proof of Proposition 2.8 and we assume first that p = 0. Note
that in this case, the Weak Corestriction Principle is just the usual Corestriction
Principle.

Since T1 is an induced k-torus, H1(K, T1) = 0 for any field extension K/k, so
we have α(H(k′)) = G(k′). Now for any g′ ∈ G(k′), let h′ ∈ H(k′) such that
α(h′) = g′, and denote t′ = γ(h′), f ′ = β(g′). Since the diagram in Lemma 2.8.1 is
anti-commutative, we have

δ(t′) = δ(γ(h′))

= −β(α(h′))

= −f ′.

Then for f ′ = β(g′) we have θ(f ′) = 0 hence y′ = δ(z′) for some z′ ∈ T (k′). The
image z ∈ T (k) of z′ via Nk′/k : T (k′) → T (k) is such that δ(z) = f := CoresF (f ′).
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Now look at the diagram on the left hand side. By assumption, the Corestriction
Principle holds for the image of H(k) → T (k), so there are hi ∈ H(k) such that

∑

i

γ(hi) = t := Nk′/k(t′).

Let g = α(h), gi = α(hi). Then

δ(t) =
∑

i δ(γ(hi))

= −∑
i β(α(hi))

= −∑
i β(gi)

= δ(Nk′/k(t′))

= CoresF (δ(t′)).

Since δ(t′) = −f ′ (see above) and δ(z′) = f ′, we have δ(t′z′) = 0 and
CoresF (δ(t′z′)) = 0, so

CoresF (δ(t′)) = −CoresF (δ(z′))

= −f .

Therefore f =
∑

i β(gi), so f ∈ 〈Im (β)〉 and the case p = 0 is proved.
Now let p = 1. For any finite extension k′ of k and for any element g′ from

H1(k′, G), by Lemma 1.2 we may choose a g′-lifting z-extension

1 → T1 → H → G → 1,

defined over k, such that there is an embeding F ↪→ T1. We consider the following
diagram, which is similar to the one we have just considered, with the only difference
that the dimension is shifted.

H1(k′, T )

∆

²²
H1(k′, F )

²²

// H1(k′, G1)

²²

λ // H1(k′, G)

=

²²

β // H2(k′, F )

θ

²²
H1(k′, T1)

π

²²

// H1(k′, H)

γ

²²

α // H1(k′, G) // H2(k′, T1)

H1(k′, T )

∆

²²

= H1(k′, T )

H1(k′, G)
β // H2(k′, F )

We need the following analog of 2.8.1 for higher dimension.
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Lemma 2.8.2. We have the following anti-commutative diagram for any cross-
diagram (∗)

H1(k′,H)

γ

²²

α // H1(k′, G)

β

²²
H1(k′, T ) ∆ // H2(k′, F )

Proof. Let h = [(hs)] ∈ H1(k′, H), g = α(h) ∈ H1(k′, G). Then g = [(gs)], where
gs = α(hs). We choose for each s an element g′s ∈ G1(ks) such that gs = α(g′s).
Then

hs = g′sts, ts ∈ T1(ks).

One deduces from this

fsrg
′
sr = g′s

sg′r (s, r ∈ Gal(ks/k′))

for some fsr ∈ F (ks) and we know (see [Se], Chap. I) that (fsr) is a 2-cocycle which
is a representative of β([(gs)]). From hs = g′sts we deduce that

γ(hs) = γ(g′s)γ(ts) = γ(ts),

hence for t = [γ(hs)] ∈ H1(k′, T ) we have

∆(t) = [(t−1
sr ts

str)] ∈ H2(k′, F ).

Now the product of two 2-cocycles is

(t−1
sr ts

str)(g′−1
sr g′s

sg′r) = h−1
sr hs

shr = 1,

since (hs) is a 1-cocycle. Thus

β(α(h)) = −∆(γ(h)), (**)

and the lemma follows.

With g′ ∈ H1(k′, G) as above, let h′ ∈ H1(k′, H) such that g′ = α(h′). (Recall
that H is a g′-lifting z-extension.) Take a cocycle representative (gs) of g′ and let
gs = α(g1,s), g1,s ∈ G1(ks). Let (h′s)s be a representative of h′, h′s ∈ H(ks). Then

β(g′) = [(g−1
1,st g1,s

sg1,t)]

= −∆(γ(h′))

by the lemma above. Therefore

CoresF (β(g′)) = −CoresF (∆(γ(h′)))

= −∆(CoresT (γ(h′))).

By assumption, we have CoresT (γ(h′)) = Σiγ(hi) for some hi ∈ H1(k,H). Let
gi = α(hi) ∈ H1(k, G). Then from above we have
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CoresF (β(g′)) = −∆(CoresT (γ(h′)))

= −∆(Σiγ(hi))

= −Σi∆(γ(hi))

= Σiβ(α(hi)) (by (∗∗))

= Σiβ(gi)

as required.
For a connected reductive group G we denote by Ad(G) the adjoint group of G,

Ad(G) = G/Cent(G).

Proposition 2.9. Let Ḡ be an adjoint semisimple k-group with fundamental group
F̃ .
a) (p = 0) Assume that Weak Corestriction Principle holds for the image of the
coboundary map δ : H0(k, Ḡ) → H1(k, F̃ ). Then the same holds for the connecting
map α : H0(k, G) → H0(k, T ) for all connected reductive k-groups G, T, with T a
torus such that Ad(G) = Ḡ. In particular, if f(0) holds then a(0, 0) holds.
b) (p = 1) Assume that Corestriction Principle holds for the image of the cobound-
ary map ∆ : H1(k, Ḡ) → H2(k, F̃ ). Then the same holds for the connecting map
H1(k, G) → H1(k, T ) for all connected reductive groups G, T with a torus T such
that Ad(G) = Ḡ.

Proof. a) Notice that in the case p = 0, the Weak Corestriction Principle is just
the Coretsriction Principle. Assume that we are given an exact sequence

1 → G1 → G → T → 1,

of connected reductive k-groups with T a torus. Let G′ = [G,G], G = G′.S, where
S is a central torus of G. Denote F ′ = Cent(G′), F = G′ ∩ S, which are finite
central subgroup of G′. From Proposition 2.5 and its proof it follows that the Weak
Corestriction Principle holds for the connecting map δ : H0(k, Ḡ) → H1(k, F ′).

Consider the following commutative diagram

1 // F ′

²²

// G′.S

=

²²

// Ḡ× S/F

²²

// 1

1 // G′ // G′.S // S/F // 1

and also the following commutative diagram

G(k′)

=

²²

β′// Ḡ(k′)× (S/F )(k′)

p′

²²

δ′ // H1(k′, F ′)

q′

²²
G(k′) α′ // (S/F )(k′) δ′ // H1(k′, G′)
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By our assumption, the Corestriction Principle holds for the image of δ′. We
claim that the composition of the maps

Ḡ(k′)× (S/F )(k′)
p′→ (S/F )(k′)

CoresS/F→ (S/F )(k) δ→ H1(k, G′),

and that of the maps

Ḡ(k′)× (S/F )(k′) δ′→ H1(k′, F ′)
CoresF ′→ H1(k, F ′)

q→ H1(k,G′)

are the same. Indeed, denote by p and q the maps similar to p′ and q′, by considering
the fields k and k′ interchanged. Then for x = (g′, s′) ∈ Ḡ(k′) × (S/F )(k′) and
s = CoresS/F (s′) ∈ (S/F )(k) we have

δ(CoresS/F (p′(x))) = δ(CoresS/F (s′)) = δ(s).

By assumption, there is g ∈ Ḡ(k) such that

CoresF ′(δ′(g′)) = δ(g),

hence such that

CoresF ′(δ′(g′, s′)) = δ(g, s).

Since p and p′ are surjective and the above diagram is commutative, it follows
that for y = (g, s) ∈ Ḡ(k)× (S/F )(k) we have

δ(CoresS/F (p′(x))) = δ(s)

= δ(p(g, s))

= q(δ(g, s))

= q(CoresF ′(δ′(g′, s′)))

= q(CoresF ′(δ′(x)))

as claimed. Now the assertion of the theorem follows from the equality α′ = p′β′.
Indeed, let x′ ∈ G(k′), x′′ = β′(x′) = (g′, s′), y′ = α′(x′), y = CoresS/F (y′). Then
α′(x′) = p′β′(x′) = p′(x′′) hence

δ(CoresS/F (p′(x′′))) = q(CoresF ′(δ′(x′′)))

= q(CoresF ′(δ′(β′(x′))))

= 1,

since δ′β′ = 0. Therefore

CoresS/F (p′(x′′)) ∈ Ker (δ) = Im (α).

b) Now consider the case p = 1. Let us be given an exact sequence

1 → G1 → G → T → 1
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of connected reductive k-groups with T a torus such that Ad(G) = Ḡ. From
Proposition 2.5 and its proof it follows that the Corestriction Principle holds for
H1(k, Ḡ) → H2(k, F ′). We may use the above notation and consider the derived di-
agram of cohomology sets deduced from the diagram at the beginning of the proof,
considered over k and over k′; we have the following exact sequences of cohomology
:

H1(k, F ′) → H1(k,G′) → H1(k, Ḡ) ∆1→ H2(k, F ′),

H1(k, F ′) → H1(k, SF ′) → H1(k, S/F ) ∆2→ H2(k, F ′),

and also similar sequences when k is replaced by k′ (where we put ”′” on the
corresponding maps). The following diagram is commutative with exact lines :

H1(k′, G)

=

²²

β′ // H1(k′, Ḡ)×H1(k′, S/F )

²²

∆′ // H2(k′, F ′)

H1(k′, G) α′ // H1(k′, S/F )

where the map ∆′ is such that

∆′(g, s) = ∆′
1(g) + ∆′

2(s),

and the ”+” is taken in H2(k′, F ′). Let x′ ∈ H1(k′, G), β′(x′) = (g′, s′), g′ ∈
H1(k′, Ḡ), s′ ∈ H1(k′, (S/F )), s = Coresk′/k(s′) ∈ H1(k, (S/F )). Then ∆′(g′, s′) =
0, so ∆′

2(s
′) = −∆′

1(g
′). By assumption, the Corestriction Principle holds for the

image of ∆1, so via corestriction map we have

Coresk′/k(∆′
2(s

′)) = ∆2(s)

= Coresk′/k(−∆′
1(g

′))

= −Coresk′/k(∆′
1(g

′))

= −∆1(ḡ)

for some ḡ ∈ H1(k, Ḡ). Therefore ∆(g, s) = 0, i.e., (ḡ, s) = β(g), g ∈ H1(k, G), or
equivalently s = α(g).

Remark. The same proof of Proposition 2.9, b) works also in the case p = 0, so
we have another proof of Proposition 2.9, a).

Finally, by summing up the results we proved above, we obtain the following
theorem which is the main result of this section.

Theorem 2.10. 1) For Weak Corestriction Principle we have the following equiv-
alent statements:

a) ⇔ b), c) ⇔ d), e) ⇔ f).
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2) We have the following interdependence between the statements a) - f) with par-
ticular values of p and q.

a) For low dimension:

a(0, 1) ⇐ a(0, 0) ⇔ b(0) ⇔ c(0) ⇔ d(0) ⇔ e(0) ⇔ f(0)

b) For higher dimension:

a(1, 2) ⇐= a(1, 1) ⇐⇒ b(1)

®¶
c(1) ⇐⇒ d(1)

®¶
e(1) ⇐⇒ f(1)

Proof. It follows from results proved above . We just indicate the logical dependence
of these statements; the rest follows from this.
b) ⇒ a) : see Proposition 2.1.
a) ⇒ b) : see Proposition 2.3.
a(0, 0) ⇒ a(0, 1), a(1, 1) ⇒ a(1, 2) : see Proposition 2.4.
e) ⇔ f) : see Proposition 2.5.
c) ⇔ d) : see Proposition 2.7.
a) ⇒ d) : see Proposition 2.8.
f(0) ⇒ a(0, 0) : see Proposition 2.9, a). The first part of b) also follows from this.
The other equivalent relations follow from above ones.

If we consider the Corestriction Principle instead of Weak Corestriction Principle,
then Theorem 2.10 still holds and we have stronger assertion as follows.

Theorem 2.11. For the Corestriction Principle, all the statements a) − f) are
equivalent. More precisely we have the following:
a) For low dimension:

a(0, 1) ⇐ a(0, 0) ⇔ b(0) ⇔ c(0) ⇔ d(0) ⇔ e(0) ⇔ f(0)

b) For higher dimension:

a(1, 2) ⇐ a(1, 1) ⇔ b(1) ⇔ c(1) ⇔ d(1) ⇔ e(1) ⇔ f(1)

Proof. The proofs remain the same, by combining with Theorem 2.10, b).

Corollary 2.12. The Corestriction Principle in higher dimension (i.e. the state-
ments a(1, 1), b(1), c(1), d(1), e(1), f(1)) does not hold in general.

Proof. The example given by Rosset and Tate shows that the Corestriction Principle
for connecting map H1(k, PGLn) → H2(k, µn) does not hold true in general. So by
Theorem 2.11, b), in general, this is neither true for connecting maps H1(k, G) →
H1(k, T ), where G,T are reductive groups and T is a diagonalisable group, i.e.,
a(1, 1) does not hold. The other cases follow in the same way.



Homology, Homotopy and Applications, vol. 5(1), 2003 239

Remark 2.13. 1) It is still an open question if the Corestriction Principle is true
for lower dimension (in which case it coincides with the Weak Corestriction Princi-
ple). There are some cases, where the Corestriction Principle holds. For example, if
G is a connected reductive k-group and has trivial group G(k)/R of R-equivalence
classes over k, then the Corestriction Principle holds for any connecting homo-
morphism H0(k,G) → H0(k, T ), with T a torus (see [Me2]); or if G is semisimple
and G(k)/R = 1 then the Corestriction Principle holds for the coboundary map
H0(k, G) → H1(k, F ), where F is the kernel of an isogeny of semisimple groups
1 → F → G1 → G → 1 (see [Gi]). In [T2] we show that the Corestriction Principle
holds for the images and kernels of connecting maps over local or global fields of
characteristic 0. This result can be considered as a cohomological counterpart of
results of Lenstra and Tate.

2) If the group T in the statement c) is connected (i.e. a torus), then one may
use the functoriality of the map abG : H1(k, G) → H1

ab(k, G) to deduce b(p) ⇒ c(p).
However, this does not seem to be applicable to the general case, so the proof of
a) ⇒ d) seems to be inevitable. Regarding Weak Corestriction Principle, it is not
clear whether the implication f(1) ⇒ a(1, 1) always holds. In the next section we
discuss the validity of the (weakest) condition f) above.

3. A reduction to quasi-split case

Let G and T be reductive groups defined over a field k of characteristic 0, where
G is connected and T is commutative. In this section we are interested in Weak
Corestriction Principle for the image of the coboundary map

∆ : H1(k, G) → H2(k, T ).

This map is induced from the exact sequence of k-groups

1 → T → G1
π→ G → 1,

and we assume G1 to be connected (and reductive) and T to be a central subgroup
of G1. Our goal is to reduce the proof of the Weak Corestriction Principle to the
case of quasi-split groups.

By the way, we would like to mention the following reductive version of the
Steinberg’s Theorem. It will not be used anywhere in the sequel, but it is related to
what we are going to do. Denote by Γ the Galois group Gal(k̄/k), and Γ′ the Galois
group Gal(k̄/k′), where k′ is a finite extension of k.

Proposition 3.1. Let G be a quasi-split connected reductive group defined over a
field k with connected center S, and let (xs)s∈Γ be a 1-cocycle ∈ Z1(Γ, G). There
exists a maximal k-torus T0 of G such that the cocycle xs is the product of two
1-cocycles (ys) and (zs) of Γ, where (ys) is a 1-cocycle cohomologous to one with
values in S and (zs) is a cocycle with values in T0. Thus if the connected center S of
G has trivial 1-cohomologies, then every 1-cocycle with values in G is cohomologous
to one with values in a maximal k-torus of G.

Proof. We consider the following exact sequence

1 → S → G
π→ G′ → 1,
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where G′ is semisimple and its derived sequence of cohomology

H1(k, S) → H1(k,G) π′→ H1(k, G′).

Let x be the class of (xs) in H1(k,G). Since G′ is semisimple and quasi-split over
k, from the Steinberg’s Theorem [St2], it follows that there is a maximal k-torus T ′

of G′ and (t′s) ∈ Z1(Γ′, T ′) such that π′(xs) = g′−1t′s
sg′ for all s ∈ Γ′ and g′ ∈ G′.

Let t′ be the class of (t′s) and i : H1(k, T ′) → H1(k, G′). Then for the coboundary
map ∆ : H1(k, G′) → H2(k, S) we have

∆(t′) = ∆(i(t′)) = ∆(π′(x)) = 0.

Hence t′ ∈ Im (H1(k, T0)
π′→ H1(k, T ′)), where T0 is the preimage of T ′ in G, which

is a maximal k-torus of G and we use the same notation π′ to denote the induced
map of cohomologies. Let t′ = π′(t), t ∈ H1(k, T0) so π′(i(t)) = π′(x). Let G0 be
the group G twisted with the cocycle representing i(t). This twisting does not effect
the tori S and T0. Denote by τt the bijection H1(k, G) → H1(k,G0). From the exact
sequence 1 → S → G0 → G0/S → 1 we derive that the image x1 of x via τt has
trivial image in H1(k,G0/S), so it lies in the image Im (H1(k, S) → H1(k, G0)). Let
g ∈ G0 (= G as a set) such that x1,s = g−1ps

sg for all s ∈ Γ′, where (ps) is a
cocycle with values in S. Since x1,s = xst

−1
s (by definition of τt, see [Se], Chap. I)

we have

xs = g−1ps
sgts

as required.
The last statement follows from the fact that the map π′ : H1(k,G) → H1(k, G/S)

is injective (by using the twisting argument).

We now show how to reduce the statement a(1, 2) of Section 2.0, that the Weak
Corestriction Principle holds for the image of the coboundary map H1(k,G) →
H2(k, T ), where G is a connected reductive group and T is a central diagonalizable
group, to the same statement in the quasi-split case. Consider the coboundary map
H1(k, G) → H2(k, T ) where G = G1/T is the quotient of a connected, reductive
k-group G1, and T is a central k-subgroup of G1. Denote by Gq the unique quasi-
split k-form of G, such that G can be obtained from Gq by inner twisting with an
1-cocycle g ∈ Z1(Γ, Gq). This twisting does not affect the group T , so we have the
coboundary maps ∆ : H1(k,G) → H2(k, T ), ∆q : H1(k, Gq) → H2(k, T ).

Proposition 3.2. With above notation, the image of ∆ and that of ∆q genarate
the same subgroup of H2(k, T ). Therefore, if the Weak Corestriction Principle holds
for the image of ∆q then it also holds for that of ∆.

Corollary 3.2.1. If the Weak Corestriction Principle holds for the image of cobound-
ary maps ∆q : H1(k, Gq) → H2(k, T ) for all quasi-split groups Gq and diagonalizable
group T, then it also holds in general.

Proof of Proposition 3.2.. We have the following commutative diagram, where all
vertical maps are bijections (the ”translation maps”) (see [Se], Chap. I, Prop. 44)
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H1(k, G)

²²

∆ // H2(k, T )

τ∆(g)

²²
H1(k, Gq)

∆q // H2(k, T ),

and similar diagram over any field extension of k. Since the image of ∆ and ∆q

contains 0 (the neutral element of the group H2(k, T )), and the right vertical map
is just the translation by the element ∆(g), we see that

∆(g) ∈ Dq(k) := 〈Im (∆q)〉.
By symmetry, we have

∆(g) ∈ D(k) := 〈Im (∆)〉.
Therefore D(k) = Dq(k) and it is also true for any field extension of k and the
assertion follows.

4. Weak Corestriction Principle : adjoint semi-simple groups

In this section we prove our second main result mentioned in Introduction. From
Theorem 2.10 it follows that in order to prove the Weak Corestriction Principle for
the image of a coboundary map H1(k,G) → H2(k, T ), where G is semisimple and
T is a diagonalizable group, one first tries to prove it for the coboundary map

H1(k, G) ∆→ H2(k, F ),

where G = G1/F is the adjoint k-group of a semisimple k-group G1 and F is the
center of G1. Our main result of this section is the following. We refer the reader
to [Ti] for various notions and properties of Tits indices.

Theorem 4.1 (Weak Corestriction Principle). With above notation, assume
that G is an adjoint semisimple k-group and contains only almost simple fac-
tors of classical and inner types 1A, B, C, 1Dn (n even). Assume further that k
contains (m + 1) th-roots of unity if G contains a factor of type 1Am. Then for
any finite extension k′/k the Weak Corestriction Principle holds for the image of
∆ : H1(k, G) → H2(k, F ), i.e., for ∆′ : H1(k′, G) → H2(k′, F ) we have

Coresk′/k(Im (∆′)) ⊂ 〈Im (∆)〉.
In fact, most of interesting coboundary maps H1(k,G) → H2(k, F ), where G is
semisimple and F ′ is finite, arise as coboundary maps deduced from the exact se-
quence

1 → F → G̃ → Ḡ → 1,

where G̃ is simply connected and semisimple, Ḡ is adjoint and F = F̃ is the center
of G̃. Denote by ∆ the coboundary map

H1(k, G) ∆→ H2(k, F̃ ).
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It follows from Theorem 2.10 (the equivalence (e) ⇔ (f)) that Theorem 4.1 is
equivalent to the following.

Theorem (4.1’). With above notation, assume that G is an adjoint semisimple
k-group and contains only almost simple factors of classical and inner types 1A, B,
C, 1Dn (n even) and that k contains (m+1) th-roots of unity if G contains a factor
of type 1Am. Then for any finite extension k′/k, the Weak Corestriction Principle
holds for the image of ∆ : H1(k,G) → H2(k, F̃ ), i.e., for ∆′ : H1(k′, G) → H2(k′, F̃ )
we have

Coresk′/k(Im (∆′)) ⊂ 〈Im (∆)〉.
Proof. The proof will be divided into few parts. It is clear that we may assume G
to be (absolutely) almost simple. By Proposition 3.2 we may assume also that G is
quasi-split, hence also split k-group (recall that G is of inner type). From now on
we assume that G is an adjoint almost simple split k-group with simply connected
covering G̃ and fundamental group F̃ (= center of G̃).

We will consider separately the type of the group G.
Type 1An.
It is proved by Rosset and Tate [RS], or follows directly from Merkurjev - Suslin
Theorem ([MS]) (see Introduction).

Type Bn.
We have the following

Proposition 4.2. Let G be an adjoint absolutely almost simple k-group of type
Bn. Then the image of ∆ generates H2(k, F̃ ) as a group. In particular, the Weak
Corestriction Principle holds for the image of ∆.

Proof. The Tits index of G is as follows

1 ◦ − −2 ◦ · · · ◦ − −n−1 ◦ ⇒ ◦n

where the i-th vertex corresponds to the root αi of G̃ with respect to a fixed maximal
k-split torus of G̃. The center F̃ of G̃ is given by

F̃ = 〈hn(−1)〉 ' µ2,

where hi(t), i = 1, . . . , n are multiplicative one-parameter subgroups of G̃ con-
structed in [St1] (see Appendix). Then the regular k-subgroup H̃ of G̃ with root
system {αn} is of type A1 and k-isomorphic to SL2 and contains F̃ as its center.
Let H = H̃/F̃ . Then from the commutative diagram

H1(k, H̃)

²²

// H1(k, H)

²²

∆′ // H2(k, µ2)

=

²²
H1(k, G̃) // H1(k, G) ∆ // H2(k, µ2)

and the fact that the image of ∆′ generates the whole group H2(k, µ2) = 2Br(k)
by Merkurjev’s Theorem [Me1], it follows that the same is true for ∆.
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Type Cn.

Proposition 4.3. Let G be of type Cn. Then the image of ∆ generates H2(k, F̃ ) as
a group. In particular, the Weak Corestriction Principle holds for the image of ∆.

Proof. Since we may assume that G is k-split, we have G ' PSp2n := Sp2n/〈±1〉.
It is well-known that H1(k,G) classifies central simple k-algebras A of degree 2n
with involution σ of symplectic type (see [KMRT], p. 404). In particular, via the
map ∆, such a pair (A, σ) is mapped to the class of A in the Brauer group of k.
Since any quaternion division algebra over k is equipped with standard involution
which is of symplectic type, while the quaternion algebras generate the whole group
2Br(k), the assertion is proved.

Type 1Dn.
Let G(k) = PGU+(Φ, D), where Φ is a non-degenerate skew-hermitian form with
values in a division algebra D with center k. Here we use the same notation as in
[KMRT], Sec. 29. Denote by G′ = SU(Φ) the corresponding special unitary k-group
of Φ and G̃ = Spin(Φ). Let F1 = Ker (G̃ → G′), F2 = F̃ /F1. So Fi ' µ2, i = 1, 2,
and there are coboundary maps

∆1 : H1(k,G′) → H2(k, F1),

∆2 : H1(k, G) → H2(k, F2).

First we investigate the images of ∆i.

Proposition 4.4. With notation as above, the image of ∆1 generates H2(k, F1) as
a group.

Proof. It follows from Proposition 3.2 that we may assume G to be k-split, so we
assume that G′ = SO(q), where q = n〈1,−1〉. Then it is well-known that H1(k,G′)
classifies up to equivalence non-degenerate 2n-dimensional quadratic forms q′ of the
same determinant (−1)n as q (see, e.g. [KMRT], Sec. 29). Also the map ∆1 maps
each equivalence class [q′] to w2([q′])− w2([q]), where w2 denotes the Hasse - Witt
invariant of the form. We denote by (a, b) the standard quaternion algebra over k
with the basis 1, i, j, ij, such that i2 = a, j2 = b, ij = −ji, and by [(a, b)] its class in
the Brauer group of k. With the following labelling in the Tits index of G

◦n

◦1 −− ◦2 −− ◦ −− · · · − − ◦q−1 −− ◦q −− ◦ −− · · ·n−2 ◦
〈

◦n−1

let H̃ be the regular k-subgroup of G̃ with root system {αn−1, αn}. Then we know
(see Appendix) that the center of G̃ is given by

F̃ = 〈z1, z2〉
with

z1 = h1(−1)h3(−1) · · ·hn−3(−1)hn−1(−1),

z2 = h1(−1)h3(−1) · · ·hn−3(−1)hn(−1)
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if n is even and by
F̃ = 〈z〉

with
z = h1(−1)h3(−1) · · ·hn−2(−1)hn−1(i)hn(−i),

(i2 = −1), if n is odd. In both cases, we have

F1 = 〈hn−1(−1)hn(−1)〉 ⊂ H̃.

We have the following commutative diagram where all rows are exact sequences

1 // F1

=

²²

// H̃

²²

// H

²²

// 1

1 // F1
// G̃ // G′ // 1

Therefore it suffices to show that the image of the connecting map

∆′
1 : H1(k,H) → H2(k, F1)

generates H2(k, F1) as a group. Since H̃ is k-split and of type A1 ×A1, we have

H̃ ' Spin(f), H ' SO(f),

where f is a non-degenerate 4-dimensional quadratic form over k of maximal Witt
index. Then we have

∆′
1([f

′]) = w2([f ′])− w2([f ]), [f ′] ∈ H1(k, SO(f)).

Let
f ′ = 〈a, b, c, d〉, a, b, c, d ∈ k, abcd 6= 0, f = 〈1,−1, 1,−1〉.

Since det(f ′) = det(f), we may assume that d = abc. We have thus

∆′
1([f

′])= [(a, b)⊗ (a, c)⊗ (a, abc)⊗⊗(b, c)⊗ (b, abc)⊗ (c, abc)]− w2([f ])

= [(a, ab2c2)⊗ (b, abc2)⊗ (c, abc)]− w2([f ])

= [(a, a)⊗ (b, ab)⊗ (c, abc)]− w2([f ])

= [(a, a)] + [(b, ab)] + [(c, abc)]− [(−1,−1)].

By taking a = −1 we get
∆′

1([f
′]) = [(c,−bc)].

When b, c run over k∗, it is clear that (c,−bc) runs over all quaternion algebras.
Hence by Merkurjev’s Theorem [Me1], the image of ∆′

1 generates the 2-torsion
subgroup H2(k, F1) = 2Br(k).

Proposition 4.5. With above notation, if n is even then the image of ∆2 generates
H2(k, F2).
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Proof. Again by Proposition 3.2, since G is of inner type, we may assume that G is k-
split, G = PGO+(f), where f is a non-degenerated quadratic form of dimension 2n,
PGO+(f) is the identity component of PGO(f). We have the following commutative
diagram

H1(k, SO(f))

²²

// H1(k, G)

²²

∆2 // H2(k, F2)

=

²²
H1(k, O(f)) // H1(k, PGO(f))

∆2 // H2(k, F2)

It is well-known that (see e.g. [KMRT], Sec. 29) H1(k, PGO(f) (resp.
H1(k, PGO+(f))) classifies central simple algebras A of degree 2n with center k
and involution σA of orthogonal type (resp. such that det(σA) = d := det(f)). The
map ∆2 maps the isomorphism class [(A, σA)] to the class [A] of A in the Brauer
group 2Br(k).

Now assume that n is even, n = 2m so d = 1. Take any quaternion division
algebra D over k with standard involution J and any J-skew element α ∈ D∗.
Consider the central simple algebra A = Mm(D) with J-skew-hermitian form Φ =
〈α, . . . , α〉 of dimension m and the involution σA on A corresponding to Φ. Then
the image of (A, σA) via ∆2 is equal to [D]. Therefore the assertion is proved.

Proposition 4.6. Let G be of type 1Dn, n is even. Then the Weak Corestriction
Principle holds for the image of ∆.

Proof. We show that the image of ∆ generates H2(k, F̃ ) as a group. Consider the
following commutative diagram

H1(k, G)

=

²²

∆ // H2(k, F̃ )

β

²²
H1(k, G)

∆2 // H2(k, F2)

and similar one over the field k′, where the corresponding maps will be denoted by
the same symbols but with ′. Let x ∈ H2(k, F̃ ). Then its image β(x) is belong to
the subgroup generated by the image of ∆2 by Prop. 4.5. From the above diagram
it follows that

x ≡ (∆(g1) + · · ·+ ∆(gm))(mod.Ker (β)).

We have the following commutative diagram

H1(k, G′)

²²

∆1 // H2(k, F1)

α

²²
H1(k, G) ∆ // H2(k, F̃ )
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By Proposition 4.5, the image of ∆1 generates H2(k, F1), so from the last diagram
we conclude that the image of ∆ generates H2(k, F̃ ). This is also true for any field,
containing k. Therefore in this case the Weak Corestriction Principle holds and the
proposition is proved.

Summing up, we have proved Theorem 4.1’ hence also Theorem 4.1.

Remark 4.7. 1) If the field k does not contain the n-roots of unity, as far as we
know, the case 1An above is still open. Moreover, if denote by D(n)(k) the subgroup
of nBr(k) generated by the image of the connecting map

∆ : H1(k, PGLn) → H2(k, µn) ' nBr(k),

and by C(n)(k) the subgroup of nBr(k) generated by cyclic algebras over k of degree
n, then we have the following inclusions

C(n)(k) ⊂ D(n)(k) ⊂ nBr(k).

In [Me3] - [Me4], Merkurjev discussed the (still open in general up to now) conjecture
that for any field k we have C(n)(k) = nBr(k), i.e., the Brauer group of a field is
generated by cyclic algebras, and proved some related results about validity of this
conjecture. Our conjectures regarding the Weak Corestriction Principle in this case
are that

a) For any finite extension k′/k, we have Coresk′/k(D(n)(k′)) ⊂ D(n)(k).
b) D(n)(k) = nBr(k).
The first conjecture follows from the second, which in turn follows from the one

considered by Merkurjev above. Also b) can be reduced to the following :
Every central simple algebra of exponent n is Brauer-equivalent to a tensor prod-

uct of cross-products, all components of which have the index and exponent equal to
n.

2) We mention in passing that in some cases of groups of outer types 2An,2 Dn,
one can prove the Weak Corestriction Principle to hold. This is closely related
to the analog of Brauer group for algebras with involution of the second kind first
considered by Riehm [Ri2] and then by Parimala and Srinivas [PS] in a more general
situation, where they treated also the case of algebras with involution of the first
kind. Recently this group has been considered and some related results about this
group also have been given in [KMRT] (see also [HKRT]).

3) From the proof of our results it is clear that, in fact, in many cases, the assertion
regarding Weak Corestriction Principle (e.g. for finite extension k′/k) proved above
holds true if we replace it by stronger statement, that the corestriction (norm)
homomorphism maps any element from the image (”on the k′-level”) into a sum of
elements from the image (”on the k-level”), (as it was asserted in the original result
of Rosset and Tate).

5. Appendix

In this section we give some formulas for centers F̃ of simply connected groups
G, via generators, which are related with Tits index of G (see [Ti]) and they follow
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easily from [St1]. We keep the same notation adopted in [St1].

Bn :

F̃ = 〈hn(−1)〉.

Dn, n even :

F̃ = 〈z1, z2〉,
where

z1 = h1(−1)h3(−1) · · ·hn−3(−1)hn−1(−1),

z2 = h1(−1)h3(−1) · · ·hn−3(−1)hn(−1).

Dn, n odd :

F̃ = 〈h1(−1)h3(−1) · · ·hn−2(−1)hn−1(−i)hn(i)〉,
where i =

√−1.
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