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The T -graph of a multigraded Hilbert scheme records the zero-
and one-dimensional orbits of the T = (K ∗)n action on the
Hilbert scheme induced from the T -action on An. It has ver-
tices the T -fixed points, and edges the one-dimensional T -orbits.
We give a combinatorial necessary condition for the existence
of an edge between two vertices in this graph. For the Hilbert
scheme of points in the plane, we give an explicit combinatorial
description of the equations defining the scheme parameteriz-
ing all one-dimensional torus orbits whose closures contain two
given monomial ideals. For this Hilbert scheme we show that
the T -graph depends on the ground field, resolving a question
of Altmann and Sturmfels.

1. INTRODUCTION

The Hilbert scheme of points in the plane is a classical
and well-studied space, and an important technique in
its study is to consider the fixed points of the action of
the torus (K∗)2 on the Hilbert scheme. However, there
is no known combinatorial condition deciding whether
two fixed points that correspond to monomial ideals in
K[x, y] lie in the closure of a one-dimensional torus orbit.
In this paper we give a necessary combinatorial condi-
tion in the more general context of multigraded Hilbert
schemes.

The multigraded Hilbert scheme, introduced in
[Haiman and Sturmfels 04], parameterizes subschemes Z

of An invariant under the action of an abelian group for
which H0(OZ ) has a prescribed decomposition into ir-
reducible representations. Let K be any field, and let
the polynomial ring S = K[x1 , . . . , xn ] be graded by an
abelian group A. Then equivalently, Hilbh

S parameter-
izes all ideals I in S that are homogeneous and have
a fixed multigraded Hilbert function h : A → N given
by h(a) = dimK (S/I)a . Specific examples of multigraded
Hilbert schemes include the Grothendieck Hilbert scheme
of subschemes of projective space, Hilbert schemes of
points in affine space, and G-Hilbert schemes for abelian
groups G.
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The action of T = (K∗)n on An induces an action
of T on Hilbh

S whose fixed points are the monomial
ideals in Hilbh

S . The T -graph of the multigraded Hilbert
scheme Hilbh

S has vertices these fixed points and an
edge between two vertices M and N if there is a one-
dimensional torus orbit whose closure contains M and
N . This is closely related to the graph of monomial ide-
als of [Altmann and Sturmfels 05].

The main result of this paper is a necessary condition
(Theorem 1.3) for two vertices M and N to be connected
by an edge of the T -graph. In the case of Hilbd(A2) we
give a combinatorial description (Theorem 1.4) over Z for
the equations of the edge-schemes describing all T -orbits
joining a pair of fixed points.

One motivation to study the T -graph is to under-
stand the connectedness of multigraded Hilbert schemes.
In contrast to the classical Hilbert scheme of sub-
schemes of projective space, which is always connected
[Hartshorne 66], multigraded Hilbert schemes can be dis-
connected [Santos 05]. However, a necessary and suf-
ficient condition for a multigraded Hilbert scheme to
be connected (when the grading is positive and K =
C ) is for the T -graph of Hilbh

S to be connected; see
[Altmann and Sturmfels 05, Corollary 16]. The suffi-
ciency has been well exploited in the literature (see
[Peeva and Stillman 05, Maclagan and Smith 10]), and
we hope that through a better understanding of the T -
graph, the necessity can be used to exhibit more tractable
examples of disconnected multigraded Hilbert schemes.
Another motivation comes from the use of T -graphs of
varieties to understand cohomology. The standard setup
of [Goresky et al. 98] to compute cohomology from the
T -graph of a variety requires that the one-dimensional
orbits be isolated, which need not be the case for multi-
graded Hilbert schemes. However, one could still hope to
deduce information about the cohomology in these cases;
see, for example, [Braden et al. 08, Evain 07].

Monomial ideals are fundamentally combinatorial ob-
jects, and a natural question is whether the T -graph
has a purely combinatorial description. The main results
of this paper illustrate the complexity of this question.
Since the one-dimensional orbits are not isolated, we con-
sider the edge-scheme E(M,N) parameterizing all ideals
I ∈ Hilbh

S lying in a one-dimensional T -orbit whose clo-
sure contains M and N . In Example 2.11 we construct
an example of an edge-scheme in Hilb10(A2) that has R -
valued points, but no Q -valued points. This shows that
the T -graph depends on the field K, solving a problem
posed in [Altmann and Sturmfels 05, Section 5]. It also
shows that there cannot be a purely combinatorial de-

scription of the generators of an ideal I contained in a
one-dimensional T -orbit.

Our first step toward a combinatorial necessary con-
dition for the existence of an edge in the T -graph is
to show that we can reduce to a simpler multigraded
Hilbert scheme whose Hilbert function has finite support,
so
∑

a∈A h(a) < ∞. More precisely, we show that if there
is an edge in the T -graph of Hilbh

S between two mono-
mial ideals M and N , then there exist a positive grad-
ing of the polynomial ring S by Zn/Zc for some c ∈ Zn

and a Hilbert function H : Zn/Zc → N such that M and
N have Hilbert function H, and there is an edge in the
T -graph between M and N in this refined multigraded
Hilbert scheme, which we denote by H c(H). See Corol-
lary 2.6.

The following theorem, which holds over an arbitrary
base, gives the reduction to finite-support Hilbert func-
tions.

Theorem 1.1. Let h : A → N be a Hilbert function. If the
A-grading of S is positive, then there exist h : A → N
with

∑
a∈A h(a) < ∞ and an isomorphism

Hilbh
S
∼= Hilbh

S .

This isomorphism respects the T -action on the two
Hilbert schemes.

Our combinatorial necessary condition uses the fol-
lowing definition of an arrow map. It is a modification
of the definition of a “system of arrows” introduced in
[Evain 04] to study incidence conditions for Bia�lynicki-
Birula cells in multigraded Hilbert schemes of points in
the plane; see Remark 4.9.

Definition 1.2. Let S be graded by Zn/Zc for some c ∈ Z,
and let ≺ be a monomial term order on S. For a mono-
mial ideal M , let Mon(M) denote the set of monomials in
M . If two monomials m = xu and m′ = xv have the same
degree, then u − v = �c, and we define the distance be-
tween m and m′ to be d(m,m′) = |�|. For two monomial
ideals M and N , we say that f : Mon(M) → Mon(N) is
an arrow map if

(1) f is a degree-preserving bijection such that
m 	 f(m) for all m ∈ Mon(M);

(2) for all m ∈ Mon(M) and all multiples m′ of m, we
have

d(m′, f(m′)) � d(m, f(m));
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(3) for all m ∈ Mon(N) and all multiples m′ of m, we
have

d(f−1(m′),m′) � d(f−1(m),m).

See Example 3.1 and Figure 1 for an illustration of
this concept.

Theorem 1.3. Assume that H : Zn/Zc → N has finite
support, and let M,N be monomial ideals in H c(H) that
are connected by an edge in the T -graph of H c(H).

(1) There exists an arrow map f : M → N with respect
to some term order ≺.

(2) Fix r1 , . . . , rn such that xri
i ∈ M ∩ N for all 1 � i �

n, and let Q = 〈xr1
1 , . . . , xrn

n 〉. Then there also exists
an arrow map f̂ : Mon((Q : M)) → Mon((Q : N))
with respect to the same term order as in (1).

Condition (1) holds without the condition that the
Hilbert function has finite support; see Corollary 3.4. It
is not sufficient for the existence of an edge in the T -
graph; see Example 3.8. We do not know, however, of
an example showing that both (1) and (2) together do
not suffice to guarantee the existence of an edge. For the
Hilbert scheme of d points in the plane, these conditions
are sufficient for d � 16; see Table 5.1. On the other hand,
the proof of Theorem 1.3 is based on associating an arrow
map to an ideal I in the T -orbit (Proposition 3.2), and
we have examples of arrow maps that are not associated
to ideals (Example 3.7).

In the case of the Hilbert scheme of points in the
plane, there exists an explicit combinatorial description
of the equations for the edge-scheme describing all one-
dimensional T -orbits joining a fixed pair of monomial
ideals. In particular, this scheme is defined over Z.

Theorem 1.4. Let M,N be monomial ideals in K[x, y]
with the same Hilbert function with respect to a positive
Z2/Zc-grading. The ideal of the edge-scheme E(M,N)
is generated by polynomials Fn,s with integer coefficients,
where n is a minimal generator of N , and s is a standard
monomial of M with deg(s) = deg(n).

The terms of the polynomials Fn,s have an explicit
combinatorial form in terms of the torus weights of
the action of the torus on the tangent spaces to M

and N in H c(H), which we describe in detail in Sec-
tion 4.2. The equations are obtained by combining
[Altmann and Sturmfels 05, Algorithm 5] with a descrip-

tion, due to [Evain 04], of the Bia�lynicki-Birula cells in
this Hilbert scheme.

This paper is partially experimental in nature, and
we relied heavily on computations using the computer
algebra system Macaulay 2. The resulting code is avail-
able from the second author’s webpage as the Macaulay 2
package TEdges [Maclagan 11]. Some details of these
computations are given in the last section of the paper.

2. REDUCTION TO THE POSITIVELY GRADED
ARTINIAN CASE

In this section we show that the study of the T -graph of
arbitrary multigraded Hilbert schemes can be reduced to
the study of multigraded Hilbert schemes parameterizing
finite-length ideals that are homogeneous with respect to
a positive grading by Zn/Zc, where c ∈ Zn . Moreover,
we show that every positively graded multigraded Hilbert
scheme is isomorphic to some multigraded Hilbert scheme
parameterizing finite-length ideals. Throughout this sec-
tion S denotes the polynomial ring S = K[x1 , . . . , xn ],
where unless otherwise noted, K is a field.

2.1. Multigraded Hilbert Schemes

Definition 2.1. [Haiman and Sturmfels 04] Fix a grading
by an abelian group A on S, and a function h : A → N .
The multigraded Hilbert scheme Hilbh

S parameterizes
all homogeneous ideals I in S with Hilbert function
dimK (S/I)a = h(a) for all a ∈ A.

The multigraded Hilbert scheme Hilbh
S is

a quasiprojective scheme over Spec(K); see
[Haiman and Sturmfels 04, Theorem 1.1]. Following
[Haiman and Sturmfels 04], we say that the grading
is positive if dimK Sa < ∞ for all a ∈ A. In this case
Hilbh

S is projective; see [Haiman and Sturmfels 04,
Corollary 1.2].

Example 2.2.

1. Fix an integer-valued polynomial P . There exists
D  0 such that when A = Z, h(a) = 0 for a <
0, h(a) = dimK Sa for 0 � a < D, and h(a) =
P (a) for a � D, then Hilbh

S is Grothendieck’s
Hilbert scheme HilbP (Pn−1) parameterizing all
subschemes of Pn−1 with Hilbert polynomial P
[Haiman and Sturmfels 04, Section 4].

2. When A = 0 and h(0) = d, then Hilbh
S is the

Hilbert scheme Hilbd(An ) of d points in An .
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3. For arbitrary A, if h(a) = 1 whenever dimK Sa >
0 and h(a) = 0 otherwise, then Hilbh

S is the
toric Hilbert scheme [Peeva and Stillman 02],
[Haiman and Sturmfels 04, Section 5]. When
A is finite, this is the G-Hilbert scheme of
[Nakamura 01].

2.2. Background on the T-Graph of a Multigraded
Hilbert Scheme

The action of the torus T = (K∗)n on An induces an ac-
tion on Hilbh

S whose fixed points are the monomial ideals
contained in Hilbh

S .

Definition 2.3. The T -graph of Hilbh
S has vertices the

monomial ideals in Hilbh
S . There is an edge joining two

monomial ideals M,N ∈ Hilbh
S if there is I ∈ Hilbh

S such
that the T -orbit of I contains M and N in its closure and
is one-dimensional.

The T -graph has an interpretation in terms of Gröbner
theory, which we now explain. For basic facts about
Gröbner bases and initial ideals, see [Cox et al. 07]. For
the geometric interpretation of initial ideals as limits
of one-parameter torus orbits, see [Eisenbud 95, Sec-
tion 15.8].

For c = (c1 , . . . , cn ) ∈ Zn , we define a (Zn/Zc)-
grading on S = K[x1 , . . . , xn ] by letting deg(xi) = ei +
Zc, where {e1 , . . . , en} is the standard basis of Zn . Let
c+ =

∑
ci >0 ciei and c− =

∑
ci <0 −ciei , so c = c+ − c−.

The grading induced by c is positive if and only if c+ �= 0
and c− �= 0.

We next note that any nonmonomial ideal I that is
homogeneous with respect to this Zn/Zc-grading has ei-
ther exactly two initial ideals, if the grading is positive,
or exactly one initial ideal otherwise. Indeed, a homoge-
neous polynomial has the form f =

∑s
i=0 aix

u+ic , where
we assume a0 , as �= 0. The initial term is in≺(f) = a0x

u if
xc+ ≺ xc−

and in≺(f) = asx
u+sc if xc+ � xc−

. Thus the
initial ideal of I with respect to a term order ≺ depends
only on whether xc+ ≺ xc−

or xc+ � xc−
. If the Zn/cZ-

grading is positive, then both c+ and c− are nonzero, so
a nonmonomial ideal has exactly two monomial initial
ideals. However, if the grading is not positive, so without
loss of generality c � 0, the monomials of degree a have
the form xu+ic for some u ∈ Nn and i � 0, and the stan-
dard monomials of any monomial initial ideal in degree a

are xu+ic for 0 � i < dimK (S/I)a . Thus for every Hilbert
function H there exists exactly one monomial ideal with

this Hilbert function. In particular, a homogeneous poly-
nomial has exactly one initial ideal in this case.

Definition 2.4. Assume that the Zn/Zc-grading on S is
positive. For a term order ≺ with xc+ ≺ xc−

(respectively
xc+ � xc−

) we let ≺opp be any term order with xc+ � xc−

(respectively xc+ ≺ xc−
).

Proposition 2.5. Let M,N be monomial ideals in S.
There exists a one-dimensional torus orbit O ⊂ Hilbh

S

such that O = O ∪ {M,N} if and only if there exist
c = (c1 , . . . , cn ) ∈ Zn with c+ �= 0, c− �= 0, a term or-
der ≺, and an ideal I homogeneous with respect to the
Zn/Zc-grading such that in≺ I = M and in≺o p p I = N .
The vector c can be chosen so that the Zn/Zc-grading
on S refines the grading on S.

Proof. First note that an ideal I is contained in a one-
dimensional torus orbit if and only if I is fixed by a
codimension-one subtorus T ′. If T ′ is a codimension-one
subtorus of T and c is the generator of the subgroup of
M := Hom(T,K∗) ∼= Zn that is the image of the inclu-
sion Hom(T/T ′,K∗) ∼= Z ↪→ Hom(T,K∗), then I is fixed
by T ′ if and only if I is homogeneous with respect to the
induced Zn/cZ-grading; see [Miller and Sturmfels 05,
Lemma 10.3].

For I ∈ Hilbh
S lying in a one-dimensional torus orbit,

I is also homogeneous with respect to the A-grading on
S. Write A = Zn/L for some lattice L; two monomials
xu and xv have the same degree with respect to the A-
grading if and only if u − v ∈ L. Choose a generating
set for I that is homogeneous with respect to both the
Zn/Zc- and A-gradings, with the property that no sum-
mand of any generator lives in I. Such generators have
the form

∑
aix

u+ic , where ic ∈ L. If j is the greatest
common divisor of all differences i − i′ with ai, ai ′ �= 0,
then I is homogeneous with respect to the Zn/Zjc-
grading, and we have jc ∈ L. Thus after replacing c by
jc, the grading of S by Zn/Zc refines the existing grad-
ing in the sense of [Haiman and Sturmfels 04, p. 729]. It
thus remains to check that M and N are the two initial
ideals of I.

Let H be the Hilbert function of I with respect to
the Zn/cZ-grading. The inclusion of HilbH

S into Hilbh
S as

a closed subscheme [Haiman and Sturmfels 04, Proposi-
tion 1.5] means that M and N also have Hilbert function
H with respect to the Zn/cZ-grading. This means that
this grading is positive, since otherwise, there would be
only one monomial ideal with Hilbert function H. Thus
I has two initial ideals, so it remains to observe that all
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initial ideals of I are contained in the closure of the T -
orbit of I.

Let w ∈ Hom(M, Z) and let λw ↪→ T be the one-
parameter subgroup associated to w. The composition
of the inclusion of the one-parameter subgroup λw into
T and the projection T → T/T ′ is an isomorphism if and
only if 〈w, c〉 �= 0. So if I is an ideal that is fixed by
T ′ and w satisfies 〈w, c〉 �= 0, then the orbits T · I and
λw · I are equal. In particular, their closures in Hilbh

S

agree. The claim now follows from the interpretation of
initial ideals as flat limits of one-parameter torus orbits,
since the two points M and N in the closure of the T -
orbit of I must be inw (I) and in−w (I) in the notation of
[Eisenbud 95, Section 15.8]. Since inw (I) and in−w (I) are
distinct monomial ideals, they equal in≺(I) and in≺o p p (I)
for some term order ≺.

It follows that in order to study one-dimensional torus
orbits in any multigraded Hilbert scheme Hilbh

S , it suf-
fices to study multigraded Hilbert schemes with grading
group Zn/Zc and Hilbert function H : Zn/Zc → N . We
denote the corresponding multigraded Hilbert scheme by
H c(H).

Corollary 2.6. Let M,N be monomial ideals in Hilbh
S .

Then M and N are connected by an edge in the T -graph
if and only if there exist c ∈ Zn and H : Zn/Zc → N such
that M,N ∈ H c(H) and there is an edge between M and
N in the T -graph of H c(H).

Note that every I ∈ H c(H) either is a monomial ideal
or lies in a one-dimensional torus orbit.

Remark 2.7. For a given monomial ideal M ∈ Hilbh
S , there

are only finitely many c such that M is contained in a
positive-dimensional H c(H) for some Hilbert function H.
These vectors c are the weights of the torus action on the
tangent space to Hilbh

S at M .

Recall the definition of an arrow map (Definition 1.2).

Definition 2.8. We define a partial order on the mono-
mial ideals in H c(H) by letting M > N if there exists a
map f : Mon(M) → Mon(N) satisfying condition (1) of
Definition 1.2.

This partial order was used in [Yaméogo 94a,
Yaméogo 94b] and [Evain 02] to study a related incidence
question. See Remark 4.9 for a more detailed discussion.

Definition 2.9. For c ∈ Zn , H a Hilbert function, and a
fixed term order ≺, let

C≺(M) = {I ∈ H c(H) | in≺ I = M}.

This is naturally a subscheme of H c(H). Its equations can
be derived from the Buchberger algorithm for comput-
ing Gröbner bases. For M,N monomial ideals in H c(H)
such that M > N in the partial order of Definition 2.8,
we define the edge-scheme between M and N to be the
scheme-theoretic intersection

E(M,N) := C≺(M) ∩ C≺o p p (N).

An algorithm to compute the edge-scheme can be
found in [Altmann and Sturmfels 05, Algorithm 5].

Remark 2.10. In [Altmann and Sturmfels 05], the scheme
C≺(M) is called the Schubert scheme Ωc(M) in the case
that xc+ ≺ xc−

. With a suitable choice of isomorphism of
T/T ′ with K∗, C≺(M) consists of all points I ∈ H c(H)
such that limt→0 t · I = M . In particular, if H c(H) is
smooth, then C≺(M) is the Bia�lynicki-Birula cell asso-
ciated with the fixed point M .

If K is algebraically closed, then E(M,N) is nonempty
if and only if there is an edge in the T -graph joining M

and N . If K is not algebraically closed, the “only if” can
fail, since we require the existence of a K-rational point
I in the subscheme E(M,N) for there to be an edge
between M and N in the T -graph. This is illustrated
in the following example, which solves a problem from
[Altmann and Sturmfels 05, Section 5].

Example 2.11. Let S = K[x, y] be graded by
Z2/Z(1,−1), so deg(x) = deg(y) = 1. Let M =

〈
y5 , x2

〉
and N =

〈
y2 , x5

〉
. Then the edge-scheme E(M,N)

is the subscheme of A4 defined by the ideal〈
a4 − 3a2b + b2 , c − ad, 1 − bd

〉
, and ideals corresponding

to points in the edge-scheme are given by

I =
〈
y2 + axy + bx2 , x5〉 =

〈
y5 , x2 + cxy + dy2〉 .

This can be computed using [Altmann and Sturmfels 05,
Algorithm 5], or the description given in Section 4.2. This
scheme is reducible:

a4 − 3a2b + b2 =

(
a2 − 3 +

√
5

2
b

)(
a2 − 3 −

√
5

2
b

)
.

It follows from this factorization that E(M,N) has R -
valued points, but no Q -valued points. In particular, this
example shows that the T -graph of Hilb10(A2) depends
on the field K.
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2.3. Reduction to the Artinian Case

In this section we prove Theorem 1.1. This is the
only part of the paper to require details from
[Haiman and Sturmfels 04]. Theorem 1.1 is needed in
this paper only to apply Theorem 1.3 (2) in the case that
the Hilbert function does not have finite support, but it
may be of wider interest.

The ring K can here be an arbitrary commutative ring;
in particular, K = Z is possible. We restrict our attention
to ideals I ⊆ S for which S/I is a locally free K-module.
By the Hilbert function of a homogeneous ideal I ⊆ S

with S/I a locally free K-module, we mean the function
A → N given by a �→ rkK (S/I)a .

We first recall the construction of the multigraded
Hilbert scheme in the positive-graded case. The key idea
is to restrict to a finite set of degrees D, and consider
the Hilbert scheme Hilbh

SD
, which parameterizes all lo-

cally free K-modules ⊕a∈D Ta with rkK (Ta) = h(a) with
the property that for all a, b ∈ D, there is a multiplica-
tion map Sb−a × Ta → Tb . Particular examples of such
K-modules are ⊕a∈D (S/I)a , where I is an ideal with
Hilbert function h. A major step in the construction of
the multigraded Hilbert scheme is to show that for suit-
ably chosen D, we have Hilbh

SD
∼= Hilbh

S .
Recall from [Haiman and Sturmfels 04, Section 3] that

a finite subset D of the abelian group A is called very
supportive for a Hilbert function h : A → N if it satisfies
the following three conditions:

(g) Every monomial ideal with Hilbert function h is
generated by monomials whose degrees belong to
D;

(h) Every monomial ideal M whose generators have de-
grees in D has the property that if M has Hilbert
function h(a) in degree a for all a ∈ D, then M has
Hilbert function h everywhere; and

(s) For every monomial ideal M with Hilbert func-
tion h, the syzygy module of M is generated
by syzygies coming from relations xuxv ′

= xvxu ′
=

lcm(xu , xv ) among generators xu , xv of M such that
deg(lcm(xu , xv )) ∈ D.

Theorem 3.6 of [Haiman and Sturmfels 04] says that
if D ⊂ A is very supportive, then Hilbh

SD
∼= Hilbh

S , and
[Haiman and Sturmfels 04, Proposition 3.2] implies that
such sets exist for every grading.

Note that for every positive grading by an abelian
group A there exists a group homomorphism φ : A → Z
with φ(a) > 0 whenever rk Sa > 0 and a �= 0.

Lemma 2.12. Suppose the A-grading of S is positive,
so there exists a group homomorphism φ : A → Z with
φ(a) > 0 whenever rk Sa > 0 and a �= 0. Let D be a very
supportive set for h, and choose N > 0 with the property
that φ(a) < N for all a ∈ D. Define h : A → N by

h(a) =

{
h(a) if φ(a) < N ,
0 otherwise.

Let D′ = D ∪ {a : N � φ(a) � B(N)}, where every de-
gree a of a generator or minimal syzygy of the monomial
ideal 〈xu : φ(deg(xu )) � N〉 has φ(a) � B(N). Then D′

is a very supportive set for h.

Proof. Let M be a monomial ideal with Hilbert function
h, and let M ′ be the ideal generated by those monomi-
als in M whose degrees are contained in D. Then the
Hilbert functions of M and M ′ agree for degrees in D by
construction. Since D is very supportive for h, and M ′

is generated in degrees in D, by property (h) for D the
monomial ideal M ′ has Hilbert function h everywhere.
This means that M ′

a = Ma when φ(a) < N .
Let M ′′ = M ′ + 〈xu : N � φ(deg(xu )) � B(N)〉. We

claim that M ′′ = M , which shows that D′ satisfies condi-
tion (g). Indeed, since the grading is positive, M ′′

a = M ′
a ,

and thus M ′′
a = Ma , when φ(a) < N . By the definition of

B(N), we have〈
xu : N � φ(deg(xu )) � B(N)

〉
=
〈
xu : N � φ(deg(xu ))

〉
,

so M ′′
a = Sa when φ(a) � N , and thus M ′′

a = Ma when
φ(a) � N . Thus M ′′ = M , as required.

Since D is very supportive for h, all syzygies between
generators of the ideal M ′ are in degrees in D. By the
construction of B(N), all minimal syzygies between gen-
erators of 〈xu : N � φ(deg(xu ))〉 have degrees in D′. Fi-
nally, if xu is a minimal generator of M ′ and xv is a
minimal generator of M whose degree is not in D, then
there is some multiple xu ′

of xu that is a minimal genera-
tor of 〈xu : N � φ(deg(xu ))〉. The degree a of the syzygy
between xu and xv has N � φ(a) � φ(b), where b is the
degree of the syzygy between xu ′

and xv , so the fact that
a ∈ D′ follows from the fact that b ∈ D′. Thus M satisfies
condition (s).

Suppose now that M is a monomial ideal whose gener-
ators have degrees in D′ and for which the Hilbert func-
tion of M agrees with h for degrees in D′. As before,
let M ′ be the ideal generated by those monomials in M

with degrees belonging to D. Since D is very support-
ive for h, and M ′ has Hilbert function h in degrees in
D, M ′ has Hilbert function h, and thus M ′

a = Ma when
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φ(a) < N . Since h(a) = 0 whenever N � φ(a) � B(N),
it follows that M contains〈

xu : N � φ(deg(xu )) � B(N)
〉

=
〈
xu : N � φ(deg(xu ))

〉
,

so Ma = Sa when φ(a) � N . Thus M has Hilbert func-
tion h, so condition (h) is satisfied.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Fix a very supportive set D for
h. By [Haiman and Sturmfels 04, Theorem 3.6], we have
Hilbh

SD
∼= Hilbh

S . Choose a group homomorphism φ : A →
Z with φ(a) > 0 whenever rk Sa > 0 and a �= 0, and
choose N > 0 with the property that φ(a) < N for all a ∈
D. Define h : A → N by setting h(a) = h(a) if φ(a) < N ,
and h(a) = 0 otherwise. Let

D′ = D ∪ {a : N � φ(a) � B(N)},

where B(N) is as in Lemma 2.12. By Lemma 2.12, D′ is
a very supportive set for h, so Hilbh

S
∼= Hilbh

SD ′ .

Consider now the equations for Hilbh
SD

and Hilbh
SD ′ .

The Hilbert scheme HilbSD
is constructed as a subscheme

of the product of Grassmannians
∏

a∈D G(h(a), Sa). Each
ideal I ∈ HilbSD

gives rise to the codimension-h(a) sub-
space Ia of Sa . The equations defining the Hilbert
scheme are the quadratic equations in the Plücker co-
ordinates on the Grassmannians that record the fact
that for a, b ∈ D, xuIa ⊆ Ib for all xu ∈ Sb−a . See
[Haiman and Sturmfels 04, Corollary 3.15] for more de-
tails.

Since h(a) = 0 for all a ∈ D′ \ D, the Grassmannian
G(h(a), Sa) is a point for all such a, so the second Hilbert
scheme embeds into the same product of Grassmannians
as the first. All quadratic equations in either case then
come from pairs a, b ∈ D, so the equations defining each
Hilbert scheme coincide, and Hilbh

SD ′
∼= Hilbh

SD
. Since

h(a) = h(a) for all a ∈ D, we have Hilbh
SD

∼= Hilbh
SD

. The
choice of D being very supportive means that Hilbh

SD
∼=

Hilbh
S , so Hilbh

S
∼= Hilbh

S , as required.

Remark 2.13. Note that Theorem 1.1 implies that every
pathology that exists for a positively graded multigraded
Hilbert scheme also exists for one such that the Hilbert
function h has finite support. These can be thought of as
fixed loci for group actions on Hilbert schemes of points
in An , so this means that all (positively graded) Hilbert
schemes are of this form. In particular, there must exist
such Hilbert schemes that are disconnected [Santos 05]
and that have nonreduced components [Mumford 62].

Corollary 2.14. To decide whether there is an edge in
the T -graph between a pair of monomial ideals M,N ∈
Hilbh

S , it suffices to assume that S is graded by Zn/cZ
and that

∑
a∈Zn /cZ h(a) < ∞.

Proof. By Corollary 2.6, there is an edge between M and
N if and only if there are c ∈ Zn and H : Zn/Zc → N
for which M,N ∈ H c(H) and there is an edge between
M and N in H c(H). The resulting grading by Zn/Zc
is positive, so by Theorem 1.1, there exists H ′ with∑

a∈Zn /Zc H ′(a) < ∞ and H c(H) ∼= H c(H ′). Thus there
is an edge between M and N in H c(H) if and only if
there is an edge between the ideals corresponding to M

and N in H c(H ′) .

3. NECESSARY CONDITIONS FOR A T -EDGE

In this section we prove Theorem 1.3, giving necessary
conditions for the existence of an edge in the T -graph be-
tween two monomial ideals in H c(H). By Corollary 2.14,
this gives a necessary condition for there to be an edge
between monomial ideals in any Hilbh

S . The condition
that the Hilbert function H have

∑
a∈Zn /Zc H(a) < ∞ is

unnecessary in the first part of this section, so we do not
require it.

Recall the definition of an arrow map (Definition 1.2).
We illustrate the concept of an arrow map in the following
example.

Example 3.1.
1. Let S = K[x, y] be graded by Z2/Z(2,−1), so deg(x) =
1, deg(y) = 2, and let ≺ be the lexicographic order with
x ≺ y. Let M =

〈
x8 , y

〉
, and N =

〈
x4 , y2

〉
. Then an ar-

row map between M and N is given by the following set
of pairs (m, f(m)):{(

y, x4) ,
(
xy, x5) ,

(
x2y, x6) ,

(
x3y, x7)}

∪
{

(m,m) : m ∈ Mon
(〈

x8 , x4y, y2〉)}.
This is illustrated on the left of Figure 1. The gray shaded
monomials are the standard monomials of M , and the
monomials encased by the thick black line are the stan-
dard monomials of N . A dot in the box corresponding to
a monomial m indicates that f(m) = m.

2. Let S = K[x, y] be graded by Z2/Z(1,−1), so deg(x) =
deg(y) = 1, and let ≺ be the lexicographic order with
x ≺ y. Let M =

〈
x2y2 , xy3

〉
, and N =

〈
x3y, x2y2

〉
. Then

an arrow map between M and N is given by setting
f(xayb) = xa+1yb−1 for all xayb ∈ M . This is illustrated
on the right of Figure 1.
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FIGURE 1. The arrow maps of Example 3.1.

Proposition 3.2. Let I be homogeneous with respect to
a positive Zn/Zc-grading, and let ≺ be a term order
on S. Set M = in≺ I, and N = in≺o p p I. The map f :
Mon(M) → Mon(N) defined by

m �→ max
≺

{in≺o p p (p) |

p ∈ I homogeneous and in≺(p) = m}

is an arrow map.

Proof. First note that the image of f is contained in
Mon(N), since in≺o p p (I) = N . Moreover, it follows from
the definition that f is degree-preserving and m 	 f(m).
For every m ∈ Mon(M) choose a homogeneous polyno-
mial pm ∈ I such that in≺(pm ) = m and in≺o p p (pm ) =
f(m).

To see that f is a bijection, we first show that
it is injective. Assume that f(m) = f(m′) for m � m′.
We denote by lc(f) the leading coefficient of a poly-
nomial f . This is the coefficient of the largest mono-
mial occurring in f with respect to the term order.
Then q = lc≺o p p (pm ′)pm − lc≺o p p (pm )pm ′ ∈ I has in≺ q =
m, and in≺o p p q � f(m), which contradicts the construc-
tion of f(m). Since M and N have the same Zn/Zc-
graded Hilbert function, and the grading is positive, ev-
ery degree-preserving injection Mon(M) → Mon(N) is a
bijection.

To verify condition (2) of the definition of an ar-
row map, let m ∈ Mon(M) and fix a multiple m′ =
m′′m of m. Note that m′′pm ∈ I is homogeneous, with
in≺(m′′pm ) = m′ and in≺o p p (m′′pm ) = m′′f(m). Hence
f(m′) 	 m′′f(m), and so d(m′, f(m′)) � d(m, f(m)).

To show that condition (3) holds, we use the following
fact:

(†) If there exists a homogeneous polynomial p ∈ I

with in≺(p) = m, in≺o p p (p) = m′, then there exists m̃ ∈
Mon(M) such that m̃ � m and f(m̃) = m′. In partic-
ular, d(m̃,m′) � d(m,m′).

We prove this fact by induction on d(m,m′). If
d(m,m′) = 0, then m = m′ = m̃ = f(m), and we can
take m̃ = m. Otherwise, let pm ∈ I be a homogeneous
polynomial with in≺(pm ) = m and in≺o p p (pm ) = f(m).
If f(m) = m′, we are done. Assume f(m) �= m′. Then
for q = lc≺(pm )p − lc≺(p)pm ∈ I, we have in≺o p p (q) =
m′ and m � in≺(q) =: mq . Since d(mq,m

′) < d(m,m′),
there exists m̃ � mq ≺ m with f(m̃) = m′ by the in-
duction hypothesis, finishing the proof of (†).

To see that condition (3) holds, let m ∈ Mon(N)
and fix a multiple m′ = mm′′ of m. Note that
for p = m′′pf −1 (m ) , we have in≺(p) = f−1(m)m′′ and
in≺o p p (p) = mm′′ = m′. By (†), there exists m̃ ≺
f−1(m)m′′ with f(m̃) = m, and (3) follows.

The following corollary is a more general version of the
first part of Theorem 1.3.

Corollary 3.4. Let M,N be monomial ideals in an arbi-
trary multigraded Hilbert scheme and assume that there
exists an edge between M and N in the T -graph. Then
there exists an arrow map f : M → N with respect to
some grading by Zn/Zc and some term order ≺.

Example 3.5. Let K[x, y] have the standard grading,
so c = (1,−1), and let ≺ be the lexicographic term
order with x ≺ y. Let I =

〈
x2 + 2yx + 2y2 , y4

〉
. When

char(K) �= 2, we have in≺ I =
〈
x4 , y2

〉
and in≺o p p I =〈

x2 , y4
〉
. The arrow map induced by I is given by f(y2) =

x2 , f(y3) = x2y, f(xy2) = x3 , f(xy3) = x3y and f(m) =
m for all other m ∈

〈
x4 , y2

〉
.

Example 3.6. Let S = K[x1 , x2 , x3 , x4 ] be graded by
Z4/Z(2,−1, 0, 0), and fix ≺ with x1 � x2 � x3 � x4 .
Let M =

〈
x2

1 , x
2
2 , x

2
3 , x

2
4 , x1x2x3 , x1x4 , x2x4 , x3x4

〉
, and

let N =
〈
x2 , x

4
1 , x

3
1x3 , x

2
3 , x1x4 , x3x4 , x

2
4
〉
. The ideals M

and N have the same Z4/Z(2,−1, 0, 0)-graded Hilbert
function H. The Hilbert scheme H c(H) is a subscheme
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of Hilb8(A4). The function Mon(M) → Mon(N) given by
f(x2

1) = x2 , f(x3
1) = x1x2 , f(x2

1x3) = x2x3 and f(m) =
m otherwise is an arrow map. This arrow map comes
from the ideal I =

〈
x2 − x2

1 , x
4
1 , x

3
1x3 , x

2
3 , x1x4 , x3x4 , x

2
4
〉
.

While Proposition 3.2 shows that an ideal gives an ar-
row map, the following example shows that not all arrow
maps are induced by an ideal.

Example 3.7. Let S = K[x, y] be graded by Z2/Z(1,−1),
so deg(x) = deg(y) = 1, and let M =

〈
y5 , x2

〉
and N =〈

y2 , x5
〉
, as in Example 2.11.

Let ≺ be the lexicographic order with x ≺ y. Any
arrow map f from Mon(M) to Mon(M ′) must sat-
isfy f(y2) = x2 , f(y3) = x2y, f(xy2) = x3 , f(y4) = x2y2 ,
f(xy3) = x3y, and f(x2y2) = x4 , and f(m) = m if
deg(m) � 6. However, there are three possibilities for the
map f in degree five. In all cases we have f(y5) = y5 and
f(x5) = x5 , but we can have

{f(xy4) = x2y3 , f(x2y3) = x4y, f(x3y2) = x3y2},
{f(xy4) = x3y2 , f(x2y3) = x2y3 , f(x3y2) = x4y},

or

{f(xy4) = x2y3 , f(x2y3) = x3y2 , f(x3y2) = x4y}.

Of these, only the last one is induced by an ideal as in the
statement of Proposition 3.2. Indeed, for any ideal I ∈
E(M,N) we have axy4 + bx2y3 ∈ I, and the equations
for E(M,N) imply that b �= 0 and a �= 0. So f(xy4) =
x2y3 for any arrow map induced from I ∈ E(M,N). The
analogous equation cx4y + dx3y2 ∈ I rules out the sec-
ond possibility.

Proof of Theorem 1.3. The first part of the theorem is
a special case of Corollary 3.4. For the second, we first
observe that for I ∈ H c(H) we have Q ⊆ I. Indeed, for
every i choose whichever term order ≺ or ≺opp agrees
with the lexicographic term order with xi smallest. Since
xri

i ∈ M ∩ N , there exists f with initial term xri
i with

respect to this term order, so xri
i ∈ I.

To establish the existence of an arrow map
f̂ : Mon((Q : M)) → Mon(Q : N)), it suffices to show
that for any term order ≺ we have

in(Q : I) = (Q : in(I)).

This means that (Q : I) is homogeneous with respect to
the Zn/Zc-grading with two initial ideals in≺(Q : I) =
(Q : M) and in≺o p p (Q : I) = (Q : N). The existence of an
arrow map now follows from Proposition 3.2.

For any ideals J,K, we have in(J) in(K) ⊆ in(JK),
so in(Q : I) in(I) ⊆ in((Q : I)I) ⊆ in Q = Q. This implies

that in(Q : I) ⊆ (Q : in(I)). Since dimK (S/ in(Q : I)) =
dimK S/(Q : I), to show equality it suffices to show that
dimK (S/(Q : I)) = dimK (S/(Q : in(I))).

Note that S/Q is a zero-dimensional ring that is a
complete intersection, hence Gorenstein. Thus D(−) =
HomS/Q (−, S/Q) is a dualizing functor from the cat-
egory of finitely generated S/Q-modules to itself (see
[Eisenbud 95, Sections 21.1 and 21.2]). Since Q ⊂ I, S/I

is an S/Q-module. We have an isomorphism

D(S/I) = HomS/Q (S/I, S/Q) ∼= (0 :S/Q I/Q)
= (Q : I)/Q,

where the isomorphism takes φ ∈ HomS/Q (S/I, S/Q) to
φ(1). Thus

dimK (S/I) = dimK (D(S/I)) = dimK ((Q : I)/Q)
= dimK (S/Q) − dimK (S/(Q : I)).

The desired equality follows from the fact that
dimK (S/I) = dimK (S/ in(I)).

The following example shows that the conditions of
Theorem 1.3 (1), (2) are not equivalent. In particular, for
monomial ideals M and N , the existence of an arrow map
f : M → N is not sufficient for the edge E(M,N) to be
nonempty. We do not have an example in which both
conditions of Theorem 1.3 are not sufficient.

Example 3.8. Let S = K[x, y] be graded by deg(x) =
deg(y) = 1 and let ≺ be the lexicographic order with
x ≺ y. Let M =

〈
x5 , x3y2 , y4

〉
, N =

〈
x4 , x3y3 , xy4 , y5

〉
,

and let Q =
〈
x5 , y5

〉
. This is illustrated in Figure 2. Then

the map f : Mon(M) → Mon(N) defined by f(y4) = x4 ,
f(x3y2) = x4y, and f(m) = m otherwise is an arrow
map.

However, (Q : M) =
〈
x5 , x2y, y3

〉
and (Q : N) =〈

x4 , x2y, xy2 , y5
〉
. There is no arrow map g : (Q : M) →

(Q : N). If there were an arrow map g, by (1) we would

FIGURE 2. The arrow maps and systems of arrows of
Example 3.8.
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have g(y3) = xy2 and g(x2y) = x2y. Then (2) applied to
y3 implies that g(y4) = xy3 and g(xy3) = x2y2 , a con-
tradiction to (3) applied to x2y. Note, however, that the
map given by g(y3) = xy2 , g(x2y) = x2y, g(y4) = xy3 ,
g(xy3) = x4 is a system of arrows in the sense of
[Evain 02]; see Remark 4.9. Compare [Yaméogo 94a,
Section 4], [Evain 02, Section 5].

4. THE HILBERT SCHEME OF POINTS IN THE PLANE

In this section we discuss in more detail the case of the
Hilbert scheme Hilbd(A2) of d points in the plane. In this
case the vertices of the T -graph correspond to partitions
of d.

4.1. The Basic Structure of the T -Graph of Hilbd(A2)

As explained in Corollary 2.6 and Remark 2.7, the T -
graph of Hilbd(A2) decomposes as a union of T -graphs
of finitely many different H c(H), where c ∈ Z2 with
c+ , c− �= 0, and H : Z2/Zc → N is a Hilbert function.
In this situation, H c(H) is smooth and irreducible; see
[Evain 04, Iversen 72, Maclagan and Smith 10]. This is
not true when S has more than two variables.

Up to sign, we have c = (β,−α), where α, β ∈ Z>0 are
relatively prime. Thus S = K[x, y] has a Z-grading by
deg(x) = α, deg(y) = β, and H c(H) consists of all ideals
that are homogeneous with respect to this positive grad-
ing and that have Hilbert function H.

Recall from Definition 2.9 that for monomial ide-
als M,N in H c(H), the edge-scheme E(M,N) of one-
dimensional torus orbits connecting M and N is given
by C≺(M) ∩ C≺o p p (N). Note that E(M,N) is empty un-
less M > N in the partial order of Definition 2.8.

For the remainder of this section, we let ≺ denote the
lexicographic term order with x ≺ y, and ≺opp the lexi-
cographic term order with y ≺ x.

Definition 4.1. Fix a Z2/Zc-grading, and let M ⊂ K[x, y]
be a monomial ideal of finite length. Let m0 = xa0 ≺
m1 = xa1 yb1 · · · ≺ me = ybe be the minimal generators of
M and let r = xβ y−α .

Let wi = lcm(mi−1 ,mi). A positive significant arrow is
a pair c�

i = (mi, �), where � ∈ Z>0 , such that the mono-
mial mir

� is a monomial not in M , and such that wir
� ∈

M . A negative significant arrow is a pair c�
i = (mi, �),

where � ∈ Z<0 , such that the monomial mi+1r
� is a

monomial not in M and wi+1r
� ∈ M . We denote by

T+ (M) the set of positive significant arrows, and by
T−(M) the set of negative significant arrows. Note that

wi = xai−1 ybi , and the condition that mir
l is a monomial

means that �α � bi .

Definition 4.2. To every monomial m ∈ M we associate
a minimal generator mj (m ) of M , where

j(m) = max{j | mj divides m}. (4–1)

Let f0 = m0 and define recursively

fi =
mi

mi−1
fi−1 +

∑
c�

i ∈T+ (M )

c�
i

mir
�

mj (wi r� )
fj (wi r� )

∈ K[T+ (M)][x, y],

where we abuse notation by identifying the significant
arrow c�

i with the corresponding variable. That fi is a
polynomial (as opposed to merely a Laurent polynomial)
follows by induction. Let

I≺(M) = 〈f0 , . . . , fe〉 ⊂ K[T+ (M)][x, y].

Example 4.3. Let K[x, y] have the standard grad-
ing deg(x) = deg(y) = 1. Then r = xy−1 . Let M =〈
x8 , x5y, x3y3 , y4

〉
. Then

m0 = x8 , m1 = x5y, m2 = x3y3 , m3 = y4 ,

and we have

w1 = x8y, w2 = x5y3 , w3 = x3y4 .

The positive significant arrows are T+ (M) =
{c1

1 , c
1
2 , c

3
2 , c

1
3 , c

2
3 , c

3
3}. This is illustrated in Figure 3.

The polynomials are

f0 = x8

f1 = x5y + c1
1x

6

f2 = x3y3 + (c1
1 + c1

2)x4y2 + (c1
2c

1
1)x5y + c3

2x
6

f3 = y4 + (c1
1 + c1

2 + c1
3)xy3

+ (c1
2c

1
1 + c1

3c
1
1 + c1

3c
1
2 + c2

3)x2y2

+ (c3
2 + c1

3c
1
2c

1
1 + c2

3c
1
1 + c3

3)x3y + (c1
3c

3
2 + c3

3c
1
1)x4 .

m0

m1

m2

m3

w1

w2

w3

FIGURE 3. The positive significant arrows for the mono-
mial ideal 〈x8 , x5 y, x3 y3 , y4 〉 of Example 4.3. Here c1

1 is
solid, c1

2 , c3
2 are dashed, and c1

3 , c2
3 , c3

3 are dotted.
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Remark 4.4. The set of significant arrows of M , for all
possible (not necessarily positive) gradings Z2/Zc, is in
bijection with the weights of the torus action on the tan-
gent space TM Hilbd(A2) to M induced by the action of
T on Hilbd(A2). The map that associates to a significant
arrow c�

i for the grading Z/Zc the weight �c is a bijec-
tion. See, for example, [Nakajima 99, Proposition 5.7],
[Haiman 98, Proposition 2.4], or [Evain 04, Section 2]. In
particular, the gradings by Zn/Zc for which H c(H) is not
simply the point {M}, where H is the Hilbert function
of M , are those for which there exists some significant
arrow for M ; compare Remark 2.7.

In [Evain 04, Section 3], the author gives the following
parametrization of the cells C≺(M), which we will use to
compute equations for the edge-scheme E(M,N).

Theorem 4.5. We have

1. The set {f0 , . . . , fe} is a Gröbner basis of I≺(M) with
respect to ≺ [Evain 04, Proposition 10].

2. The map A |T+ (M )| → H c(H) induced by I≺(M) is an
isomorphism onto the affine cell C≺(M) [Evain 04,
Theorem 11].

In the following proposition we use arguments from
[Evain 04] to infer that H c(H) is the closure of an edge-
scheme.

Proposition 4.6. Let S = K[x, y] be graded by Z2/Zc,
where c ∈ Z2 with c+ , c− �= 0. Fix a Hilbert function H.
Then there exist a unique maximal element Mmax and a
unique minimal element Mmin with respect to the partial
order of Definition 2.8 for the monomial ideals contained
in H c(H), and H c(H) is the closure of the edge-scheme
E(Mmax ,Mmin).

Proof. It is shown in [Evain 04, Theorem 19] that the
poset of Definition 2.8 on the monomial ideals contained
in H c(H) has a unique minimal element Mmin such that
T+ (Mmin) = ∅. By Remark 4.4, the number of significant
arrows at M equals the dimension of the tangent space to
H c(H) at M , which equals the dimension, since H c(H) is
smooth. So since T+ (Mmin) = ∅, we have |T−(Mmin)| =
dim H c(H).

By switching x and y, we switch the roles of ≺ and
≺opp , and of positive and negative significant arrows.

Thus Theorem 4.5 (2) also applies to ≺opp , and so we
have dim C≺o p p (Mmin) = dim H c(H).

The cells C≺(M) are locally closed, so C≺o p p (Mmin)
is open; see [Bia�lynicki-Birula et al. 02, Theorem 4.2].
Since H c(H) is irreducible [Evain 04], it follows that
C≺o p p (Mmin) is an open dense subset of H c(H). Similarly,
we obtain a maximal element Mmax such that C≺(Mmax)
is an open dense subset of H c(H). Hence the intersec-
tion C≺(Mmax) ∩ C≺o p p (Mmin) is an open dense subset
of H c(H), which implies the claim.

Remark 4.7. Our proof uses the smoothness of H c(H) in
this setting, and it would be interesting to know whether
this closure property is true in more than two variables,
where the smoothness may fail. It also suggests studying
the restricted graph of just edges whose closure is all of
H c(H).

Remark 4.8. In the standard grading deg(x) = deg(y) =
1, Macaulay’s theorem asserts that the maximal element
of the poset is the lex-segment ideal with Hilbert function
H, which is the monomial ideal containing the d + 1 −
H(d) largest elements of degree d for every d; see, for
example, [Bruns and Herzog 93, Theorem 4.2.10]. This is
not true for more general gradings. However, a recursive
construction of M is given in [Evain 04, Remark 23]; see
also [Maclagan and Smith 10, Proposition 3.12].

Remark 4.9. In [Yaméogo 94a, Yaméogo 94b, Evain 02] a
related incidence question in the case of Hilbd(A2) is stud-
ied. In [Yaméogo 94a], the author shows that the closure
of a cell C≺(M) need not be a union of cells. Given two
cells C≺(M), C≺(M ′), one may ask whether C≺(M ′) ⊂
C≺(M) (strong incidence) or C≺(M ′) ∩ C≺(M) �= ∅

(weak incidence), and in [Yaméogo 94b] a sufficient con-
dition for strong incidence is given. In [Yaméogo 94a],
it is shown that being related in the partial order of
Definition 2.8 is a necessary, yet not sufficient, condi-
tion for weak incidence. This condition is strengthened in
[Evain 02] as follows. A system of arrows is a monomial
map f : Mon(M) → Mon(N) satisfying conditions (1)
and (3) in Definition 1.2; compare [Evain 02, Definition–
Proposition 11]. The systems of arrows in [Evain 02, Def-
inition 4] are defined to be maps on the partitions, so
they go from monomials not in M to monomials not in
N . However, Evain’s system of arrows is equivalent to
a system of arrows in this sense from Mon(Q : M) to
Mon(Q : N).

In [Evain 02, Theorem 8], it is proved that if C≺(N) ∩
C≺(M) �= ∅ and Q is as in Theorem 1.3, then there
exist a system of arrows Mon(M) → Mon(N) and a
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system of arrows Mon(Q : M) → Mon(Q : N). No exam-
ple is known in which this condition is not sufficient. Note
that in Example 3.8, the map given by

g(y3) = xy2 , g(x2y) = x2y, g(y4) = xy3 , g(xy3) = x4

is a system of arrows between (Q : M) and (Q : N), but
there is no arrow map.

The existence of a one-dimensional torus orbit between
M and N implies that N ∈ C≺(M) and M ∈ C≺o p p (N),
so [Evain 02, Theorem 8] implies the existence of a sys-
tem of arrows from M → N and (Q : M) → (Q : N) with
respect to ≺ as well as ≺opp .

4.2. A Combinatorial Description of the Edge Ideal

In this section we prove Theorem 1.4, by giving an
explicit combinatorial description of the equations for
the edge scheme E(M,N) over Z. The algorithm
[Altmann and Sturmfels 05, Algorithm 5] for computing
this edge works by finding Gröbner bases for I≺(M) and
I≺o p p (N) and reducing the Gröbner basis for I≺o p p (N)
modulo the Gröbner basis I≺(M). We now apply this
algorithm to Evain’s Gröbner basis to combinatorially
describe equations for E(M,N), which involves the fol-
lowing combinatorial constructions.

For this section we fix a Z2/Zc-grading and a mono-
mial ideal M ⊂ K[x, y]. The following definition, which
uses the notation of Definition 4.1, defines the combina-
torial objects that we will use to give equations for the
E(M,N).

Definition 4.10. 1. A path from a generator mi of M
is a sequence of arrows P = (c�1

i1
, . . . , c�d

id
), where c�k

ik
∈

T+ (M), defined inductively as follows:

(a) If c�
i ∈ T+ (M), then (c�

i ) is a path from mi .

(b) Otherwise, either

(†) (c�1
i1

, . . . , c�d
id

) is a path from mi−1 , or
(‡) i1 = i, and (c�2

i2
, . . . , c�d

id
) is a path from mj (w 1 r� ) .

We define the length of the path P to be �(P) = �1 +
· · · + �d , and we say that P is a path from mi to mir

�(P) .
The construction of a path guarantees that mir

�(P) is a
monomial; when d = 1, this is part of the definition of a
significant arrow.

2. A walk from a generator mi of M to a monomial s is de-
fined to be a sequence of paths (P1 , . . . ,Pd) such that P1
is a path from mi , Pk is a path from mj(mi r

� (P1 ) + ···� (Pk −1 ) )
for 2 � k � d, mir

�(P1 )+ ···+�(Pk ) ∈ M for 1 � k � d − 1,
and mir

�(P1 )+ ···+�(Pd ) = s. We define the length of the
walk to be �(W) = �(P1) + · · · + �(Pd).

3. A stroll from a monomial m ∈ M to a standard mono-
mial s is a sequence of walks S = (W1 , . . . ,Wd) such
that W1 is a walk from mj (m ) , Wk is a walk from
m

j
(

mr� (W1 ) + ···+ � (Wk −1 )
) for 2 � k � d, mr�(W1 )+ ···+�(Wk −1 ) ∈

M , and mr�(W1 )+ ···+�(Wd ) = s. There is also the trivial
stroll from a standard monomial s for M to itself.

4. Let H be a Hilbert function, and let M,N be monomial
ideals in H c(H) such that M > N in the partial order of
Definition 2.8. A hike H from a minimal generator n of
N to a standard monomial s for M is a pair (P′,S),
where P′ is a path for N with respect to ≺opp from n to
some monomial m � n or P′ is an arrow of length zero,
in which case we set m = n, and S is a stroll from m to
s.

For a path P, we set aP =
∏

c�
i ∈P

c�
i ∈ K[T+ (M)]. For

a walk W, we set aW = (−1)|W|+1 ∏
P∈W aP . For a stroll

S we let aS =
∏

W∈S(−1)|S|aW and for the trivial stroll
S we let aS = 1. For a hike H = (P′,S), we let aH =
aP′aS , and if P′ is the arrow of length zero, we set
aP′ = 1. Note that then aP , aW , aS ∈ K[T+ (M)], while
aH ∈ K[T+ (M), T−(N)].

We will see in the lemmas below that the notion of
a path naturally comes from the recursive definition of
the fi from Definition 4.2, the notion of a walk from
computing the reduced Gröbner basis for I≺(M), and the
notion of a stroll from reducing a monomial with respect
to the reduced Gröbner basis.

Example 4.11. We illustrate the concepts of paths, walks,
and strolls on the ideal M =

〈
x8 , x5y, x3y3 , y4

〉
of Ex-

ample 4.3. This is shown in Figure 4. It is convenient

m0

m1

m2

m3

FIGURE 4. The upper left picture shows the path c1
2c1

1
from m2 and the paths c3

3c1
1 and c1

3c1
2 c1

1 from m3 ; the
upper right picture shows the walk c1

2 c1
1c1

1 from m2 ; the
lower left the stroll c1

3c1
2 c1

2c1
1 c1

1 from xy5 ; the lower right
the hike c̃4

1c1
3 c1

2c1
2 c1

1 c1
1 from x5 y to x6 .
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to describe paths, walks, strolls, and hikes as terms of
polynomials in K[T+ (M)], where the path P is repre-
sented by the term aP . There are no paths from m0 .
The only path from m1 is c1

1 ; the paths from m2 are the
terms of c1

2 + c1
1 + c1

2c
1
1 + c3

2 ; and the paths from m3 are
the terms of c1

3 + c1
1 + c1

2 + c2
3 + c1

2c
1
1 + c1

3c
1
1 + c1

3c
1
2 + c3

3 +
c3

2 + c1
3c

1
2c

1
1 + c2

3c
1
1 + c1

3c
3
2 + c3

3c
1
1 . For i = 0, 1, 3, a walk

from mi is simply a path from mi . The walks from m2
are the paths from m2 as well as (c1

2c
1
1 , c

1
1).

The only stroll from x5y to x6 is c1
1 . There is only

the trivial stroll from x4y2 . The strolls from x3y3 to x6

are c3
2 and c1

2c
1
1c

1
1 . For the more complicated strolls it

is convenient to define W�
m to be the polynomial whose

terms are walks from j(m) of length � (the �-homogeneous
part of the walk polynomials computed above), and to
define Sm,s to be the polynomial whose terms are strolls
from m to s. Then

Sx2 y 4 ,x6 = W 4
x2 y 4 + W 3

x2 y 4 Sx5 y ,x6 + W 1
x2 y 4 Sx3 y 3 ,x6

= 2c1
3c

3
2 + c3

3c
1
1 + 2c3

2c
1
1 + 2c1

3c
1
2(c1

1)2 + c2
3(c1

1)2

+ c1
2c

3
2 + c1

2(c1
1)3 + (c1

2)2(c1
1)2

and

Sxy 5 ,x6 =W 4
xy 5 Sx5 y ,x6 + W 2

xy 5 Sx3 y 3 ,x6 + W 1
xy 5 Sx2 y 4 ,x6

=6c1
3c

3
2c

1
1 + c2

3c
3
2 + 3c3

2c
1
2c

1
1 + 4c1

3c
1
2c

3
2 + 2c2

3c
1
2(c1

1)2

+ 3(c1
2)2(c1

1)3 + 4c1
3c

1
2(c1

1)3 + 2c1
3(c1

2)2(c1
1)2

+ 2(c1
3)2c3

2 + c1
3c

3
3c

1
1 + 2(c1

3)2c1
2(c1

1)2 + c1
3c

2
3(c1

1)2

+ 2c1
2c

3
3c

1
1 + 2c1

3(c1
2)2(c1

1)2 + (c1
2)2c3

2 + (c1
2)3(c1

1)2

+ c3
3(c1

1)2 + 2c3
2(c1

1)2 + c2
3(c1

1)3 + c1
2(c1

1)4 .

Let

Mi = {m a monomial | m ≺ mi, deg(m) = deg(mi)},

where mi is as in Definition 4.1.

Lemma 4.12. We have

fi = mi +
∑

m∈Mi

( ∑
P path from

mi to m

aP

)
m.

Proof. We proceed by induction on i. For i = 0, we have
Mi = ∅ and f0 = m0 . The coefficient of m in fi is the co-
efficient of mi−1

mi
m in fi−1 plus the sum over all significant

positive arrows c�
i originating at mi of c�

i times the coef-
ficient of

m
j ( w i r � )

mi r� m in fj (wi r� ) . By induction, the former
corresponds to the paths of the form (b) (†) in Definition
4.10, and the latter to the paths of the form (b) (‡) and
(a).

Lemma 4.13. Let Ti = {s ∈ Mi | s /∈ M} and

gi = mi +
∑
s∈Ti

( ∑
W walk from

mi to s

aW

)
s.

Then {g0 , . . . , ge} is a reduced Gröbner basis for the ideal
I≺(M) of Definition 4.2.

Proof. We first prove that each gi lies in the ideal
〈f0 , . . . , fe〉.

Let Mi � Ti = {u1 . . . , ut}, with u1 � · · · � ut . We let
Uk = {u1 , . . . , uk} and U0 = ∅. A walk W = (P1 , . . . ,Pd)
is a called a k-walk if mir

�(P1 )+ ···+�(Pj ) ∈ Uk for 1 � j �
d − 1. Note that we do not require mir

�(W) to be con-
tained in Uk . A 0-walk is a path, and a t-walk is a walk.

For 0 � k � t we let

hk = mi +
∑

m∈Mi �Uk

( ∑
W k -walk from

mi to m

aW

)
m,

where the inner sum is over all k-walks from mi to m.
Note that h0 = fi and ht = gi .

Now for k � 1, we have

hk−1 − fj (uk )
uk

mj (uk )

( ∑
W (k − 1)-walk
from mi to uk

aW

)

= mi +
∑

m∈Mi �Uk −1

( ∑
W (k − 1)-walk
from mi to m

aW

)
m

−
(

mj (uk ) +
∑

m̃∈Mj ( u k )

( ∑
P path from
mj ( u k ) to m̃

aP

)
m̃

)

× uk

mj (uk )

( ∑
W (k − 1)-walk
from mi to uk

aW

)

= mi +
∑

m∈Mi �Uk

[ ∑
W (k − 1)-walk
from mi to m

aW

−
( ∑

P path from
mj ( u k ) to

m m j ( u k )
u k

aP

)( ∑
W (k − 1)-walk
from mi to uk

aW

)]
m

= hk ,

where the second-to-last equality follows from the
fact that the coefficient of uk cancels, and the last
follows from the definition of a walk. It follows
that gi = ht ∈ 〈f0 , . . . , fe〉. Since 〈in≺(g0), . . . , in≺(ge)〉 =
M = 〈in≺(f0), . . . , in≺(fe)〉 and {f0 , . . . , fe} is a Gröbner
basis for I≺(M) by Theorem 4.5, it follows that
{g0 , . . . , ge} is a Gröbner basis for I≺(M). The only



Hering and Maclagan: The T-Graph of a Multigraded Hilbert Scheme 293

monomials occurring in gi are mi and standard mono-
mials, so {g0 , . . . , ge} is a reduced Gröbner basis.

Lemma 4.14. Fix m ∈ M . Let Tm denote the set of mono-
mials s �∈ M of the same degree as m with s ≺ m. Then

m ≡
∑
s∈Tm

( ∑
S stroll from

m to s

aS

)
s mod I≺(M).

Proof. We proceed by induction on the number of mono-
mials m′ ∈ M with deg(m′) = deg(m) and m′ � m. The
base case is that m is the smallest monomial of its degree
in M with respect to ≺. Note that in this case, all mono-
mials occurring in m

mj ( m )
gj (m ) other than m are standard

monomials, so we have

m − gj (m )
m

mj (m )

= −
∑

s=mm ′/mj ( m )
m ′∈Tm j ( m )

( ∑
W walk from
mj ( m ) to m ′

aW

)
s.

Note that since m is the smallest monomial of its degree
in M , a stroll from m to a standard monomial s is the
same as a walk, and the base case follows. Now suppose
that the claim is true whenever there are fewer smaller
monomials in M of the same degree. Then

m − gj (m )
m

mj (m )
(4–2)

= −
∑

m ′= m
m j ( m )

m ′′

m ′′∈Tm j ( m )

( ∑
W walk from

mj ( m ) to m ′ m j ( m )
m

aW

)
m′,

where m′ ≺ m. If m′ is standard, then a walk from m to
m′ is a stroll. If m′ ∈ M , by induction we have

m′ ≡
∑

s∈Tm ′

( ∑
S stroll from

m ′ to s

aS

)
s (mod I≺(M)). (4–3)

Now a walk from mj (m ) to m′ mj ( m )

m occurring in (4–2)
combines with a stroll from m′ to s occurring in (4–3) to
give a stroll from m to s. Since every stroll occurs in this
way, the claim follows.

Theorem 4.15. Fix a Z2/Zc-grading and a term order ≺
on K[x, y]. Let M,N ⊂ K[x, y] be monomial ideals with
Hilbert function H. Suppose M > N with respect to the
partial order of Definition 2.8 induced by ≺. For a min-
imal generator n of N , and s a standard monomial for
M with deg(m) = deg(s), let

F(n,s) =
∑

H hike from n to s

aH ∈ K[T+ (M), T−(N)].

Then the ideal for the edge-scheme E(M,N) parame-
terizing one-dimensional torus orbits containing M and
N is given by

I(M,N) =〈F(n,s) | n a minimal generator of N, s �∈ M,

deg(n) = deg(s)〉.

Proof. The theorem follows from applying the ideas of
[Altmann and Sturmfels 05, Algorithm 5] to the reduced
Gröbner basis {gi} for I≺(M) of Lemma 4.13 and us-
ing Lemma 4.14 to reduce the Gröbner basis {f̃i} for
I≺o p p (N).

The edge-scheme E(M,N) is the scheme-theoretic
intersection C≺(M) ∩ C≺o p p (N). This equals the fiber
product C≺(M) ×H c (H ) C≺o p p (N). Thus to show that

E(M,N) = Spec(K[T+ (M), T−(N)]/I(M,N)),

it suffices to show that the subscheme C ′ of

Spec(K[T+ (M), T−(N)]) = C≺(M) × C≺o p p (N)

defined by I(M,N) equals this fiber product.
To do this, we show that C ′ satisfies the

universal property of the fiber product. Indeed,
let iM and iN be the inclusion morphisms of
C≺(M) and C≺o p p (N) into H c(H). Suppose two mor-
phisms φM : Spec(R) → C≺(M) and φN : Spec(R) →
C≺o p p (N) satisfy iM ◦ φM = iN ◦ φN . Let φ : Spec(R) →
Spec(K[T+ (M), T−(N)]) be the product φM × φN . We
will show that φ∗ (F(n,s)

)
= 0 for all pairs (n, s), which

shows that φ factors through C ′ with φM = p1 ◦ φ and
φN = p2 ◦ φ, as required.

To see this, let IM ⊆ R[x, y] be the ideal of the pull-
back of the universal family on C≺(M) to Spec(R), and
let IN ⊆ R[x, y] be the ideal of the pullback of the uni-
versal family on C≺o p p (N) to Spec(R). The ideal IM is
generated by the polynomials φ∗

M (gi), and the ideal IN is
similarly generated by φ∗

N (fi). Our assumption that the
induced maps to H c(H) coincide implies that IM = IN .

Fix a minimal generator n = ni of N . Let Ni = {n′ ∈
Mon(K[x, y]) | n′ ≺opp ni and deg(n′) = deg(ni)}.

Then for the generator f̃i of I≺o p p (N), we have

f̃i = ni +
∑
n∈Ni

( ∑
P path from

ni to n for ≺o p p

aP

)
n

=
∑

s standard monomial
for M,deg(s)=deg(ni )

( ∑
H hike from

ni to s

aH

)
s + g,

where g ∈ I≺(M).
By the definition of the multigraded Hilbert scheme,

the R-module (R[x, y]/IM )a is locally free of rank H(a),
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where a = deg(ni). Since M ∈ H c(H), there are H(a)
standard monomials of M of degree a. We claim that
the standard monomials s of M of degree a span
(R[x, y]/IM )a . If not, there is f̃ =

∑
cm m ∈ R[x, y]a ,

where cm ∈ R and the m are monomials that are not
in the span of the standard monomials modulo Im . We
can choose this polynomial to have m′ = max≺{m : cm �=
0,m ∈ M} as small as possible. Choose i so that mi

divides m′. Then f̃ − cm ′m′/miφ
∗
M (gi) is a polynomial

with smaller such maximum, so can be written in the
desired form. But then the fact that φ∗

M (gi) ∈ IM gives
a contradiction. For a prime P of R, the RP -module
(RP [x, y]/RP IM )a is free of rank H(a), so the spanning
monomials must be a basis, and thus have no relations be-
tween them. Since φ∗

N (f̃i) ∈ IN = IM and φ∗
M (g) ∈ IM ,

we have
∑

φ∗(F(ni ,s))s ∈ IM , where the sum is as above
over the set of s �∈ M with deg(s) = deg(ni).

This means that the image of
∑

φ∗(Fni ,s,)s ∈ RP [x, y]
in each localization at a prime P of R must vanish, and so∑

φ∗(Fni ,s)s = 0 in R[x, y]. This means that φ∗(Fni ,s) =
0, as required.

Example 4.16. Let M =
〈
x8 , x5y, x3y3 , y4

〉
be the ideal

from Example 4.11 and let N =
〈
x8 , x5y, x2y2 , y6

〉
. We

order the generators for N with respect to ≺opp , and
denote the significant arrows by c̃�

i . We have n0 = y6 ,
n1 = x2y2 , n2 = x5y, n3 = x8 , and the significant arrows
are c̃1

1 , c̃
2
1 , c̃

4
2 . So the paths from x5y are c̃1

1 , c̃
2
1 , c̃

4
2 . Then

F(x5 y ,x6 ) = c1
1 + c̃2

1c
3
2 + c̃2

1c
1
2c

1
1c

1
1 + c̃4

2Sxy 5 ,x6 .

Not all polynomials look this complicated. For exam-
ple, F(x2 y 2 ,xy 3 ) = c̃1

1 + c̃2
1(c1

3 + c1
2 + c1

1).

Remark 4.17. There can be significant cancellation in the
equations F(n,s) for E(M,N) given in Theorem 4.15. It
would be interesting to have a positive formula for these
polynomials. For example, this would let us approach the
question, asked in [Altmann and Sturmfels 05], whether
the T -graph depends on the characteristic of the field
when K is algebraically closed.

5. EXAMPLES

In this section, we consider four different examples of T -
graphs on multigraded Hilbert schemes.

5.1. The T -Graph of Hilb4(A2)

The first nontrivial case of the T -graph of a multigraded
Hilbert scheme is the Hilbert scheme of four points in A2 .
The torus-fixed points in this case correspond to mono-

mial ideals in K[x, y] with four standard monomials, or
equivalently to partitions of four. There are five such ide-
als/partitions:

1. 4:
〈
x4 , y

〉
,

2. 3 + 1:
〈
x3 , xy, y2

〉
,

3. 2 + 2:
〈
x2 , y2

〉
,

4. 2 + 1 + 1:
〈
x2 , xy, y3

〉
,

5. 1 + 1 + 1 + 1:
〈
x, y4

〉
.

Using this numbering, the edges of this graph are then

{(1, 2), (1, 3), (1, 5), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5)}.

Most of these edges are one-dimensional. We list them in
the following table, where the parameter a can be any
nonzero element of K:

edge c ideal

(1, 2) (1,−3)
〈
x4 , y − ax3

〉
(1, 3) (1,−2)

〈
x4 , y − ax2

〉
(1, 5) (1,−1)

〈
x4 , y − ax

〉
(2, 3) (1,−1)

〈
x3 , xy − ax2 , y2

〉
(3, 4) (1,−1)

〈
x2 , y2 − axy

〉
(3, 5) (2,−1)

〈
x2 , y2 − ax

〉
(4, 5) (3,−1)

〈
x2 , xy, y3 − ax

〉
The interesting edge is the one joining the second and

fourth ideals indicated by the black triangle. It consists
of the ideals〈

x3 , xy − ax2 , y2 − (a2 + b)x2〉 ,

FIGURE 5. The T -graph of four points in A2 .
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# pairs # pairs # pairs (M, N ) # pairs (M, N )
d # ideals M (M, N ) M < N with an arrow map with an arrow map on the duals # edges
4 5 10 8 8 8 8
5 7 21 15 15 15 15
6 11 55 37 37 37 37
7 15 105 55 52 52 52
8 22 231 100 99 99 99
9 30 435 170 166 166 166

10 42 861 291 280 280 280
11 56 1540 411 401 401 401
12 77 2926 688 663 663 663
13 101 5050 957 918 918 918
14 135 9045 1524 1446 1446 1446
15 176 15400 2203 2076 2076 2076
16 231 26565 3218 3033 3031 3031

TABLE 1. Data for the Hilbert schemes Hilbd (A2 ) for small values of d.

for any value of a, b ∈ K∗ with a �= b2 . Note that the edges
(2, 3) and (3, 4) live in the closure of this edge (by let-
ting b = −a2 or a → ∞ respectively). This is shown in
Figure 5.

5.2. The T -Graph of Two Points in P2

We now consider the case of the Hilbert scheme of two
points in P2 . As a multigraded Hilbert scheme this corre-
sponds to requiring the Hilbert function to be h(0) = 1,
h(1) = 3, and h(i) = 2 for i � 2 for ideals in K[x0 , x1 , x2 ].
The T -graph has nine vertices, which we label by the
saturations of the corresponding monomial ideals, since
these have fewer generators. Explicitly, for an ideal M ∈
Hilbh

S , we label the vertex by (M : 〈x0 , x1 , x2〉∞). We can
recover M from its saturation by taking the ideal gener-
ated by the degree-two part of the saturation. The nine
saturated ideals are

1: 〈x0 , x1x2〉 2: 〈x1 , x2x3〉 3: 〈x2 , x0x1〉
4:
〈
x0 , x

2
2
〉

5:
〈
x0 , x

2
1
〉

6:
〈
x1 , x

2
0
〉

7:
〈
x1 , x

2
2
〉

8:
〈
x2 , x

2
1
〉

9:
〈
x2 , x

2
0
〉

The T -graph then has 18 edges. Up to the S3-symmetry,
these are the pairs:

(〈x0 , x1x2〉 , 〈x1 , x0x2〉), (〈x0 , x1x2〉 ,
〈
x0 , x

2
1
〉
),

(
〈
x0 , x

2
1
〉
,
〈
x1 , x

2
0
〉
), (

〈
x0 , x

2
1
〉
,
〈
x0 , x

2
2
〉
),

(
〈
x0 , x

2
1
〉
,
〈
x2 , x

2
1
〉
).

This is shown in Figure 6. The shaded triangles indicate
that the edges joining ideals 4 and 5, joining 6 and 7, and
joining 8 and 9 are two-dimensional and have the third
vertex of the respective triangles in their closure. For ex-
ample, ideals in the edge joining vertices 4 and 5 have

the form
〈
x2

0 , x0x1 , x0x2 , x
2
1 + ax1x2 + bx2

2
〉

for a, b ∈ K

with b �= 0.

5.3. The T -Graph of Hilb8(A4)

The Hilbert scheme of eight points in A4 has two
irreducible components, of dimensions 32 and 25,
which intersect in a scheme of dimension 24. See
[Cartwright et al. 09] for more details. The T -graph of
this Hilbert scheme has 684 vertices and 9278 edges. All
vertices lie on the component of dimension 32. These data
can be found in the package TEdges [Maclagan 11].

5.4. Small Hilbert Schemes of Points in the Plane

We list in Table 1 the data for the Hilbert schemes
Hilbd(A2) for small values of d. This illustrates the use
of our necessary condition in this range.

1

2

3

4 5

6

7

8

9

FIGURE 6. The T -graph of 2 points in P2 .



296 Experimental Mathematics, Vol. 21 (2012), No. 3

Remark 5.1. Table 1 was created with the Macaulay 2
package TEdges [Maclagan 11]. For d � 15, the edge code
was run independently from the partial order and arrow-
map code, so the containment of the set of edges in the
set for which there exist arrow-maps gives a check on
the code. This was not possible for d > 15 due to insuffi-
cient memory. While this table shows that the necessary
conditions of Theorem 1.3 are sufficient for small d in
Hilbd(A2), we caution that 16 points is still compara-
tively small for this problem, and so we do not regard
this as strong evidence of the condition being sufficient,
particularly in light of Example 3.7.
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