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Using the results of several extremely large recent computations
[Yee and Kondo 11], we tested positively the normality of a prefix
of roughly four trillion hexadecimal digits of π . This result was
used by a Poisson process model of normality of π : in this model,
it is extraordinarily unlikely that π is not asymptotically normal
base 16, given the normality of its initial segment.

1. INTRODUCTION

The question whether (and why) the digits of well-known
constants of mathematics are statistically random in
some sense has long fascinated mathematicians. Indeed,
one prime motivation in computing and analyzing digits
of π is to explore the age-old question whether and why
these digits appear “random.” The first computation on
ENIAC in 1949 of π to 2037 decimal places was proposed
by John von Neumann to shed some light on the distri-
bution of π (and of e) [Berggren et al. 04, pp. 277–281].

Since then, numerous computer-based statistical
checks of the digits of π have failed to disclose any devia-
tion from reasonable statistical norms. See, for instance,
Table 1, which presents the counts of individual hex-
adecimal digits among the first trillion hex digits, as ob-
tained by Yasumasa Kanada. By contrast, early compu-
tations revealed provable abnormalities in the behavior of
e [Borwein and Borwein 98, Section 11.2]. Figure 1 shows
π as a random walk drawn as we describe below.

We use the normality for strings introduced and stud-
ied in [Calude 94]: a sequence whose prefixes are nor-
mal is normal, but the converse is not true. Using the
results of several extremely large recent computations
[Yee and Kondo 11], we tested positively the normality
of a prefix of roughly four trillion hexadecimal digits of
π. This result was used by a Poisson process model of
normality of π: in this model, it is extraordinarily un-
likely that π is not asymptotically normal base 16, given
the normality of its initial segment.
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FIGURE 1. A random walk on the first two billion bits of π (normal?) (color figure available online).

2. NORMALITY OF REAL NUMBERS

In Figures 1 through 4, a digit string for a given number
is used to determine the angle of unit steps (multiples of
120 degrees base 3, 90 degrees base four, etc.), while the
color is shifted up the spectrum after a fixed number of
steps (light and dark, and red-orange-yellow-green-cyan-
blue-purple-red in the online version). In Figure 1, we

FIGURE 2. A 600 000-step walk on Champernowne’s
number base 4 (normal) (color figure available online).

show a walk on the first billion base-4 digits of π.1 We
note that the random walks in Figures 2 and 4 look en-
tirely different from the expected behavior of a genuine
pseudorandom walk as in Figure 5, which is similar to
the random walk in Figure 1.

In the following, given some positive integer base b, we
will say that a real number α is b-normal if every string of
base-b digits of length m appears in the base-b expansion
of α with precisely the expected limiting frequency 1/bm .
It follows, from basic measure theory, that almost all real
numbers are b-normal for any specific base b and even
for all bases simultaneously. But proving normality for
specific constants of interest in mathematics has proven
remarkably difficult.

Borel was the first to conjecture that all irrational al-
gebraic numbers are b-normal for every integer b ≥ 2. Yet
not a single instance of this conjecture has ever been
proven. We do not even know for certain whether the
limiting frequency of zeros in the binary expansion of

√
2

is one-half, although numerous large statistical analyses
have failed to show any significant deviation from statis-
tical normals.

Recently, two of the present authors, together with
Richard Crandall and Carl Pomerance, proved the fol-
lowing: If a real number y has algebraic degree D >

1, then the number #(|y|, N) of 1-bits in the binary

1 This may be viewed in more detail online at http://carma.
newcastle.edu.au/walks/.
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FIGURE 3. A million-step walk on 0.23571113 . . . base
2 (normal?) (color figure available online).

expansion of |y| through bit position N satisfies

#(|y|, N) > CN 1/D

for a positive number C (depending on y) and all suf-
ficiently large N [Bailey et al. 04]. For example, there
must be at least

√
N 1-bits in the first N bits in the

binary expansion of
√

2, in the limit. A related and more

Hex Digits Occurrences Hex Digits Occurrences
0 62499881108 8 62500216752
1 62500212206 9 62500120671
2 62499924780 A 62500266095
3 62500188844 B 62499955595
4 62499807368 C 62500188610
5 62500007205 D 62499613666
6 62499925426 E 62499875079
7 62499878794 F 62499937801

Total: 1000000000000

TABLE 1. Digit counts in the first trillion hexadecimal (base-
16) digits of π. Note that deviations from the average value
62 500 000 000 occur only after the first six digits, as expected
from the central limit theorem.

refined result has been obtained by Hajime Kaneko, of
Kyoto University, in Japan. He obtained the bound in

C(log N)3/2

(log(6D))1/2(log log N)1/2

and extended his results to a very general class of bases
and algebraic irrationals [Kaneko 10]. However, each of
these results falls far short of establishing b-normality for
any irrational algebraic number in any base b, even in the
single-digit sense.

The same can be said for π and other basic constants,
such as e, log 2, and ζ(3). Clearly, any result (one way or
the other) for one of these constants would be a mathe-
matical development of the first magnitude.

We record the following known stability result
[Borwein and Bailey 08, pp. 165–166].

Theorem 2.1. If α is normal in base b, and r, s are positive
rational numbers, then rα + s is also normal in base b.

3. THE CHAMPERNOWNE NUMBER AND RELATIVES

The first mathematical constant proven to be 10-normal
is the Champernowne number, which is defined as the
concatenation of the decimal values of the positive in-
tegers, i.e., C10 = 0.12345678910111213141516 . . . , which
can also be written as

C10 =
∞∑

n=1

10n −1∑
k=10n −1

k

10kn−9
∑ n −1

k = 0 10k (n−k)
.

Champernowne proved in 1933 that C10 is 10-normal
[Champernowne 33]. This was later extended to base-b
normality (for base-b versions of the Champernowne con-
stant).

In 1946, Copeland and Erdős established
that the corresponding concatenation of primes
0.23571113171923 . . . and also the concatenation of
composites 0.46891012141516 . . . , among others, are
10-normal [Copeland and Erdős 46]. In general, they
proved the following theorem.

Theorem 3.1. [Copeland and Erdős 46] If a1 , a2 , . . . is an
increasing sequence of integers such that for every θ < 1,
the number of ai’s up to N exceeds Nθ , for N sufficiently
large, then the infinite decimal

0.a1a2a3 . . .

is normal with respect to the base β in which these inte-
gers are expressed.
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FIGURE 4. A random walk on the first 100 000 bits of the primes base two (normal) (color figure available online).

This clearly applies to the Champernowne numbers
(Figure 2), to the primes of the form ak + c with a and
c relatively prime in any given base, and to the integers
that are the sum of two squares (since every prime of the
form 4k + 1 is included).

In further illustration, using the primes in binary leads
to normality in base two of the number

0.101110111110111101100011001110111111011111
1100101101001101011101111 . . . ,

as shown as a random walk in Figure 4.

FIGURE 5. A uniform pseudorandom walk (color figure available online).
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Some related results were established by Schmidt, in-
cluding the following.

Theorem 3.2. [Schmidt 60] Write p ∼ q if there are posi-
tive integers r and s such that pr = qs . If p ∼ q, then any
real number that is p-normal is also q-normal. However,
if p �∼ q, then there are uncountably many p-normal real
numbers that are not q-normal.

The above result is described in the recent survey
[Queffelec 06], which also presents the following theorem.

Theorem 3.3. (Korobov.) Numbers of the form∑
k p−2k

q−p2 k

, where p > 1 and q > 1 are relatively
prime, are q-normal.

We are still completely in the dark as to the b-
normality of “natural” constants of mathematics.

4. NORMALITY FOR STRINGS

Let x be a (finite) binary string. We denote by Nm
i (x)

the number of occurrences of the ith string of length
m (1 ≤ i ≤ 2m ), ordered lexicographically, where |x|m =
�|x|/m	 is the number of (contiguous, nonoverlapping)
strings in x of length m. The prefix of length n of the
infinite (binary) sequence x = x1x2 . . . xm . . . is denoted
by x � n = x1x2 . . . xn .

Definition 4.1. [Calude 94, Calude 02] Let ε > 0 and let
m be a positive integer. We say that

1. x is (ε,m)-normal if for every 1 ≤ i ≤ 2m ,∣∣∣∣Nm
i (x)
|x|m

− 1
2m

∣∣∣∣ ≤ ε;

2. x is m-normal if for every 1 ≤ i ≤ 2m ,

∣∣∣∣Nm
i (x)
|x|m

− 1
2m

∣∣∣∣ ≤
√

log2 |x|
|x| ; (4–1)

3. x is normal if it is m-normal for every 1 ≤ m ≤
log2 (log2 |x|) .

If for every positive integer n, the string x � n is nor-
mal, then x is normal, but the converse is not necessar-
ily true (because x can be normal but with a different
“speed”).

5. TESTING NORMALITY OF PREFIXES OF π

In 1996, one of the present authors (Bailey), together
with Peter Borwein (brother of Jonathan Borwein) and
Simon Plouffe, published what is now known as the BBP
formula for π [Bailey et al. 97], [Borwein and Bailey 08,
Chapter 3]:

π =
∞∑

k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

(5–1)

We had access to an extremely large dataset, thanks
to recent record computations, by Kondo and Yee, of
π initially to five trillion hexadecimal (base-16) places
in August 2010 and then to ten trillion in October
2011 [Yee and Kondo 11]. We first converted these bits—
which Kondo and Yee had confirmed by a computation
with (5–1)—to a true binary string of bits using the
Python module binascii.

All input lines contained an even number of characters,
so it was easy to convert pairs of hexadecimal digits to
bytes:

import sys, binascii
for line in sys.stdin.readlines():

sys.stdout.write(binascii.unhexlify(line.strip()))

For our normality test we needed to split a big bi-
nary string of length n into �n/k	 pieces (nonoverlap-
ping strings) of length k = 1, 2, . . . , log log n. We use the
term string to denote a binary string of length k. We
then proceeded to calculate the minimum and maximum
frequencies of occurrences of such strings.

This calculation is done by running Algorithm 5.1 once
for each different value of k.

It is essential to do an efficient streaming implemen-
tation of Algorithm 5.1 so that the actual bits of input
X are read into main memory only as needed.

Algorithm 5.1: Frequency range of strings of a
given length.
Input: Binary string X, string length k

Output: Minimum and maximum counts over all
possible 2k strings of length k in string X

integer array counts[0, . . . , 2k − 1] = [0, 0, . . . , 0];
for i = 0 to |X| − k step k do

w = integer(X[i, . . . , i + k − 1]);
increment counts[w];

return min(counts), max(counts);
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m Minimum Frequency Maximum Frequency Expected Range
1 7 962 933 149 184 79 62935 392 216 7 962 907 842 460, . . . , 7 962 960 698 940
2 1 990 732 495 242 1 990 735 357 049 1 990 720 353 555, . . . , 1 990 746 781 795
3 663 576 589 836 663 579 050 172 663 569 046 478, . . . , 663 586 665 305
4 248 841 171 873 248 842 651 924 248 835 088 899, . . . , 248 848 303 020
5 99 535 989 611 99 537 473 460 99 531 392 735, . . . , 99 541 964 032

TABLE 2. Frequency summary for N = 15 925 868 541 400 bits of π.

Finally, to check that these minimum and maximum
frequencies satisfy the expected range for the normality
test, we used the following Python code snippet to gen-
erate a table using our earlier formula (4–1):
import math, sys
n=int(sys.argv[1]) # n = |X|
r = int(math.floor(math.log(math.log(n,2),2))) # r = lg lg n
m1,m2=[0]*(r+1),[0]*(r+1)
sqrtV = math.sqrt(math.log(n,2)/n)
for k in range(1,r+1):

floorNk = math.floor(n/k)
m1[k] = int(math.floor(((1.0/2.0**i)-sqrtV)*floorNk))
m2[k] = int(math.ceil((sqrtV+(1.0/2.0**k))*floorNk))
print "expected range k=",k, "[",m1[k],"...",m2[k],"]"

We tested normality for the prefix of N =
15 925 868 541 400 bits of π—nearly 16 trillion bits—
calculated with the y-cruncher-multi-threaded pi pro-
gram [Yee 10], and we have found it to be within the nor-
mality range as described above. The frequency counts
passed our expectedCheck.py test script as shown in
Table 2.

6. NORMALITY OF π

We have tested the prefix of N = 15 925 868 541 400 bits
of π—nearly 16 trillion bits—and we have found it to be
normal as described above.

Does this “information” tell us anything about the
classical normality of π? In the next subsection, we will
use a Poisson process model to provide an affirmative
answer to this question.

6.1. A Poisson Process Model

We denote by

b = b (1) b (2) . . . b (n) . . .

the (infinite) binary expansion of π (b is a computable
function) and by

b � n = b (1) b (2) . . . b (n)

the finite prefix of b of length n.
We base our model on the distribution of 1’s and 0’s

only, i.e., we work with N 1
1 (b � n), the number of occur-

rences of 1 in b � n, so N 1
0 (b � n) = n − N 1

1 (b � n). A

similar, slightly more elaborate, model can be developed
for strings of any length.

The number N 1
1 (b � n) can be connected with π by

means of a counting (Poisson) process [Ross 83]:

Yn = # {j | 1 ≤ j ≤ n, b (j) = 1} , n = 1, 2, . . . ,

Y0 = 0,

where Yn = N 1
1 (b � n) , n = 1, 2, . . . .

Theorem 6.1. If π is normal, then {Yn , n = 0, 1, 2, . . . }
can be approximated by a homogeneous Poisson process
with intensity λ = 0.5.

Proof. By construction, {Yn , n = 0, 1, 2, . . . } is a Pois-
son process with an unspecified parameter λ. Hence Yn

is a random variable with parameter nλ with the follow-
ing properties: E (Yn ) = V (Yn ) = nλ, limn→∞ Yn = ∞
almost surely.

We apply Chebyshev’s inequality, so for every c > 0,

P
(|Yn − E (Yn )| < c

) ≥ 1 − V (Yn )
c2 ,

we have

P
(|Yn − nλ| < c

) ≥ 1 − nλ

c2 .

Hence

P

(∣∣∣∣Yn

n
− λ

∣∣∣∣ < c

n

)
≥ 1 − nλ

c2 .

In view of (4–1), we take

c

n
= ε =

√
log2 n

n
,

so we obtain

P

(∣∣∣∣Yn

n
− λ

∣∣∣∣ < ε

)
≥ 1 − nλ

(nε)2 = 1 − λ

log2 n
. (6–1)

If π is normal, then∣∣∣∣∣N
1
1
(
x(n)

)
n

− 1
2

∣∣∣∣∣ ≤ ε =

√
log2 n

n
,
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or ∣∣∣∣Yn

n
− 1

2

∣∣∣∣ ≤ ε =

√
log2 n

n
. (6–2)

If we identify the random event in relation (6–1) and the
certain event in relation (6–2), we get λ = 1/2 and

P

(∣∣∣∣Yn

n
− 1

2

∣∣∣∣ <
√

log2 n

n

)
≥ 1 − 1

2 log2 n
.

A Poisson process with intensity λ has the following
properties [Stoneham 73]:

� The Poisson process {Yn , n = 0, 1, 2, . . . } has inde-
pendent increments.

� For n > r, Yn − Yr has a Poisson distribution with
parameter λ (n − r), and Yn − Yr is independent of
{Yt, t ≤ r}.

Let us denote the positions at which 1’s occur (jump
moments) by

τr = inf {n | Yn = r} , r = 1, 2, . . . .

Then

Yn =

{
0, if n < τ1 ,

r, if τr ≤ n < τr+1.

With the convention τ0 = 0, we can introduce the so-
journ times, or interarrival times,

Tr = τr − τr−1 , r = 1, 2, . . . .

Note that the sojourn times represent the distances
between two successive 1’s. Thus, for the string 10s1,
the sojourn time is s + 1. Furthermore, the sequence
{Tr , r = 1, 2, . . . } consists of independent identically dis-
tributed random variables, with the exponential distribu-
tion Expo (λ). Then

E (Tr ) =
1
λ

, V (Tr ) =
1
λ2 .

Note that the jump moments τr = T1 + · · · + Tr have
an Erlang distribution with parameters (r;λ). Hence

E (Tr ) =
r

λ
, V (Tr ) =

r

λ2 .

Corollary 6.2. If π is normal, then the sojourn times
{Tr , r = 1, 2, . . . } form a sequence of independent iden-
tically distributed random variables with the exponential

distribution Expo (1/2). Hence

P (Tr > tr , r = 1, . . . , k)

=
k∏

r=1

(
exp

(
− tr

2

))
= exp

(
−1

2

k∑
r=1

tr

)
.

6.2. Testing the Hypothesis That π Is Normal

We test the hypothesis H: “π is normal” against the al-
ternative HA : “π is not normal.” If H is true, then for
every d, there exists Kd such that the sojourn time ex-
ceeds the value d if we wait long enough, up to the rank
(Kd + 1):

P (T1 ≤ d, . . . , TKd
≤ d, TKd +1 > d | H true)

=
Kd∏
r=1

(
1 − exp

(
−d

2

))
· exp

(
−d

2

)

= exp
(
−d

2

)(
1 − exp

(
−d

2

))Kd

> 0.

We can base our decision of accepting/rejecting nor-
mality (hypothesis H) on the following implication: “π is
a normal sequence” implies “for every d, there exists Kd

such that P (T1 ≤ d, . . . , TKd
≤ d, TKd +1 > d) > 0.”

Since we cannot explore the whole sequence π, we deal
with an evidence body represented by a prefix of π, of
length N . In this evidence body, we look for the largest
value dmax for which a rank Kd max can be identified, or
equivalently, we look for the first value (d + 1) that is not
reached by the sojourn time T . Accordingly, the decision
of accepting/rejecting the hypothesis H : “π is normal”
is taken according to the following algorithm:

1. If there is no such dmax in the evidence body, we
conclude that the sequence π is normal.

2. If dmax and the corresponding Kdm a x exist, we
can decide that the sequence π is not normal.
The decision is based on the event{
T1≤dmax , . . . , TKd m a x

≤dmax , TKd m a x +1 > dmax
}

,

whose probability is

P
(
T1≤dmax , . . . , TKd m a x

≤dmax , TKd m a x +1 > dmax
)

= exp
(
−dmax

2

)(
1 − exp

(
−dmax

2

))Kd m a x

.

We interpret the above probability to mean that the
decision “π is normal” has credibility equal to

1 − exp
(
−dmax

2

)(
1 − exp

(
−dmax

2

))Kd m a x

.
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d 1 2 3 4 5 6 7
Kd 9 1 14 3 46 56 41
d 8 9 10 11 12 13 14

Kd 78 1276 446 2090 18082 8633 4175
d 15 16 17 18 19 20 21

Kd 239183 5856 56453 218007 643030 363117 2787207
d 22 23 24 25 26 27 28

Kd 13733056 1003213 21127913 100317701 not found 85745944 not found
d 29

Kd not found

TABLE 3. Values of d and Kd for 400 million bits of π.

6.3. Results

Suppose first that the evidence body is represented
by a prefix of 400 million bits of π. The d-
values and their corresponding ranks Kd are given in
Table 3; max Kd = 100 317 701.

The value d = 28 has the property that for every K,
the event

{T1 ≤ 28, . . . , TK ≤ 28, TK +1 > 28}
has not been identified in the evidence body; so, based
on the algorithm in Section 6.2, the decision “π is not
normal” has credibility

P (Ts ≤ 27, s = 1, . . . , 100317701, T100317702 > 27)

=
(

1 − exp
(
−27

2

))100317701

exp
(
−27

2

)
= 2.5576 × 10−66 .

Suppose now that the evidence body has increased
to the prefix of π of N = 15 925 868 541 400 bits. The d-
values and their corresponding ranks Kd are given in Ta-
ble 4; max Kd = 9274 770 297 096.

The value d = 43 has the property that for every K,
the event

{T1 ≤ 43, . . . , TK ≤ 43, TK +1 > 43}
has not been identified in the evidence body, so based
on the algorithm in Section 6.2, the decision “π is not
normal” has credibility

P
(
Ts ≤ 42, s = 1, . . . , 9274770297096,

T9274770297097 > 42
)

=
(

1 − exp
(
−42

2

))9274770297096

exp
(
−42

2

)
= 4.3497 × 10−3064 .

d 1 2 3 4 5
Kd 9 1 14 3 46
d 6 7 8 9 10

Kd 56 41 78 1276 446
d 11 12 13 14 15

Kd 2090 18082 8633 4175 239183
d 16 17 18 19 20

Kd 5856 56453 218007 643030 363117
d 21 22 23 24 25

Kd 2787207 13733056 1003213 21127913 100317701
d 26 27 28 29 30

Kd 273575848 85745944 234725219 611367301 1075713943
d 31 32 33 34 35

Kd 703644000 10621041176 27019219636 15063287853 10887127703
d 36 37 38 39 40

Kd 48115888750 19128531469 1218723032299 1334087352175 792460189481
d 41 42 43 44 45

Kd 9274770297096 4368224447710 not found not found not found

TABLE 4. Values of d and Kd for 15 925 868 541 400 bits of π.
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7. CONCLUSION

A prime motivation in computing and analyzing dig-
its of π is to explore the age-old question whether and
why these digits appear “random.” Numerous computer-
based statistical checks of the digits of π have failed to
disclose any deviation from reasonable statistical norms.
A new avenue for studying the normality of π was ex-
plored: we proved that the prefix of 15 925 868 541 400
bits of π is normal when viewed as a binary string
[Calude 94].

This result was used in a Poisson process model to
show that the probability that π is not normal is extraor-
dinarily small, reinforcing the empirical evidence we have
presented for the normality of π. In future work we intend
to look methodically at other numerical constants.
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[Copeland and Erdős 46] A. H. Copeland and P. Erdős. “Note
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