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Abstract
We introduce a preordered version of D. Scott’s equilogical

spaces [29], called inequilogical spaces, as a possible setting
for Directed Algebraic Topology. The new structure can also
express ‘formal quotients’ of spaces, which are not topological
spaces and are of interest in noncommutative geometry, with
finer results than the ones obtained with equilogical spaces, in
a previous paper.

This setting is compared with other structures which have
been recently used for Directed Algebraic Topology: spaces
equipped with an order, or a local order, or distinguished paths,
or distinguished cubes.

Introduction

This work is devoted to the interaction between two recent subjects: Scott’s
equilogical spaces and Directed Algebraic Topology. It is a sequel of a previous one,
cited as Part I [17], where we showed how equilogical spaces are able to express
‘formal quotients’ of interest in noncommutative geometry (‘noncommutative tori’),
which can be explored extending singular homology. Here, we introduce a directed
(preordered) version of such a structure, called inequilogical space, which can be
explored by preordered homology groups and gives finer results in expressing those
‘formal quotients’.

An equilogical space X = (X],∼) [29] is a topological space X] equipped with
an equivalence relation ∼; a map of equilogical spaces X → Y is a mapping X]/∼
→ Y ]/∼ which admits some continuous lifting X] → Y ]. Note that we drop the
usual condition that X] be T0 (I.1.2.); therefore, the category Eql thus obtained
contains Top as a full subcategory, identifying a space T with the pair (T, =T ); Eql
has ‘finer’ quotients and is Cartesian closed. In Part I we have seen that singular
homology can be extended to equilogical spaces, with similar properties, and can
give interesting results even when the underlying space |X| = X]/∼ is trivial.

On the other hand, Directed Algebraic Topology is a recent subject, whose
present applications deal mainly with concurrency. Its domain should be distin-
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guished from classical Algebraic Topology by the principle that directed spaces have
privileged directions and their paths need not be reversible. Its homotopical and ho-
mological tools are similarly ‘non-reversible’: directed homotopies, fundamental cat-
egories, directed homology. Its applications can deal with domains where privileged
directions appear, like concurrent processes, traffic networks, space-time models,
etc. [14].

As a topological setting to develop this subject, various structures combining
topology and order have been considered in the theory of concurrency [9, 10, 11,
24]. However, for developing a general theory of Directed Algebraic Topology, such
notions present various drawbacks (1.3): the lack of essential models or the lack of
cones and suspension. These problems can be overcome with more complex struc-
tures, like spaces with distinguished paths [12, 13], cubical sets and spaces with
distinguished cubes [15, 16]. Moreover, such structures also contain models of ‘for-
mal spaces’ of interest in noncommutative geometry, which cannot be realised as
topological spaces.

Developing a remark in [15], 6.4, we introduce and study here a simpler setting
which can still express those ‘formal quotients’. An inequilogical space X = (X],∼)
is defined as a preordered topological space X] equipped with an equivalence re-
lation; a morphism is defined as above, requiring a continuous preorder-preserving
lifting. The category pEql so obtained is studied in Section 1. Inequilogical spaces
have singular cubes defined on the standard ordered cubes ↑In and a directed ho-
mology consisting of preordered abelian groups ↑Hn(X) (Section 3). To understand
how easily and effectively this new category can express ‘privileged directions’ and
give rise to directed paths, it suffices to consider the following model of the ‘directed
circle’, the inequilogical space (↑R,≡Z), i.e. the quotient (in pEql) of the ordered
line ↑R modulo the action of the subgroup Z.

Section 4 deals with formal quotients of preordered spaces as inequilogical spaces,
treating in detail one example. The subgroup Gϑ = Z + ϑZ ⊂ R (ϑ irrational) acts
on the line by translations; being dense in the line, it has a coarse orbit space R/Gϑ.
Replacing this trivial space with the quotient cubical set Cϑ = (2↑R)/Gϑ ([15],
4.2b) derived from the order-preserving cubes In → R, or equivalently with the
inequilogical space C ′ϑ = (↑R,≡Gϑ

), we have a non-trivial object, whose directed
homology

↑H1(↑R,≡Gϑ
) = ↑H1((2↑R)/Gϑ) ∼= ↑Gϑ, (1)

is able to recover the totally ordered group ↑Gϑ ⊂ ↑R (up to isomorphism) and the
irrational number ϑ, up to the corresponding equivalence relation (Thm. 4.4).

All this agrees with the irrational rotation C*-algebra Aϑ, which ‘replaces’ in
noncommutative geometry the trivial quotient R/Gϑ and the trivial leaf space of
the corresponding Kronecker foliation on the torus [5, 6, 23, 25]. The present
models, however, seem to be geometrically more evident than the corresponding
C*-algebras; direction plays a recognisable role, since the homology groups of the
equilogical space (R,≡Gϑ

) do not allow to reconstruct ϑ, at any extent (see Part I).
The classification of the inequilogical spaces C ′ϑ = (↑R,≡Gϑ

) is extended in
Section 5, taking Gϑ =

∑
i ϑiZ where the numbers (ϑ1, . . . , ϑn) are linearly inde-

pendent on Q. Finally, various inequilogical structures of the n-torus are studied in
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Section 6, determining their directed homology.
Equilogical spaces have been introduced in [29]; see also [1, 2, 27, 28]. References

and motivation for Directed Algebraic Topology can be found in [12]; for cubical
sets in [15]. Within category theory, pEql can be viewed as the regular completion
pTopreg of the category of preordered spaces [4]. One can use this fact to prove
that pEql is Cartesian closed, as in [28] (p. 161) for Eql = Topreg; but here we
rather need an explicit construction of some internal homs (1.8).

A preorder is a reflexive and transitive relation; an order is also antisymmetric.
Structures provided with some sort of direction are usually distinguished by the
prefix ↑. A map between spaces is a continuous mapping. The index α always takes
values 0, 1. The reference I.1 applies to Section 1 of Part I [17]; similarly I.1.2 or
I.1.2.3 refer to its Subsection 1.2 or item (3) of the latter.

1. Inequilogical spaces and directed topology

Inequilogical spaces can be seen as ‘formal quotients’ of preordered topological
spaces, and used as a simple setting for Directed Algebraic Topology.

1.1. Equilogical spaces
Let us recall that an equilogical space X = (X],∼) is a topological space X] (the

support) provided with an equivalence relation, written ∼X or ∼; the underlying
space (or set, when convenient) is the quotient |X| = X]/∼. A map of equilogical
spaces f : X → Y is a mapping f : |X| → |Y | which admits some continuous lifting
f ′ : X → Y ; or, equivalently, an equivalence class of continuous mappings f ′ : X →
Y respecting the equivalence relations

∀ x, x′ ∈ X : x ∼X x′ .⇒ . f ′(x) ∼Y f ′(x′), (2)

under the associated pointwise equivalence relation

f ′ ∼ f ′′ if ( ∀ x ∈ X : f ′(x) ∼Y f ′′(x)). (3)

The category Eql thus obtained contains Top as a full subcategory, identifying
the space X with the obvious pair (X, =X). (Equilogical spaces have been intro-
duced in [29] using T0-spaces as supports, so that they can be viewed as subspaces
of algebraic lattices with the Scott topology, which is always T0. Their category, a
full subcategory of Eql, is often written as Equ.)

An equilogical space X is isomorphic to a topological space A if and only if A is
a retract of X], with a retraction p : X] → A whose equivalence relation is precisely
∼X . But the new category has relevant new objects (cf. 1.4).

In Part I we have extended singular homology to equilogical spaces, to study
objects of which we have no direct geometric intuition. As in Massey’s text [22], we
have followed the cubical approach instead of the more usual simplicial one. General
motivations for preferring cubes essentially go back to the fact that cubes are closed
under product, while tetrahedra are not. But here, a specific, strong motivation will
be our use of the natural order on the standard cube In = [0, 1]n to define directed
homology of inequilogical spaces (cf. 3.2).
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1.2. Privileged directions
As recalled in the Introduction, Directed Algebraic Topology is concerned with

‘directed spaces’, having privileged directions and directed paths, generally non-
reversible. Its applications, mostly developed within the theory of concurrency, can
also deal with the analysis of space-time models, ‘directed images’, traffic networks,
etc. (cf. [12, 14] and references there); but here we shall restrict our attention to
theoretical and internal aspects.

It is not obvious how one can modify or enrich topological spaces, to produce
a ‘good’ structure with such features. Clearly, we are not looking for orientation,
which - to begin with - is unable to give privileged paths in dimension greater than
1; moreover, non orientable manifolds can have non-trivial directed structures (1.7).

The pictures below show four situations we want to be able to formalise, within
the square Q = [0, 5]× [0, 5] of the euclidean plane

  b   b

  1

   a    1        a                       

X Y Z W (4)

(a) First, let us consider the compact subspace X = Q \ (]2, 3[×(]1, 2[∪]3, 4[)) as
an ordered topological space, with the natural (partial) order of the plane: (s, t) 6
(s′, t′) if and only if s 6 s′ and t 6 t′. Thus, defining a directed path as any order-
preserving map ↑I → X on the standard ordered interval ↑I = ↑[0, 1], there are
essentially three paths from the minimum a = (0, 0) to the maximum b = (5, 5),
up to (the equivalence relation generated by) directed homotopy of directed paths
(parametrised on ↑I×↑I, with fixed endpoints).
(b) Second, let us consider Y as the same space with the preorder relation (s, t) ≺
(s′, t′) defined by t 6 t′. Now, directed paths have to move ‘weakly upwards’ but
are free of wandering from right to left or vice versa; there are thus four homotopy
classes of directed paths, from a to b.
(c) Finally, we want that directed paths in Z and W turn around the centre, coun-
terclockwise - being free of wandering with respect to their distance from the centre
(the underlying spaces of these ‘structures’ are Q\]2, 3[2 and Q, respectively).

Plainly, the last two cases cannot be expressed by a preorder, but require a richer
setting (for instance, they will be realised as inequilogical spaces, in 1.7). Case (b)
shows that it is not convenient to restrict to order relations.

1.3. Preordered spaces
As we have seen, the category pTop of preordered topological spaces (spaces

with a preorder relation, under no condition) and preorder-preserving maps already
contains some models we are interested in.
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As standard objects of interest, let us consider: the ordered line ↑R (with natural
order); the n-dimensional real ordered space ↑Rn, with the product order (x 6 y
if xi 6 yi, ∀ i); the standard ordered interval ↑I = ↑[0, 1] ⊂ ↑R and the standard
ordered cube ↑In ⊂ ↑Rn.

A directed path in a preordered space X is obviously defined as a morphism
↑I → X. This shows that it is convenient to identify a topological space X with the
chaotic-preordered space (X,≈X), so that all (continuous) paths I → X are still
admissible morphisms ↑I → (X,≈X). Thus, Rn will have the chaotic preorder and
R×↑R a product preorder, chaotic in the first variable and natural in the second.
The spaces X,Y considered in (4) can be viewed in pTop, as subobjects of ↑R2 or
R×↑R, respectively.

In itself, pTop has rather good categorical properties (all limits and colimits
exist; the ordered interval is exponentiable). But it cannot express models we would
like to have, as a ‘directed circle’ or the two last examples above (in (4)).

One could extend pTop by some local notion of ordering - as in the usual geomet-
ric models of concurrent processes. The simplest way is perhaps to consider spaces
equipped with a relation ≺ which is reflexive and locally transitive: every point has
some neighbourhood on which the relation is transitive (stronger properties have
been used in the theory of concurrency). This yields a category lpTop ([12], 1.4)
which contains a model of the directed circle, as well as a model of the space Z in
(4). But a relevant internal drawback appears, which makes this setting inadequate
for directed homotopy and homology: mapping cones and suspension are lacking.
Indeed, a locally preordered space cannot have a ‘pointlike vortex’, as W in (4)
(where all neighbourhoods of the centre contain some non-reversible loop): whence
it cannot realise the cone of the directed circle (as proved in detail in [12], 4.6).

1.4. Inequilogical spaces
A preordered version of equilogical spaces yields a very simple, partially satis-

factory setting for Directed Algebraic Topology. The new category pEql is built on
the category pTop, like equilogical spaces on Top.

An inequilogical space, or preordered equilogical space X = (X],∼) will be a
preordered topological space X] endowed with an equivalence relation ∼X (or ∼);
the preorder relation will generally be written as ≺X . The quotient |X| = X]/∼
will be viewed as a preordered topological space (with the induced preorder and
topology), or a topological space, or a set, as convenient. A map f : X → Y ‘is’
a mapping f : |X| → |Y | which admits some continuous preorder-preserving lifting
f ′ : X] → Y ]. Equivalently, as in 1.1, a map is an equivalence class of maps f ′

in pTop which respect the equivalence relations (2), under the equivalence relation
f ′ ∼ f ′′ (in (3)). Note that there are no mutual conditions among topology, preorder
and equivalence relation.

This category will be denoted as pEql. The forgetful functor

| − | : pEql → pTop, |X| = X]/∼, (5)

with values in preordered topological spaces (or spaces, or sets, when convenient)
has already been defined, implicitly; it sends the map f : X → Y to the underlying
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mapping f : |X| → |Y | (also written |f |). A point x : {∗} → X is an element of the
underlying space |X|.

Extending 1.3, the following embeddings will be viewed as inclusions (and again,
the chaotic preorder on a set is written as ≈)

Top
J1 ²²

J2 // pTop
J3²²

Eql
J4

// pEql

(6)

J1(T ) = (T, =T ), J2(T ) = (T,≈T ),

J3(T,≺) = (T,≺, =T ), J4(T,∼) = (T,≈T ,∼).

Reversing the preorder relation gives the reflected, or opposite, inequilogical space

(−)op : pEql → pEql, Xop = (X],≺op,∼X). (7)

The reflection (−)op is a (covariant) involutive endofunctor. An object isomorphic
to its reflection will be said to be reflexive, or self-dual; for instance, ↑In and ↑Rn

are reflexive.

1.5 Theorem (Limits). The category pEql has all limits and colimits, constructed
as in Eql and equipped with the appropriate preorder (as shown in detail in the
proof).

Proof. The argument proceeds in the same way as the similar proof for equilogical
spaces, in [1] or I.1.3, replacing Top with pTop; we write it down because we shall
need the explicit construction of some limits and colimits. As well-known, it suffices
to construct products, equalisers, sums (i.e., coproducts) and coequalisers.

A product
∏

Xi is the product of the preordered spaces X]
i , equipped with the

product of all equivalence relations; a sum (or coproduct)
∑

Xi is the sum of the
preordered spaces X]

i , with the sum of their equivalences.
Now, take two maps f, g : X → Y . For their equaliser E = (E],∼), take first the

(set-theoretical) equaliser E0 of the underlying mappings f, g : |X| → |Y |; then the
space E] is the counterimage of E0 in X], with the restricted topology, preorder
and equivalence relation; the map E → X is induced by the inclusion E] → X].
For the coequaliser C of the same maps, consider the set-theoretical coequaliser of
the underlying mappings f, g : |X| → |Y |, realised as a quotient Y ]/∼C , modulo
an equivalence relation containing ∼Y . Then C = (Y ],∼C), with the map Y → C
induced by the identity of Y ] (and represented by the canonical projection |Y | →
|C|). Note that, as in Part I, coequalisers in Top (or pTop) are not used.

1.6. Regular subobjects and quotients
By definition, an inequilogical subspace of X is any topological subspace of X]

saturated with respect to ∼X , and equipped with the restricted structure. An inequi-
logical quotient of X has the same support, with the same preorder and a coarser
equivalence relation. (In fact, we have proved in 1.5 that any regular subobject
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E → X is an inequilogical subspace, as defined above; the converse is easily proved
by taking the cokernel pair of E → X; dually for quotients.)

To show how our new setting is more flexible and richer than pTop, it suffices
to consider that the coequaliser in pTop of the faces of the ordered interval

∂0, ∂1 : {∗} ⇒ ↑I, ∂0(∗) = 0, ∂1(∗) = 1, (8)

is the circle S1 with the chaotic preorder (loosing any information of direction),
while their coequaliser in pEql is produced by the equivalence relation R∂I which
identifies the endpoints

↑S1
e = (↑I,R∂I) = (I, 6,R∂I) (the standard inequilogical circle) (9)

(as in Part I, RA will often denote the equivalence relation which collapses a subset
A.)

It is important to note that this object still bears the natural order on the
interval: thus, the directed paths ↑I → ↑S1

e have to move in a precise direction,
say ‘counterclockwise’ (moreover, local directed paths will be able to cross over the
pasting point and turn around any number of times; cf. 2.3). Note also that, while
in the non-directed case the distinction between the corresponding coequalisers, S1

and S1
e, is of a questionable interest (and, indeed, these objects are locally homotopy

equivalent, cf. I.2.5), here the difference between the two coequalisers, S1 = (S1,≈
, =) and ↑S1

e, is essential.

1.7. Other models
Generalising the standard inequilogical circle (9), the standard n-dimensional

inequilogical sphere ↑Sn
e will be defined as a quotient in pEql of the ordered cube

↑In, modulo the equivalence relation which identifies all points of the boundary

↑Sn
e = (↑In, R∂In) = (In, 6, R∂In) (n > 0), (10)

while ↑S0
e = ({0, 1},=, =) has the discrete topology and order. All inequilogical

spheres are reflexive. We shall see that all of them are pointed suspensions of ↑S0
e.

Also here ↑S1
e is not isomorphic to the quotient of the ordered line modulo the

action of Z

↑S1

e = (↑R,≡Z) = (R, 6,≡Z). (11)

In fact, directed paths in the object ↑S1

e can be concatenated, while in ↑S1
e cannot,

generally (see 2.1). Similarly, we have different higher spheres ↑Sn

e = (↑Rn,∼n),
where the equivalence relation ∼n is generated by the congruence modulo Zn and
by identifying all points (t1, . . . , tn) where at least one coordinate belongs to Z.

Inequilogical models of the ‘structures’ Z,W considered in (4) can be realised
as subspaces of the counterclockwise inequilogical plane H = (H],∼): this is the
preordered helicoid H] ⊂ R×R×↑R described by the parametric equations x =
ρ.cos(t), y = ρ.sin(t), z = t with the equivalence relation associated to the or-
thogonal projection on the xy-plane (and the preorder z 6 z′). Note that H also
contains the circle ↑S1

e, as the inequilogical subspace of points with ρ = 2π.
Various inequilogical structures of the torus will be studied in Section 6. The

Klein bottle (though a non-orientable manifold) can be given an inequilogical struc-
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ture locally isomorphic to ↑I2, namely the inequilogical quotient ↑K = (I2,6, RK)
of a convenient ordered square (I2, 6) modulo the usual equivalence relation RK

(described below ‘on generators’)

(x, y) 6 (x′, y′) ⇔ x′ − x > |y′ − y|,
(s, 0) RK (s, 1), (0, t) RK (1, 1− t). (12)

As recalled in the Introduction, pEql is Cartesian closed. Rather than giving a
proof of this fact, by category-theoretical arguments, we give a direct construction
of the internal homs Y A in a case largely covering the path-objects Y ↑I we are
interested in.

1.8 Theorem (Internal homs). Let A be a preordered topological space, whose
topology is Hausdorff, locally compact.

(a) A is exponentiable in pTop: for every preordered topological space T , the internal
hom TA is the subspace of order-preserving maps pTop(A, T ) ⊂ Top(A, T ), with
the (restricted) compact-open topology and the pointwise preorder

h′ ≺E h′′ if ( ∀ a ∈ A, h′(a) ≺T h′′(a)). (13)

(b) This construction can be extended to the inequilogical exponential Y A, for Y in
pEql

Y A = (Y ]A,∼E), h′ ∼E h′′ if ( ∀ a ∈ A, h′(a) ∼Y h′′(a)), (14)

where Y ]A is the previous exponential, in pTop, and ∼E is the pointwise equivalence
relation of maps A → Y ] (cf. (3)).
(c) For every inequilogical space X, |X×A| = |X|×A.
(d) More generally, all this holds for every preordered topological space A whose
underlying space is exponentiable in Top, letting TA be the subspace of the topo-
logical exponential formed of the order-preserving maps, equipped with the pointwise
preorder.

Proof. We only write down the proof of (a), since the rest is an easy adaptation of
the proof of the analogous results for equilogical spaces (I.1.5).

Forgetting preorders, it is well-known that a Hausdorff, locally compact space A
is exponentiable in Top: TA is the space of maps Top(A, T ) with the compact-
open topology, and there is a natural bijection τ , saying that the endofunctor
(−)A : Top → Top is right adjoint to the endofunctor −×A

τ : Top(S×A, T ) → Top(S, TA) (the exponential law),
τ(f) = g, f(x, a) = g(x)(a) (x ∈ S, a ∈ A). (15)
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Inserting preorders, the preordered topological space TA ⊂ Top(A, T ) of order-
preserving maps gives a restriction of the previous bijection τ

ϕ : pTop(S×A, T ) → pTop(S, TA). (16)

Indeed, the map f : S×A → T respects preorders if and only if it does so in each
variable, separately; which means that every map g(x) = f(x,−) : A → T belongs
to TA and the mapping g : X → TA respects preorders.

2. Directed homotopy of inequilogical spaces

This brief study is meant as a support for directed homology.

2.1. Paths and symmetries
A (directed) path in an inequilogical space X is a map a : ↑I → X defined on the

standard ordered interval. The path a has two endpoints in the underlying space
|X|, or faces ∂0(a) = a(0), ∂1(a) = a(1). Every point x ∈ |X| has a degenerate path
0x, constant at x. Generally, paths are not reversible nor can be concatenated, as
one can easily see in ↑S1

e.
Indeed, the reversion symmetry ρ : I → I (ρ(t) = 1 − t) used to reverse path

and homotopies for topological and equilogical spaces disappears for the directed
interval ↑I, in pTop and pEql; more precisely, it has a weak surrogate, the reflection
ρ : ↑I → ↑Iop which turns a path a : ↑I → X into a path of the opposite structure,
aop◦ρ : ↑I → Xop.

On the other hand, the interchange symmetry subsists

s : ↑I2 → ↑I2, s(t1, t2) = (t2, t1). (17)

This behaviour, with respect to the ‘Cartesian generators’ of the symmetries of
the n-dimensional cube, is similar to that of spaces with distinguished paths [13].
On the other hand, cubical sets are able to break all the intrinsic symmetries of
topological spaces: given a cubical set K, an ‘edge’ in K1 need not have any coun-
terpart with reversed vertices, nor a ‘square’ in K2 any counterpart with horizontal
and vertical faces interchanged (as more completely discussed in [15], 1.1). While
for inequilogical spaces (and spaces with distinguished paths), the choice of priv-
ileged directions is essentially determined at the 1-dimensional level, cubical sets
also offer the possibility of higher dimensional choices.

2.2. Directed homotopy
The standard inequilogical interval ↑I also produces the (directed) cylinder func-

tor and its right adjoint, the (directed) path functor, or cocylinder (by exponential,
1.8)

I : pEql → pEql, I(X) = X×↑I,
P : pEql → pEql, P (Y ) = Y ↑I. (18)

Identifying X×{∗} = X and Y {∗} = Y , the faces of these functors are produced
by the endpoints of the interval, ∂α : {∗} → ↑I (8)

∂α = X×∂α : X → X×↑I, ∂α = Y ∂α

: Y ↑I → Y (α = 0, 1). (19)
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A (directed) homotopy f : f0 → f1 : X → Y in pEql is defined as a map f : X×
↑I → Y with faces f◦∂α = fα (or, equivalently, f : X → Y ↑I with faces ∂α◦f = fα).
Paths correspond to the case X = {∗}.

Again, these homotopies have no concatenation nor reversion. However, a homo-
topy in pEql produces a right homotopy in the category Cub of cubical sets (cf.
[15], 1.6.4)

2f : 2f0 →R 2f1 : 2X → 2Y,
2nf : 2nX → 2n+1Y, (2nf)(a) = f ◦(a×↑I). (20)

2.3. Local maps and local homotopies
In I.2.1 we introduced an extension of Eql, meant to simulate the local character

of continuity; it produces a concatenation of the new paths (I.2) and the same
homology (I.3.5).

Also here, it is interesting to extend pEql to the category pEqL of inequilogical
spaces and locally liftable mappings, or local maps. A local map f : X ·→ Y (the arrow
is marked with a dot) is a mapping f : |X| → |Y | between the underlying sets which
admits an open saturated cover (Ui)i∈I of the space X] (by open subsets, saturated
for ∼X), so that - for every index i - the mapping f has a partial (continuous,
preorder-preserving) lifting fi : Ui → Y ]

f [x] = [fi(x)], for x ∈ Ui and i ∈ I. (21)

Equivalently, for every point [x] ∈ |X|, the mapping f restricts to a map of
inequilogical spaces on a suitable saturated neighbourhood U of x in X].

Also here, all finite limits and arbitrary colimits of pEql still ‘work’ in the ex-
tension, which is thus cocomplete and finitely complete. A local isomorphism will
be an isomorphism of pEqL; a local (directed) path will be a local map ↑I ·→ X; a
local (directed) homotopy will be a local map X×↑I ·→ Y , etc. Items of pEql will be
called global (or also elementary, in the case of paths) when we want to distinguish
them from the corresponding local ones.

Coming back to our models of the circle (1.6, 1.7), the canonical map p : ↑S1
e →

↑S1

e is not locally invertible: the topological inverse R/Z = I/∂I cannot be locally
lifted at [0]; but, as in I.2.2, an inverse up to local homotopy exists.

By the local character of continuity in Top, the embedding Top ⊂ pEqL is
still full and reflective, with reflector (left adjoint) | − | : pEqL → Top. Notice that
the forgetful functor | − | : pEql → pTop cannot be extended to local maps, since
preserving preorder is not a local property, generally. Yet it becomes so when the
domain A of a map has a compact support A]; or, more generally, if in the preordered
space A] any two comparable points x ≺A y are contained in some compact subspace
(as it happens in ↑R). Therefore, as in I.2.7, a local path a : ↑I →; X is always a
finite concatenation of elementary paths in X, up to local homotopy with fixed
endpoints.

2.4. The fundamental category
Let X be an inequilogical space, and a, b : ↑I ·→ X two consecutive local paths:

a(1) = x = b(0) ∈ |X|. The concatenation c = a ∗ b : ↑I ·→ X is defined in three steps
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(as in I.2.6, for equilogical spaces)

c : I → |X|, c(t) =





a(3t), if 0 6 t 6 1/3
a(1) = b(0), if 1/3 6 t 6 2/3
b(3t− 2), if 2/3 6 t 6 1,

(22)

allowing for a stop at the concatenation point: this mapping is locally liftable (since,
on the open subsets [0, 1/2[, ]1/3, 2/3[, ]1/2, 1] it essentially reduces to the given local
directed paths or to a constant mapping, at the middle subset).

We have thus the fundamental category ↑Π1(X) of an inequilogical space: a vertex
is a point x ∈ |X| of the underlying set; an arrow [a] : x → y is an equivalence class
of local paths from x to y, up to local homotopy with fixed endpoints. Associativity
is proved in the usual way (with slight adaptations due to the particular form of
(22)); as well as the existence of identities (the classes of constant paths). Globally,
we have a functor

↑Π1 : pEqL → Cat. (23)

The endomorphisms of ↑Π1(X) at a point x0 ∈ |X| form the fundamental monoid
↑π1(X, x0). Looking at the examples of 1.2, it is evident that these monoids can
contain far less information than the category ↑Π1(X), and also be trivial when the
latter is not.

2.5. Local homotopy invariance
Local directed homotopies can be concatenated, but not reversed, generally. The

directed homotopy type has to be defined taking this into account (as in [12], 2.4,
for spaces with distinguished paths).

For local maps f, g : X ·→ Y in pEqL, the homotopy preorder f ¹ g is defined by
the existence of a local homotopy f ·→ g; it is consistent with composition (f ¹ g and
f ′ ¹ g′ imply f ′f ¹ g′g) but not symmetric (f ¹ g is equivalent to gop ¹ fop). We
shall write f ' g the equivalence relation generated by ¹: there is a finite sequence
f ¹ f1 º f2 ¹ f3 . . . g (of local maps between the same objects); it is a congruence
of categories. A local homotopy equivalence will be a local map f : X ·→ Y having
a homotopy inverse g : Y ·→ X, in the sense that gf ' idX, fg ' idY . Then we
write X ' Y , and say that they are locally homotopy equivalent, or have the same
(directed) local homotopy type.

While the homotopy invariance of the fundamental groupoid of equilogical spaces
(or of any undirected structure) works up to equivalence of groupoids, the homotopy
invariance of the fundamental category is a more delicate question, as discussed
in [12] for other directed structures. Without repeating the whole argument, let
us note that a local homotopy F : f ·→ g : X ·→ Y in pEqL produces a natural
transformation ↑Π1(f) → ↑Π1(g) of the associated functors ↑Π1(X) → ↑Π1(Y )
which need not be invertible; this is a (directed!) homotopy in Cat. Therefore,
knowing that the inequilogical spaces X, Y have the same directed homotopy type,
only implies that the same is true of their fundamental categories, for a notion of
directed homotopy equivalence in Cat, studied in [12], Section 4 (and defined as
above for pEqL); this relation is weaker than categorical equivalence but stronger
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than homotopy equivalence of the classifying spaces, which is not a directed notion.

3. Directed homology of inequilogical spaces

In I.3 we have studied the extension of singular homology to equilogical spaces.
We show now that inequilogical spaces have a directed homology, formed of pre-
ordered abelian groups.

3.1. Directed homology of cubical sets
We have already recalled how cubical sets break both the reversion and inter-

change symmetry (2.1). Their directed homology, introduced and studied in [15],
is obtained by enriching their ordinary homology groups with a natural preorder,
generated by taking the given cubes as positive.

More precisely, given a cubical set K, take the n-th component of its (normalised)
chain complex, i.e. the free abelian group generated by the non degenerate n-cubes
of K

Cn(K) = ZKn (Kn = Kn \DegnK), (24)

and write it as ↑Cn(K) when ordered by the positive cone of positive chains NKn.
(Note that the differential ∂n : Cn(K) → Cn−1(K) does not preserve this order,
generally.)

The directed homology of a cubical set is its ordinary homology, equipped with the
preorder induced by the order of ↑Cn(K) on its homology subquotient, Ker∂n/Im∂n+1;
we have functors

↑Hn : Cub → dAb, ↑Hn(K) = ↑Hn(↑C∗(K)), (25)

with values in the category dAb of preordered abelian groups and preorder-preserving
homomorphisms. In particular, the free abelian group ↑H0(K) is ordered, with pos-
itive cone generated by the homology classes of the vertices of K.

Forgetting preorders, one gets the usual chain and homology functors, C∗(K)
and H∗(K).

Notice that, when K = 2X is the singular cubical set of a topological space, for-
getting preorders does not likely destroy any essential information. First, ↑H0(2X)
has the obvious order described above; then, the preorder of ↑H1(2X) is necessarily
chaotic: every homology class belongs to the positive cone. (Indeed, for every 1-cube
a : I → X, the reversed path aρ is equivalent to the chain −a, modulo boundaries).
It would be interesting to prove a similar result in higher dimension.

3.2. Directed homology of inequilogical spaces
Now, an inequilogical space X (on a preordered space X] = (T,≺)) has a cubical

set of singular cubes (produced by the cocubical set of standard ordered cubes ↑In,
their faces and degeneracies)

2 : pEql → Cub, 2nX = pEql(↑In, X) = (2nX])/ ∼n, (26)

whose n-component ‘is’ the quotient of 2nX] = pTop(↑In, X]) modulo the equiv-
alence relation ∼n obtained by projecting cubes along the canonical projection
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X] → |X| = X]/∼. Notice that 2X is a subobject of the cubical set of the under-
lying equilogical space (T,∼)

2nX ⊂ 2n(T,∼) = Eql(In, (T,∼)). (27)

This canonical embedding of pEql in Cub defines the singular homology of
inequilogical spaces, again as a sequence of preordered abelian groups:

↑Hn : pEql → dAb, ↑Hn(X) = ↑Hn(2X), (28)

and a map of inequilogical spaces induces preorder-preserving homomorphisms. This
functor is homotopy invariant: given a homotopy f : f0 → f1, we have ↑Hn(f0) =
↑Hn(f1), as it follows immediately from the homotopy between the corresponding
morphisms of cubical sets (cf. (20)).

If X is an equilogical space (with the coarse preorder), the cubical set 2X is
precisely the one already considered in Part I, and the singular homology groups
are - algebraically - the same, while their preorder is likely of no interest.

But notice that, in the general case, the groups ↑Hn(X) can differ - even alge-
braically - from the groups Hn(T,∼) of the underlying equilogical space; as a trivial
example, if the preorder ≺X is discrete (the equality), all directed cubes ↑In → X
are constant and ↑Hn(X) = 0 for n > 0. In Section 6 we will see various inequilogical
tori, with the classical homology groups and different preorders.

3.3. Local directed homology
Extending the results of I.3, the wider category pEqL of local maps (2.3) gives

the local (directed) cubes a : ↑In ·→ X, the directed complex of local chains ↑CL∗(X)
and the preordered groups ↑HLn(X) of local directed homology

↑2LnX = pEqL(In, X), ↑CL∗(X) = ↑C∗(↑2LX),
↑HLn : pEqL → dAb, ↑HLn(X) = ↑Hn(↑CL∗(X)). (29)

The functors ↑HLn are invariant by local directed homotopy: as in I.3.3, a local
directed homotopy f ≺ g gives ↑HLn(f) = ↑HLn(g).

Now, as in I.3.5, the local homology ↑HLn(X) always coincides with the global
homology ↑Hn(X); more precisely, the embedding ↑C∗(X) ⊂ ↑CL∗(X) induces an
isomorphism ↑Hn(X) ∼= ↑HLn(X), natural for global maps. Thus, global homology
is also invariant for local homotopy, and locally homotopy equivalent objects have
the same directed homology, up to isomorphism of preordered abelian groups.

3.4. Properties of directed homology
The algebraic properties work as in the non-directed case (I.3); but one should

take care of the fact that preorder is not respected by the differential of our directed
chain complexes (3.1), which produces other anomalies (as in the directed homology
of cubical sets [15]).

We have already seen the homotopy invariance of global and local directed ho-
mology, as well as their coincidence. The Mayer-Vietoris sequence works as in I.3.8,
taking into account that its differential does not preserve preorders (as for cubi-
cal sets [15]); on the other hand, excision works well (as in I.3.8) and gives an
isomorphism of preordered abelian groups.
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Exceptionally, suspension works worse than for cubical sets (cf. 3.5).

3.5. Computations
The previous results allow one to compute easily the algebraic part of directed

homology; then, its preorder has often to be computed by a concrete inspection of
the directed cubes of a given inequilogical space.

Thus, it is easy to prove, using the Mayer-Vietoris sequence, that the directed
homology of the inequilogical spheres ↑Sn

e or ↑Sn

e yields the usual algebraic groups.
And we already know that their ordered group ↑H0 is always ↑Z, for n > 0 (3.1).

Now, for n = 1, all the directed paths a : ↑I → ↑S1

e move ‘counterclockwise’
around the circle, and every positive cycle is homologous to turning around ‘coun-
terclockwise’ k times, for some k ∈ N. In other words (recalling that ↑S1

e and ↑S1

e

are locally homotopy equivalent, 2.3)

↑H1(↑S1
e) = ↑H1(↑S1

e) = ↑Z. (30)

The results on the higher spheres are less interesting: for all n > 2, ↑Hn(↑Sn
e )

is the group of integers with the chaotic preorder. In fact, a positive generator of
↑H2(↑S2

e) is the 2-cube a : ↑I2 → (↑I2, ∂I2) induced by the identity of the ordered
square. But, using the interchange of coordinates σ : ↑I2 → ↑I2 (17), we get another
positive cycle aσ, showing that the opposite homology class [aσ] = −[a] is (weakly)
positive as well. In higher dimension, use σ×↑In−2.

This also shows that, in contrast with cubical sets, directed homology of inequilog-
ical spaces does not agree with suspension (cf. [15], Section 5). As we have seen, these
drawbacks are directly linked with the fact that the interchange symmetry σ sub-
sists in pEql: the directed structure of inequilogical spaces distinguishes directed
paths in an effective way, but can only distinguish higher cubes through directed
paths; this is not sufficient to get good results for ↑Hk, with k > 1.

3.6. Inequilogical realisation
We have seen in I.5.6 that a cubical set has an equilogical realisation, yielding the

left adjoint E : Cub → Eql to the functor 2 : Eql → Cub. Enriching its support
with the standard order, we obtain the inequilogical realisation functor

↑E : Cub → pEql, ↑E(K) =
(∑

a
↑In(a),∼

)
, (31)

left adjoint to 2 : pEql → Cub (cf. (26)).
As in the non-directed case, the sum is indexed on all cubes a of K, of which

n(a) is the dimension; the equivalence relation ∼ (analytically described in I.5.6.2) is
generated by identifying points along faces and degeneracies. Thus, the usual topo-
logical realisation (‘geometric realisation’) R(K) is precisely the space underlying
the equilogical (and inequilogical) realisation

R(K) =
(∑

a
In(a)

)
/∼ = |E(K)|. (32)

(We have also proved, in I.5.7, that these objects - R(K) and E(K) - are locally
homotopically equivalent.) As in I.5.9, the realisation (31) can be simplified, up to
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isomorphism, omitting all cubes a which are degenerate; moreover, for a finitely
generated cubical set K, one can also omit those cubes which are faces of a non-
degenerate cube.

Taking this reduction into account, one easily sees that the standard inequilogical
circle ↑S1

e = (↑I, R∂I) is (isomorphic to) the inequilogical realisation of the directed
cubical circle ↑s1 = 〈∗ → ∗〉, generated by one vertex and one edge. More generally,
the k-gonal inequilogical circle ↑Ck = (k↑I, Rk) resulting from the sum ↑I+...+↑I of
k copies of the directed interval (in pTop), together with the equivalence relation
Rk identifying the terminal point of any addendum with the initial point of the
following one, circularly (cf. I.1.4.4) is the inequilogical realisation of the directed
k-gonal cubical circle ↑ck (generated by k vertices and k edges, with obvious faces).

4. Formal quotients as cubical sets or equilogical spaces

Equilogical and inequilogical spaces can express ‘formal quotients’ of spaces, of
interest in noncommutative geometry; but the second structure can reach finer
results.

4.1. Actions on preordered spaces
Let (X,≺) be a preordered space on which the group G acts (all its operators

X → X preserve the preorder), so that G also acts on the cubical subset 2(X,≺) ⊂
2X of preorder-preserving cubes ↑In → (X,≺).

We have already seen in [G4] that the directed orbit cubical set 2(X,≺)/G can
be much more relevant than the ordinary orbit space X/G or the undirected orbit
cubical set (2X)/G (examples are recalled below). We show now that the orbit
inequilogical space (X,≺,≡G) can often give the same results as the directed cubical
structure, 2(X,≺)/G.

We say that the action of the group G on the space X is pathwise free (I.4.1) if,
whenever two paths a, b : I → X have the same projection to the orbit space X/G,
there is precisely one g ∈ G such that a = b+ g; then, of course, the same works for
all pairs of n-cubes a, b : In → X, so that the canonical surjection

(2X)/G → 2(X,≡G), (33)

is an isomorphism of cubical sets. We have seen that a proper action is always
pathwise free (I.4.2a), while (obviously) a pathwise free one is necessarily free.

Now, for a pathwise free action of the group G on the preordered space (X,≺),
the isomorphism (33) restricts to an isomorphism of cubical sets - whence of their
directed homology groups

2(X,≺,≡G) = 2(X,≺)/G, ↑Hn(X,≺,≡G) = ↑Hn(2(X,≺)/G) (34)

4.2. Inequilogical spaces and irrational rotations
In particular, we can apply this to a well-known situation, related to the irrational

rotation C*-algebras (as recalled in I.4): the action of the group Gϑ = Z + ϑZ (ϑ
irrational) on the real line, by translations.
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Take the cubical set 2↑R of all order-preserving maps In → R, and consider
the irrational rotation cubical sets Cϑ = (2↑R)/Gϑ. Algebraically, the homology
groups are independent of ϑ, but directed homology gives a finer information

↑H1(Cϑ) ∼= ↑Gϑ, (35)

as a (totally) ordered subgroup of R ([15], Thm. 4.8), which gives a strong infor-
mation on ϑ. It follows that the cubical sets Cϑ have the same classification up to
isomorphism [G4, Thm. 4.9] as the C*-algebras Aϑ up to strong Morita equivalence:
ϑ is determined up to the action of the linear group GL(2,Z) (I.4.4.1).

This example shows that the ordering of directed homology can carry a relevant
information. Further, comparison with the stricter classification of the algebras Aϑ

up to isomorphism ([15], 4.1) shows that cubical sets provide a sort of ‘noncommuta-
tive topology’, without the metric character of noncommutative geometry. (Normed
cubical sets, studied in [16], have such a character.)

We show now that the same holds for the irrational rotation inequilogical space

C ′ϑ = (↑R,≡Gϑ
) = (R,6,≡Gϑ

). (36)

4.3 Proposition. We have

↑H1(C ′ϑ) = ↑H1((2↑R)/Gϑ) ∼= ↑Gϑ. (37)

Proof. The action of Gϑ on the (ordered) line is pathwise free, as it follows imme-
diately from the fact that Gϑ is a totally disconnected subgroup of R (if the paths
a, b : I → X have the same projection to X/Gϑ, their difference a− b : I → Gϑ must
be constant). Therefore, by (34), the result on the directed homology of the cubical
set Cϑ = (2↑R)/Gϑ can also be stated in terms of the orbit inequilogical space
C ′ϑ.

4.4 Theorem (Classification Theorem, I). The following conditions on the
irrational numbers ϑ, ζ are equivalent:

(a) the inequilogical spaces C ′ϑ = (↑R,≡Gϑ
) and C ′ζ are isomorphic;

(b) the C*-algebras Aϑ and Aζ are strongly Morita equivalent;
(c) the cubical sets Cϑ = (2↑R)/Gϑ and Cζ are isomorphic;
(d) the ordered groups ↑Gϑ and ↑Gζ are isomorphic;
(e) ϑ and ζ are conjugate under the action of GL(2,Z) (I.4.4.1);
(f) ζ belongs to the closure of ϑ under the transformations R(t) = t−1 and T±1(t) =
t± 1, on R \Q.

Proof. The equivalence of properties (b) and (e) is a combined result of Pimsner
- Voiculescu [23] and Rieffel [25]; that of (c) - (f) has been proved in [15], Thm.
4.9. Moreover, (a) implies (d) by Proposition 4.3, applying the directed homology
group ↑H1. Finally, to deduce (a) from (f), it suffices to consider the cases ζ = ϑ+k
(k ∈ Z) and ζ = ϑ−1. In the first case, the ordered groups ↑Gϑ and ↑Gζ coincide (as
well as their action on ↑R); in the second (ζ = ϑ−1), the isomorphism of preordered
topological spaces

f : ↑R → ↑R, f(t) = |ϑ|.t, (38)
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restricts to an isomorphism f ′ : ↑Gϑ → ↑Gζ , obviously consistent with the ac-
tions (f(t + g) = f(t) + f ′(g)), and induces an isomorphism of inequilogical spaces
(↑R,≡Gϑ

) → (↑R,≡Gζ
).

5. Higher dimensional noncommutative tori

The classification theorem 4.4 is extended to the inequilogical spaces C ′ϑ =
(↑R,≡Gϑ

), where ϑ is an n-tuple of real numbers linearly independent on Q.

5.1. The extension
Take now an n-tuple of real numbers ϑ = (ϑ1, . . . , ϑn), linearly independent on

the rationals, and consider the additive subgroup Gϑ =
∑

i ϑiZ ∼= Zn of the real
line. (The previous case corresponds to the pair (1, ϑ).)

Again, the (totally disconnected) group Gϑ acts pathwise freely on the directed
line and on the cubical set 2↑R. It was proved in [15], 4.4, that the directed 1-
homology of the cubical set (2↑R)/Gϑ gives back the total order of ↑Gϑ (as a
subgroup of the ordered real line). As a consequence (by (36)), the same holds for
the orbit inequilogical space (↑R,≡Gϑ

)

↑H1(↑R,≡Gϑ
) = ↑H1((2↑R)/Gϑ) = ↑Gϑ = ↑(

∑
i
ϑiZ). (39)

5.2. Integral matrices
We shall use the group GL(n,Z) of matrices with integral entries and determinant

±1, with its natural action (on the right) on Rn (and Zn).
Let us recall that GL(n,Z) admits the following finite system of generators ([30],

p. 145):

(a) diagonal matrices with entries ±1;
(b) permutation matrices (all entries are 0 except precisely one in each row and one
in each column, which is equal to 1);
(c) upper triangular matrices with 1 on the diagonal and all the elements above
equal to 0, except one of them which is equal to 1.

Therefore, the action of GL(n,Z) on Rn is generated by the following transfor-
mations:

(i) change of sign of one coordinate (an action of the group (Z/2)n),
(ii) permutation of coordinates (an action of the symmetric group Sn),
(iii) Tij(t1, . . . , tn) = (t1, . . . , ti + tj , . . . , tj , . . . , tn) (for 1 6 i < j 6 n).

It is sufficient to consider finite composites of these transformations, since also the
inverse of Tij can be expressed as such a composite: T−1

ij (t1, . . . , tn) = (t1, . . . , ti −
tj , . . . , tj , . . . , tn).

This action is extended to the group GL(n,Z)×R+
∗ , where a real number λ > 0

acts on Rn by multiplication

(iv) λ.(t1, . . . , tn) = (λt1, . . . , λtn).
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Given an n-tuple t ∈ Rn, we shall denote by t̂ its closure under the action of the
group GL(n,Z), or equivalently under the transformations of type (i)-(iii); by t̂ˆits
closure under the action of GL(n,Z)×R+

∗ , or equivalently under the transformations
of type (i)-(iv).

5.3 Lemma. Let ϑ, ζ be n-tuples of real numbers, linearly independent on Q. Then
the following conditions are equivalent:

(a) the groups Gϑ =
∑

iϑiZ and Gζ coincide, as subsets of the line,
(b) ϑ and ζ are conjugate under the action of GL(n,Z),
(c) ζ belongs to the closure ϑˆof ϑ under the transformations (i)-(iii) of 5.2.

Proof. The last two conditions are equivalent, by 5.2. Assuming that Gϑ = Gζ , we
can write ζ = ϑA and ϑ = ζB, with matrices A, B ∈ Mn(Z). Therefore ϑ(AB−In) =
0, which (by our hypotheses on ϑ) implies AB = In; similarly for BA, and (b)
holds. Finally, to prove that (c) implies (a), it suffices to consider that, whenever
ζ is obtained from ϑ by one of the transformations (i)-(iii) of 5.2, ↑Gϑ and ↑Gζ

coincide.

5.4 Theorem (Classification Theorem, II). Let ϑ, ζ be n-tuples of real numbers,
linearly independent on Q. The following conditions are equivalent:

(a) the inequilogical spaces C ′ϑ = (↑R,≡Gϑ
) and C ′ζ are isomorphic;

(b) the cubical sets Cϑ = (2↑R)/Gϑ and Cζ are isomorphic;
(c) the ordered groups ↑Gϑ and ↑Gζ are isomorphic;
(d) ϑ and ζ are conjugate under the action of GL(n,Z)×R+

∗ (5.2),
(e) ζ belongs to the closure ϑˆ̂ of ϑ under the transformations (i)-(iv) of 5.2.

Proof. The conditions (d), (e) are equivalent, by 5.2. Moreover, (a) trivially implies
(b), which implies (c), since we already know that the ordered homology group
↑H1(2↑R/Gϑ) is isomorphic to ↑Gϑ (cf. (39)). To prove that (e) implies (a), it suf-
fices to consider four cases, where ζ is obtained from ϑ by one of the transformations
(i)-(iv) of 5.2. In the first three cases, ↑Gϑ and ↑Gζ coincide (as well as their action
on ↑R), whence C ′ϑ = C ′ζ . In the fourth, ζ = λϑ (with λ > 0) and the isomorphism
of ordered topological spaces

f : ↑R → ↑R, f(t1, . . . , tn) = (λt1, . . . , λtn), (40)

restricts to an isomorphism of ordered groups f ′ : ↑Gϑ → ↑Gζ , obviously consistent
with the actions (f(a + g) = f(a) + f ′(g)). Finally, it induces an isomorphism of
inequilogical spaces C ′ϑ = C ′ζ .

We are left with proving that (c) implies (e). Let us take two sequences ϑ, ζ such
that ↑Gϑ

∼= ↑Gζ and prove that z ∈ ϑˆ̂. Operating with transformations of type
5.2(i) (changing the sign of one component), we can assume that all the components
of ϑ and ζ are positive.

Let us begin noting that the sequence ϑ (linearly independent on the rationals)
defines an algebraic isomorphism Zn ∼= Gϑ, which becomes an order isomorphism
for the ordered group ↑ϑZ

n

↑ϑZ
n → ↑Gϑ, (a1, . . . , an) 7→ (a|ϑ) =

∑
iaiϑi,

(a1, . . . , an) >ϑ 0 ⇔ (a|ϑ) > 0.
(41)
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It will be useful to note that this order determines the (positive) sequence ϑ up
to a multiplicative scalar λ = ϑn > 0, by the following upper bounds in R (for
i < n)

ϑi/ϑn = sup{−an/ai | (0, ..., ai, 0, ..., an) >ϑ 0, ai > 0}. (42)

Now, our isomorphism ↑Gϑ
∼= ↑Gζ produces an isomorphism f : ↑ϑZ

n → ↑ζZ
n.

The underlying algebraic isomorphism f : Zn → Zn can be factored as f = fm . . . f1,
with factors as below (cf. 5.2)

ρi(a) = (a1, . . . ,−ai, . . . , an) (i = 1, . . . , n), (43)

σ(a) = (aτ1, . . . , aτn) (σ ∈ Sn, τ = σ−1), (44)

τij(a) = (a1, . . . , ai + aj , . . . , an) (1 6 i < j 6 n). (45)

Moreover ρi (resp. σ, τij) is an order isomorphism ↑ϑZ
n → ↑ωZn, for a suitable

ω ∈ ϑˆ

a >ϑ 0 ⇔ (ρi(a)|ρi(ϑ)) > 0 ⇔ ρi(a) >ω 0 (ω = ρi(ϑ)), (46)

a >ϑ 0 ⇔ (σ(a)|σ(ϑ)) > 0 ⇔ σ(a) >ω 0 (ω = σ(ϑ)), (47)

a >ϑ 0 ⇔ τij(a) >ω 0 (ω = (ϑ1, . . . , ϑi, . . . , ϑj − ϑi, . . . , ϑn)). (48)

Thus, the isomorphism f : ↑ϑZ
n → ↑ζZ

n is also an iso ↑ϑZ
n → ↑ωZn for a

suitable ω ∈ ϑ ,̂ and ↑ζZ
n = ↑ωZn. By (42), ζ = λω for some positive λ, and the

thesis holds.

6. Linear orders and inequilogical tori

Each linear preorder on the vector space Rn produces a directed structure on
the equilogical torus (Rn,≡Zn), which can be analysed with directed homology.

6.1. Linear preorders
We shall use the following model of equilogical torus

T
n

e = (Rn,≡Zn) = S
1

e×. . .×S
1

e, (49)

which is (by I.2.3) locally isomorphic to the topological space Tn = Rn/Zn =
S1× . . .×S1. Enriching the support Rn with a preorder 6Γ, we get a family of
inequilogical spaces

↑ΓTn = (Rn, 6Γ,≡Zn), (50)

which can be investigated with directed homology, and often classified.
All the preorders 6Γ we will consider on Rn respect its linear structure and

are - as a consequence - determined by a positive cone Γ (closed under sum and
multiplication by real scalars l > 0, hence convex). It will be important to assume
that Γ has internal points, as in all the planar examples below
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 Γ1      Γ2   Γ3

 Γ4  Γ5  Γϑ

Γ1 = {(x, y) ∈ R2 | x > 0, y > 0}, Γ2 = {(x, y) | x > |y|},
Γ3 = {(x, y) | x > 0; y > 0 or x = 0 6 y},
Γ4 = {(x, y) | x > 0 or x = 0 = y}, Γ5 = {(x, y) | x > 0},
Γϑ = {(x, y) | x + ϑy > 0} (ϑ irrational).

(51)

The first three examples are ‘vector lattices’, also called Riesz spaces [3, 20]): in
the first case we have the product order and in the third the lexicographic one (a
total order). The fourth example is ordered but not a lattice; the last two are just
preordered.

6.2 Theorem. Assuming that Γ (a positive cone of the vector space Rn) has inter-
nal points, the algebraic homology groups of the inequilogical torus ↑ΓTn = (Rn, 6Γ

,≡Zn) are the usual ones, and the inclusion

2(↑ΓTn) = 2(Rn,6Γ)/Zn ⊂ 2(T
n

e ) = (2Rn)/Zn, (52)

induces isomorphism in homology

Hk(↑ΓTn) ∼= Hk(T
n

e ) ∼= Z(n
k) (0 6 k 6 n). (53)

Moreover
↑H1(↑ΓTn) ∼= (Zn,6Γ), (54)

where (Zn, 6Γ) is the group of integers with the restricted preorder.
More explicitly, the isomorphism Zn ∼= H1(↑ΓTn) in (53) restricts to a bijection

between the positive cones of our preordered groups, Γ′(= Zn ∩ Γ) and Γ′′ (letting
p : Rn → Rn/Zn denote the canonical projection)

ϕ : Γ′ → Γ′′ ⊂ ↑H1(↑ΓTn), ϕ(ρ) = [paρ],
aρ : I → Rn aρ(t) = tρ.

(55)

  Γ ρ
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Proof. The hypothesis on Γ ensures that the open subsets x + int(Γ) cover Rn,
and any two of them are contained in a third.

(A) The group Zn acts properly (and pathwise freely) on Rn, respecting 6Γ. There-
fore Zn acts (freely) on the cubical set A = 2(Rn, 6Γ), and we have (by (34))

↑H∗(↑ΓTn) = ↑H∗(2(Rn, 6Γ)/Zn) = ↑H∗(A/Zn). (56)

(B) Now, we show that the cubical set A is acyclic. Fixing some x ∈ Rn, the
preordered subspace x + Γ ⊂ (Rn,6Γ) is contractible to its minimum x, by an
obvious homotopy

f : (x + Γ)×↑I → x + Γ, f(y, t) = x + t(y − x). (57)

Therefore, all the preordered subspaces x+Γ are acyclic; but any cube of (Rn, 6Γ)
has a compact image, contained in some x + Γ (by the initial remark). It follows
that also (Rn, 6Γ) is acyclic.

(C) Applying [15], Thm. 3.3, to the free action of Zn on the acyclic cubical set
A, the algebraic homology of the orbit cubical set is determined as in (53). But we
want to show that this isomorphism is induced by the inclusion (52), which requires
a finer analysis of the arguments on free actions of groups on cubical sets, developed
in [15], Section 3.

Indeed, the augmented sequence

. . . → C1(A) → C0(A) → Z → 0 (58)

is exact, since A is acyclic. By [15], 3.2a, this sequence is a Zn-free resolution of the
trivial Zn-module Z. Therefore, applying the isomorphism in [15], 3.2.1, and the
definition of group-homology

Hk(A/Zn) ∼= Hk(C∗(A)⊗Zn Z) ∼= Hk(Zn). (59)

Similarly:

Hk(Rn/Zn) ∼= Hk(C∗(Rn)⊗Zn Z) ∼= Hk(Zn), (60)

which shows that the embedding A ⊂ 2Rn (or A/Zn ⊂ (2Rn)/Zn, equivalently)
induces an isomorphism in (algebraic) homology.
(D) Now, we want to determine the preorder of ↑H1. We have two isomorphisms

λ : H1(↑ΓTn) → H1(T
n
), µ : Zn → H1(T

n
), (61)

the first is induced by the inclusion of directed cubes into arbitrary cubes, the second
is computed as in (55), µ(ρ) = [paρ] for ρ ∈ Zn. We shall use the isomorphism
ϕ = λ−1µ : Zn → H1(↑ΓTn).

Plainly, ϕ restricts to an injection ϕ : Γ′ → Γ′′ as in (55): if ρ ∈ Γ′ = Zn ∩ Γ, the
path aρ(t) = tρ is a directed 1-cube of (Rn,6Γ) and a (positive) cycle modulo Zn.
We have to prove that ϕ(Γ′) covers Γ′′ (the argument is similar to the one of [15],
Thm. 4.8).

To simplify the argument, a 1-chain z of A which projects to a cycle p∗(z) in
A/Zn, or to a boundary, will be called a pre-cycle or a pre-boundary, respectively.
(Note that, since p∗ is surjective, the homology of A/Zn is isomorphic to the quotient
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of pre-cycles modulo pre-boundaries.) Let z =
∑

iλiai be a positive pre-cycle, with
all λi > 0; let us call λ =

∑
iλi its weight. We have to prove that z is equivalent to

a positive combination of pre-cycles of type aρ (ρ ∈ Γ′), modulo pre-boundaries.
Let z = z′ + z′′, putting in z′ all the summands λiai which are pre-cycles

themselves, and replace any such ai, up to pre-boundaries, with aρi , where ρi =
∂1ai−∂0ai ∈ Γ′. If z′′ = 0 we are done, otherwise z′′ = z− z′ is still a pre-cycle; let
us act on it. Reorder its paths ai so that a1 has a minimal coefficient λ1 (strictly
positive); since ∂1a1 has to annihilate in ∂p∗(z′), there is some ai (i > 1) with
∂1a1 − ∂0ai ∈ Zn. By a Zn-translation of ai (leaving pai unaffected), we can as-
sume that ∂0ai = ∂1a1, and then replace (modulo pre-boundaries) λ1a1 +λiai with
λ1â1 + (λi − λ1)ai, where â1 = a1 ∗ ai is the concatenation (and λi − λ1 > 0).
Now, the new weight is λ− λ1 < λ, strictly less than the previous one. Continuing
this way, the procedure ends in a finite number of steps; this means that, modulo
pre-boundaries, we have changed z into a positive combination of pre-cycles of the
required form, aρ.

6.3. Comments
Taking n = 2, the previous result shows that the inequilogical spaces ↑ΓTn

considered in 6.1 are really distinct, even up to local directed homotopy, since their
preordered homology groups of degree 1

↑H1(↑ΓTn) = (Z2,6Γ), (62)

are not isomorphic. Indeed, taking Γ = Γ1, . . . , Γ5, we have distinct results for
(Z2, 6Γ):

- Γ1: the lattice-ordered group ↑Z×↑Z; its positive cone has two atoms: (1, 0) and
(0, 1),
- Γ2: a lattice-ordered group; its positive cone has three atoms: (1, y), with y =
−1, 0, 1,
- Γ3: a totally ordered, non-Archimedean group; its positive cone has one atom:
(0, 1),
- Γ4: an ordered group, not a lattice; the positive cone has countably many atoms:
(1, y), for y ∈ Z,
- Γ5: a preordered group.

Finally, every Γϑ gives a totally ordered group, isomorphic to ↑Gϑ ⊂ ↑R and
Archimedean

(Z2,6Γϑ
) → ↑Gϑ, (x, y) 7→ x + ϑy, (63)

whose isomorphism classes have been classified above (Thm. 4.4). It is easy to see
that such classes correspond to the isomorphism classes of the inequilogical spaces
(R2, 6Γϑ

,≡Z2): also here, it suffices to consider the cases ζ = ϑ + k (k ∈ Z)
and ζ = ϑ−1, and the following isomorphisms of preordered topological spaces,
consistent with the action of Z2

f : (R2, 6Γζ
) → (R2, 6Γϑ

), f(x, y) = (x + ky, y) (ζ = ϑ + k)
f : (R2, 6Γζ

) → (R2, 6Γϑ
), f(x, y) = (y, x) (ζ = ϑ−1). (64)
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Finally, all these ordered groups (Z2, 6Γϑ
) are distinct from the previous ones,

since the only total order previously obtained - the lexicographic one - is not
Archimedean.

Total orders on the group Zn (or on the additive monoids Nn) are important for
Gröbner bases and computer algebra. A description can be found in [26].
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