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Let L (E /Q , s) be the L -function of an elliptic curve E defined
over the rational field Q . Assuming the Birch–Swinnerton-Dyer
conjectures, we examine special values of the r th derivatives,
L (r )(E , 1, χ ), of twists by Dirichlet characters of L (E /Q , s) when
L (E , 1, χ ) = · · · = L (r −1)(E , 1, χ ) = 0.

1. INTRODUCTION

Let E/Q be an elliptic curve defined over the field Q .
Denote by

L(E/Q , s) =
∑
n≥1

ann−s

its L-function. If K/Q is a finite extension, then the
Birch–Swinnerton-Dyer conjecture asserts that the first
nonvanishing derivative satisfies

L(rK )(E/K, 1)
rK !

=
ΩK |X(K)|RK√|d(K)||E(K)Tors |2

∏
p

cp,

where rK = rank Z E(K) and ΩK is a product of pe-
riods of E, d(K) is the discriminant of K, and RK

denotes the elliptic regulator, i.e., RK is the absolute
value of the determinant of the height-pairing matrix
of E(K). Also X(K) is the Tate–Shafarevich group of
E/K, and the cp are the Tamagawa numbers of E/K.
(See [Dokchitser and Dokchitser 10] for the computation
of the Tamagawa numbers in extension fields.)

If K/Q is an abelian extension with Gal(K/Q ) = G,
then there is a factorization

L(E/K, s) =
∏
χ∈Ĝ

L(E, s, χ),

where Ĝ is the group of primitive Dirichlet characters
associated with the extension K/Q . Then assuming the
Birch–Swinnerton-Dyer conjecture, rK and rQ are the
orders of vanishing at s = 1 of L(E/K, s) and L(E/Q , s)
respectively. Let rχ denote the order of vanishing at s = 1
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of L(E, s, χ). Then

L(rK )(E/K, 1)
rK !

=
L(rQ )(E/Q , 1)

rQ !
·
∏

χ0 �=χ∈Ĝ

L(rχ )(E, 1, χ)
rχ !

.

Therefore, assuming the Birch–Swinnerton-Dyer conjec-
ture, it follows that

ΩK |X(K)|RK√|d(K)||E(K)Tors |2
∏
p

cp (1–1)

=
Ω+ |X(Q )|RQ

|E(Q )Tors |2
∏
p

cp

∏
χ0 �=χ∈Ĝ

L(rχ )(E, 1, χ)
rχ !

,

where Ω+ is the real period of E. If Ω− denotes the
(positive) complex part of the imaginary period of E,
then ΩK = (Ω+)[K :Q ] if K is a totally real field and
ΩK = (Ω+Ω−)[K :Q ]/2 if K is a totally imaginary field.

The Deligne–Gross conjecture [Deligne 79, p. 323] im-
plies that rχ = rχ ′ if χ′ and χ are Galois conjugate
characters, i.e., if χ′(σ) = χγ (σ) = γ(χ(σ)) for some γ ∈
Gal(Q (χ)/Q ) and for all σ ∈ G.

In [Fearnley and Kisilevsky 10] we examine the case
that K/Q is a cyclic extension of odd prime degree,
[K : Q ] = �, and that the χ-rank is one, i.e., that rχ = 1
for all χ �= χ0 , where χ0 denotes the principal or trivial
character. In the present article, we consider the case
that K/Q is a cyclic extension of odd prime degree,
[K : Q ] = �, and that the χ-rank rχ = r is greater than
one. That is, we suppose that

L(E, 1, χ) = · · · = L(rχ −1)(E, 1, χ) = 0

and

L(rχ )(E, 1, χ) �= 0.

In Section 4 below, for a primitive Dirichlet character χ

of conductor fχ , we propose an explicit formula for the
value L(rχ )(E, 1, χ), namely

L(rχ )(E, 1, χ)
rχ !

=
τ(χ)
fχ

Ω+δχ(P1 , . . . , Pr )α+
χ (P1 , . . . , Pr )zχ ,

(1–2)
where {P1 , . . . , Pr} ∈ ETr(K) are independent points of
infinite order in E(K) with trace 0 to Q , δχ(P1 , . . . , Pr )
is a determinant that will be described below, and where
α+

χ (P1 , . . . , Pr ) and zχ are algebraic numbers in Q (χ).
In Section 5, we present some numerical computations

that we offer as evidence for formula (1–2).
These results can be considered as evidence in sup-

port of the equivariant Tamagawa number conjectures as
formulated in [Burns and Flach 01] and [Burns 10, The-
orem 5.1.1 (i)]. More supporting evidence can be found
in [Bley 10].

2. THE ELLIPTIC REGULATOR

Let K/Q be a finite extension. As in
[Fearnley and Kisilevsky 10], suppose that P1 , P2 , . . . , Pt

generate a subgroup E{P } ⊆ E(K) of rank t. The
regulator matrix and the regulator (determinant) are
defined as

RM(E{P }) :=
(〈Pi, Pj 〉

)
1≤i,j≤t

,

R(E{P }) := |det
(〈Pi, Pj 〉

)|,
where 〈·, ·〉 denotes the canonical Néron–Tate height pair-
ing on E.

If E{P } together with E(K)Tors generates all of E(K),
then R(E{P }) = RK , the regulator of E over K.

If Q1 , Q2 , . . . , Qt generate a subgroup E{Q} of finite
index m in E{P }, then

R(E{Q}) = m2R(E{P }).

Therefore, passing to subgroups of finite index introduces
only integral square factors in the regulators.

Let ETr(K) denote the set of points P ∈ E(K) with
trace zero to E(Q ), i.e.,

ETr(K) =

{
P ∈ E(K) | TrK/Q (P ) =

∑
σ∈G

Pσ = 0

}
.

Then it is shown in [Fearnley and Kisilevsky 10, Section
4] that ETr(K) is a subgroup of E(K) that is orthogonal
to E(Q ) with respect to the canonical Néron–Tate height
pairing and such that the subgroup E′(K) of E(K) gen-
erated by E(Q ) together with ETr(K) has finite index in
E(K). Consequently, the regulator matrix RM(E′(K))
has the form

RM(E′(K)) =

(
RM(E(Q )) 0

0 RM(ETr(K))

)
.

Assume now that K/Q is a cyclic extension of
odd prime degree [K : Q ] = � ≥ 3, with Galois group
Gal(K/Q ) = G = 〈σ0〉. Then ETr(K) is a module for
Z[G]/(Tr) 
 Z[ζ� ], the ring of integers in the cyclotomic
field Q (ζ�) of �th roots of unity. It is then shown in
[Fearnley and Kisilevsky 10, Section 5] that there is a
G-invariant subgroup E∗(K) ⊆ ETr(K) of finite index
(bounded only in terms of �) such that

E∗(K) 
 (Z[G]/(Tr)
)r

for some integer r ≥ 0. Therefore there exist points
P1 , . . . , Pr ⊂ E∗(K) such that{

P1 , P
σ0
1 , . . . , P σ0

�−2

1 , P2 , P
σ0
2 , . . . , Pr , . . . , P

σ0
�−2

r

}
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is a (free) Z-basis for E∗(K). It follows that the group
E(Q ) · E∗(K) has finite index (say m) in E(K), and
therefore the regulator RK factors as

RK = m2 · RQ · R(E∗(K)). (2–1)

Since the canonical Néron–Tate height pairing satisfies
〈Pσ ,Qσ 〉 = 〈P,Q〉 for P,Q ∈ E(K) and σ ∈ G, the ma-
trix RM(E∗) can be written as

RM(E∗) =
(〈Pσ

i , P τ
j 〉
)

=
(〈Pi, P

τ σ−1

j 〉),
where 1 �= σ, τ ∈ G and 1 ≤ i, j ≤ r. In order to evaluate
the regulator R(E∗(K)), we define r2 functions fi,j , 1 ≤
i, j ≤ r, as follows:

fi,j : G −→ C ,

fi,j (σ) �→ 〈Pi, P
σ
j 〉 for σ ∈ G.

For χ ∈ Ĝ, define

λχ(fi,j ) =
∑
σ∈G

χ(σ)〈Pi, P
σ
j 〉 =

∑
σ∈G

χ(σ)fi,j (σ).

If Λχ denotes the r × r matrix

Λχ =
(
λχ(fi,j )

)
,

let

δχ = detΛχ .

Then it is proved in Theorem 3.1 below that

R(E∗(K)) =
1
�r

∏
χ0 �=χ∈Ĝ

δχ . (2–2)

The factorizations (2–1) and (2–2) allow us to decompose
the regulator RK (up to some rational factors bounded
in terms of �) as a product

RK = q · RQ ·
∏

χ0 �=χ∈Ĝ

δχ (2–3)

for some rational number q. The factors δχ will appear
in the critical L-values

L(rχ )(E, 1, χ)
rχ !

appearing in (1–1).

3. THE GENERALIZED DEDEKIND–FROBENIUS
THEOREM

In this section we derive a slight generalization of the
Dedekind–Frobenius theorem for evaluating the determi-
nant of the group matrix of an abelian group G. We follow
the proof as found in [Washington 82].

3.1. The Dedekind–Frobenius Theorem

We suppose that G is an abelian group of order |G| = n,
whose elements will be denoted by σ, τ, . . . . Let f : G −→
C be a complex-valued function on G. A group matrix
is an n × n matrix A = A(f) whose rows and columns
are indexed by elements of G (in some fixed order) and
whose (σ, τ) entry is

Aσ,τ = f(σ−1τ).

Then the Dedekind–Frobenius theorem states that

det A =
∏
χ∈Ĝ

λχ(f),

where Ĝ is the character group of G, and for χ ∈ Ĝ,

λχ(f) =
∑
σ∈G

χ(σ)f(σ).

We note that {λχ(f) | χ ∈ Ĝ} are the eigenvalues of the
matrix A with corresponding eigenvectors {wχ ∈ C n |
χ ∈ Ĝ}, where wχ is the vector such that the σ coor-
dinate satisfies (wχ)σ = χ(σ).

3.2. The Generalized Dedekind–Frobenius Theorem

In the present case, we consider, for an integer r > 0, a
collection F of r2 complex-valued functions fi,j : G −→
C with 1 ≤ i, j ≤ r. We then consider the N × N gen-
eralized group matrix A = A(F), where N = n × r and
the rows are indexed by pairs (i, σ), 1 ≤ i ≤ r, σ ∈ G, and
columns (j, τ), 1 ≤ j ≤ r, τ ∈ G, and whose ((i, σ), (j, τ))
entry is

A(i,σ ),(j,τ ) = fi,j (σ−1τ).

(If we fix some order on the the elements of G, then
we may order the rows and columns lexicographically by
stipulating that (i, σ) < (j, τ) whenever i < j, and if i =
j, then σ < τ .)

We are also interested in the (N − r) × (N − r) ma-
trices C and R with rows indexed by (i, σ), 1 ≤ i ≤ r,
1 �= σ ∈ G, and columns (j, τ), 1 ≤ j ≤ r, 1 �= τ ∈ G, and
whose entries are

(C)(i,σ ),(j,τ ) = fi,j (σ−1τ) − fi,j (τ),
(R)(i,σ ),(j,τ ) = fi,j (σ−1τ).

The matrix A can be decomposed into r2 blocks A =(
Ai,j

)
, 1 ≤ i, j ≤ r, where Ai,j is the n × n group matrix

A(fi,j ) whose (σ, τ) entry is(
Ai,j

)
σ.τ

= fi,j (σ−1τ).
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Then Ai,j = A(fi,j ) has eigenvalues {λχ(fi,j ) | χ ∈ Ĝ}
with corresponding common eigenvectors {wχ ∈ C n |
χ ∈ Ĝ}, i.e., Ai,jwχ = λχ(fi,j )wχ for all 1 ≤ i, j ≤ r.

Define δχ = δχ(F) as the determinant of the r × r ma-
trix Λχ =

(
λχ(fi,j )

)
:

δχ = det(Λχ).

Theorem 3.1. (Generalized Dedekind–Frobenius theo-
rem.) Let G be an abelian group and let F = {fi,j | 1 ≤
i, j ≤ r} be a family of complex-valued functions on G.
Then

1. the determinant of the N × N generalized group ma-
trix A = A(F) is

det A =
∏
χ∈Ĝ

δχ(F);

2. the determinant of the (N − r) × (N − r) matrix C is

det C =
∏

χ0 �=χ∈Ĝ

δχ(F);

3. if for all pairs (i, j) we have
∑

σ∈G fi,j (σ) = 0, the de-
terminant of the (N − r) × (N − r) matrix R is

det R =
1

|G|r
∏

χ0 �=χ∈Ĝ

δχ(F).

Remark 3.2. The complex field C can be replaced by any
field containing n distinct nth roots of unity.

Proof. Let {σ1 = 1, σ2 , . . . , σn} be a fixed ordering of
the elements of G, and let {χ1 = χ0 , χ2 , . . . , χn} be a
fixed ordering of the elements of Ĝ, where χ1 = χ0 is
the principal or trivial character of G. Let V = C N and
let B = {ei,σ | 1 ≤ i ≤ r, σ ∈ G} be the standard (lexico-
graphically ordered) basis for V , where ei,σ is the vector
all of whose entries are 0 except for 1 in row (i, σ).

Let T : V −→ V denote the linear transformation on
V whose matrix with respect to the standard basis B is
A. Then

T (ej,τ ) =
∑
(i,σ )

fi,j (σ−1τ)ei,σ .

The block decomposition of A =
(
Ai,j

)
corresponds to

the decomposition V =
⊕

i Wi , where Wi 
 C [G] is the
n-dimensional subspace of V with basis Bi = {ei,σ | σ ∈
G}.

But the space Wi also has the ordered basis

B′
i = {vi,χ | χ ∈ Ĝ},

where

(vi,χ)j,τ =

{
0 if j �= i,

χ(τ) if j = i.

Then

T (vj,χ) =
r∑

i=1

λχ(fi,j )vi,χ .

It follows that if we let B′ be the lexicographically ordered
basis B′ = ∪r

i=1B′
i , then the matrix A′ of T with respect

to B′ becomes a block matrix with r × r blocks each of
which is diagonal. See Figure 1.

If we rearrange the elements of B′ as

B′′ = {v1,χ1 ,v2,χ1 , . . . ,vr,χ1 , . . . ,v1,χn
, . . . ,vr,χn

}
and let V χ ⊆ V be the r-dimensional subspace of V with
basis {vi,χ | 1 ≤ i ≤ r}, then V χ is a T -invariant sub-
space of V , and the matrix of T with respect to B′′ be-
comes a block diagonal matrix with r × r blocks,

A′′ =

⎛⎜⎜⎜⎜⎝
Λχ1

Λχ2

. . .

Λχn

⎞⎟⎟⎟⎟⎠ ,

where Λχ =
(
λχ(fi,j )

)
is the matrix representing the re-

striction of T to the subspace V χ with respect to the
basis {vi,χ | 1 ≤ i ≤ r}.

It now follows that

detA =
∏
χ∈Ĝ

det Λχ =
∏
χ∈Ĝ

δχ .

To prove statement 2, we note that the space Wi can be
written as Wi = W 1

i ⊕ W 0
i , where W 1

i = Cvi,χ0 , vi,χ0 =∑
σ∈G ei,σ , and

W 0
i =

{
w ∈ Wi

∣∣∣w =
∑
σ∈G

xi,σei,σ and
∑
σ∈G

xi,σ = 0

}
.

Let V 0 =
⊕r

i=1 W 0
i and V 1 =

⊕r
i=1 W 1

i = V χ0 . Since
vi,χ =

∑
σ∈G χ(σ)ei,σ , we see that for χ �= χ0 , we have

vi,χ ∈ V 0 . Therefore if χ �= χ0 , we have V χ ⊆ V 0 , and
counting dimensions, we find that

V 0 =
⊕

χ �=χ0

V χ.
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FIGURE 1. The matrix A′ of T with respect to B′ becomes a block matrix with r × r blocks each of which is diagonal.

It follows that V 0 is a T -invariant subspace of V , and
that the determinant of T restricted to V 0 is

det(T | V 0) =
∏

χ �=χ0

δχ .

We now compute this determinant using another basis
for V 0 . Let

fi,σ = ei,σ − 1
n
vi,χ0 .

Then

fi,σ ∈ W 0
i ,

∑
σ∈G

fi,σ = 0,

and bases for Wi and W 0
i are respectively

{fi,σ | 1 �= σ ∈ G} ∪ {vi,χ0 }, {fi,σ | 1 �= σ ∈ G}.
Computing T | V 0 with respect to the basis C = {fi,σ |

1 ≤ i ≤ r, 1 �= σ ∈ G}, we obtain

T (fj,τ ) = T (ej,τ ) − 1
n

T (vj,χ0 )

=
∑
i,σ

fi,j (σ−1τ)ei,σ − 1
n

∑
i

λχ0 (fi,j )vi,χ0

=
∑
i,σ

(
fi,j (σ−1τ) − 1

n
λχ0 (fi,j )

)
ei,σ .

For fixed (j, τ), let xi,σ =
(
fi,j (σ−1τ) − 1

n λχ0 (fi,j )
)
.

Then since T (fj,τ ) ∈ V 0 , we have
∑

σ∈G xi,σ = 0. Noting
that ei,σ = fi,σ + 1

n vi,χ0 and that
∑

σ fi,σ = 0, we there-
fore have

T (fj,τ ) =
∑
i,σ

xi,σ

(
fi,σ +

1
n
vi,χ0

)
=
∑
i,σ

xi,σ fi,σ

=
∑

i,1 �=σ

xi,σ fi,σ +
∑

i

xi,1fi,1

=
∑

i,1 �=σ

(xi,σ − xi,1)fi,σ

=
∑

i,1 �=σ

(fi,j (σ−1τ) − fi,j (τ))fi,σ .

Let C denote the matrix for T | V 0 with respect to the
basis C. Then C is an (N − r) × (N − r) matrix indexed
by rows (i, σ), 1 ≤ i ≤ r, 1 �= σ ∈ G, and columns (j, τ),
1 ≤ j ≤ r, 1 �= τ ∈ G. Then as in part one of the proof,
C has a block decomposition

C =
(
Ci,j

)
,

where the (σ, τ) entry of Ci,j is

C(i,σ ),(j,τ ) =
(
fi,j (σ−1τ) − fi,j (τ)

)
.

Thus we have

det C =
∏

χ0 �=χ∈Ĝ

δχ .

To prove the third statement, let C∗ =
(
C∗

i,j

)
be the

augmented N × N block matrix with blocks

C∗
i,j =

(
δi,j fi,j (τ)

0 Ci,j

)
,

where δi,j is the Kronecker delta function. By simultane-
ously permuting the rows and columns of C∗ so that the
rows and columns indexed by (i, 1) and (1, j) appear in
the upper left-hand corner, we obtain that C∗ is similar
to the matrix

B =

(
Ir ∗
0 C

)
,

where Ir is the r × r identity matrix. Therefore

det C∗ = det B =
∏

χ0 �=χ∈Ĝ

δχ .

In the matrix B, we add row (i, 1) to all the rows indexed
by (i, σ), σ �= 1, and then add all the resulting rows in-
dexed by (i, σ), σ �= 1, back to row (i, 1). Using the fact
that

∑
σ∈G fi,j (σ) = 0, we obtain the matrix

B′ =

(
nI 0
∗ R

)
,

where R is the (N − r) × (N − r) matrix with rows in-
dexed by (i, σ), 1 ≤ i ≤ r, 1 �= σ ∈ G, and columns (j, τ),
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1 ≤ j ≤ r, 1 �= τ ∈ G, and whose entries are

(R)(i,σ ),(j,τ ) = fi,j

(
σ−1τ

)
.

Since det(B′) = det(B) = det(C), it follows that

det R =
1

|G|r
∏

χ0 �=χ∈Ĝ

δχ(F).

4. THE CRITICAL L-VALUE

In this section, let E/Q be an elliptic curve and let
K/Q be a cyclic extension of odd prime degree �

and Galois group Gal(K/Q ) = G. For each character
χ ∈ Ĝ, we propose, assuming the Birch–Swinnerton-
Dyer conjecture and the Deligne–Gross conjecture, a
formula for the critical L-value L(rχ )(E, 1, χ). The
Deligne–Gross conjecture implies that rχ = r is inde-
pendent of χ for χ �= χ0 , and by definition of rχ , we
have

L(E, 1, χ) = · · · = L(rχ −1)(E, 1, χ) = 0,

L(rχ )(E, 1, χ) �= 0.

Also let τ(χ) denote the Gauss sum

τ(χ) =
fχ −1∑
a=0

χ(a) exp (2πia/fχ).

In [Fearnley and Kisilevsky 10, Proposition 3.1], it is
shown that if we choose

zχ =

{
1 + ζ if ζ = (−1)rχ wE χ(NE ) �= −1,

χ(σ0) − χ(σ0) if ζ = (−1)rχ wE χ(NE ) = −1,

where wE is the root number of E/Q and NE is the
conductor of E, then we have

fχ

τ(χ)Ω+zχ

L(rχ )(E, 1, χ)
rχ !

∈ R .

Summarizing, by [Fearnley and Kisilevsky 10, Section
5] and the discussion in Section 2, there are r = rχ points
P1 , . . . , Pr belonging to ETr(K) such that

{Pσ
i | 1 ≤ i ≤ r, 1 �= σ ∈ G}

is a Z-basis for a subgroup E{P } of finite index in ETr(K).
For this choice, we define δχ(P1 , . . . , Pr ) as in Section 2,
and define α+

χ (P1 , . . . , Pr ) by

α+
χ (P1 , . . . , Pr ) (4–1)

:=
fχ

τ(χ)Ω+zχδχ(P1 , . . . , Pr )
L(rχ )(E, 1, χ)

rχ !
.

If {Qσ
i | 1 ≤ i ≤ r, 1 �= σ ∈ G} is another set of points

that forms a Z-basis for a subgroup E{Q} of finite index in
ETr(K), then α+

χ (Q1 , . . . , Qr ) differs from α+
χ (P1 , . . . , Pr )

by a factor that is the square of an algebraic number in
Q (χ). To see this, choose an integer, b say, such that
bE{Q} ⊆ E{P }. Therefore, for each i, 1 ≤ i ≤ r, we have

bQi =
r∑

j=1

ξi,jPj

for some elements ξi,j ∈ Z[G]. For ξ =
∑

σ∈G aσσ ∈ Z[G],
define χ(ξ) =

∑
σ∈G aσχ(σ).

Then using the relation

λχ(ξ(P ), η(Q)) = χ(ξ)χ(η)λχ(P,Q),

[Fearnley and Kisilevsky 10, Corollary 6.2], we find that

δχ(Q1 , . . . , Qr ) =
|det Ξχ |2

b2r
δχ(P1 , . . . , Pr ),

where Ξχ is the r × r matrix

Ξχ =
(
χ(ξi,j )

)
.

Since

L(rχ )(E, 1, χ)
rχ !

=
τ(χ)
fχ

Ω+δχ(Q1 , . . . , Qr )α+
χ (Q1 , . . . , Qr )zχ ,

we see that

α+
χ (Q1 , . . . , Qr ) =

b2r

|det Ξχ |2 α+
χ (P1 , . . . , Pr ).

Proposition 4.1. Assume the Birch–Swinnerton-Dyer
and the Deligne–Gross conjectures. Then for any set
{P1 , . . . , Pr} such that {Pσ

i | 1 ≤ i ≤ r, 1 �= σ ∈ G} gen-
erates a subgroup of finite index in ETr(K), the product∏

χ0 �=χ∈Ĝ

α+
χ (P1 , . . . , Pr ) ∈ Q

is a nonzero rational number.

Proof. This can be proved using arguments
similar to those in the corresponding result
[Fearnley and Kisilevsky 10, Proposition 7.2]. We briefly
sketch the proof. By the Deligne–Gross conjecture, we
have rχ = r for all χ �= χ0 , and so the Birch–Swinnerton-
Dyer conjecture (1–1) implies

0 �=
∏

χ0 �=χ∈Ĝ

L(r)(E, 1, χ)
r!

=
RK

RQ
× (Ω+)�−1√|d(K)| × q1 ,

where 0 �= q1 ∈ Q .
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By (2–3), we have

RK

RQ
=

∏
χ0 �=χ∈Ĝ

δχ(P1 , . . . , Pr ) × q2

with 0 �= q2 ∈ Q . Also∏
χ0 �=χ∈Ĝ

zχ =
∏

γ∈Gal(Q (χ)/Q )

zχγ

=
∏

γ∈Gal(Q (χ)/Q )

γ(zχ) ∈ Q ,

and by [Washington 82, Corollary 4.6],∏
χ∈Ĝ

τ(χ) =
∏
χ∈Ĝ

fχ

τ(χ)
=
√

|d(K)|,

so it follows that

0 �=
∏

χ0 �=χ∈Ĝ

α+
χ (P1 , . . . , Pr ) ∈ Q .

The similarity of formula (4–1) to the formulas de-
scribing the Stark conjectures [Tate 84] and the results
of the computations described in Section 5 suggest that
the numbers α+

χ (P1 , . . . , Pr ) are algebraic and are in the
real subfield Q (χ)+ of the cyclotomic field Q (χ).

Conjecture 4.2. α+
χ (P1 , . . . , Pr ) ∈ Q (χ)+ and

α+
χγ (P1 , . . . , Pr ) = γ(α+

χ (P1 , . . . , Pr ))

for all γ ∈ Gal(Q (χ)/Q ).

The result of Proposition 4.1 is a consequence of Con-
jecture 4.2.

A more precise statement is predicted by the equivari-
ant Tamagawa number conjecture in [Burns 10].

5. NUMERICAL DATA

It is our intention in this section to provide numerical
data in support of Conjecture 4.2.

All curves are identified using the notation in
[Cremona 92].

The values in Tables 2, 3, 5, 6 are expressed to six
decimal places for ease of presentation. The original cal-
culations were performed to between 15 and 30 decimal
places. Most of the work was performed using PARI, with
Magma used for the height calculations.1

1 PARI is available at http://pari.math.u-bordeaux.fr/.

We first searched elliptic curves of conductor
N < 40000 for which there is a Dirichlet character χ of
order 3 or 5 and of prime conductor fχ < 1000 such that
we have both L(E, 1, χ) = 0 and L′(E, 1, χ) = 0. These
candidate curves were then scanned for points over the
corresponding number fields K using a coarse search
(looking for points in a small box). This usually failed,
but nevertheless succeeded sufficiently often to provide
illustrative data.

5.1. Computational Methodology

For a successful search, we have the following data:
an elliptic curve E/Q , a Dirichlet character χ of or-
der 3 or 5 and conductor fχ for which L(E, 1, χ) = 0,
L′(E, 1, χ) = 0, and points (of small height) in E(K) for
the cyclic extension K/Q cut out by the character χ.

The next step is to determine from the set of discov-
ered points, those pairs P1 , P2 that are independent and
can, together with their Galois conjugates, generate a
subgroup of finite index in ETr(K). Each pair was tested
by looking for a nonvanishing determinant of the height-
pairing matrix described in Section 2.

The search produced examples satisfying all the
above requirements. The value of the second derivative
L′′(E, 1, χ) was then computed for these cases using the
Computel package described in [Dokchitser 04].

In the tables, it is important that the characters and
the Galois action are fixed precisely.

Let g be the smallest positive primitive root modulo
fχ . (This is possible because we are considering only char-
acters χ with prime conductor.) Then the Galois group
Gal(Q (exp(2πi/fχ)/Q ) is generated by

σ0 : exp(2πi/fχ) �→ exp(2πig/fχ).

The field K = Kfχ
is the fixed field of σ�

0 and is generated
by

t = TrQ (exp(2πi/fχ ))/K (exp(2πi/fχ)).

Fix the character χfχ
by setting χfχ

(σ0) = exp(2πi/�).
By abuse of notation, we denote σ0 |K by σ0 . For ex-

ample, for the quintic subfield of conductor 11, we have
g = 2, t = 2 cos(2π/11), and σ0(t) = t2 − 2, and χ(σ0) =
exp(2πi/5).

Conductor Minimal Polynomial Galois Action

13 x3 + x2 − 4x + 1 t → −t2 − 2t + 2

TABLE 1.
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Curve Coefficients fχ L′′(E, 1, χfχ
)/2 τ(χ)

427b1 [1, 0, 1,−8, 7] 13 4.824852 + 4.887124i 0.910836 + 3.488607i

420c1 [0, 1, 0,−61, 164] 13 8.575300 + 2.356778i 0.910836 + 3.488607i

TABLE 2. Elliptic L-values cubic case.

Curve fχ Points δχ(P1 , P2) α+
χ (P1 , P2)

427b1 13 [t, t2 − 3]∗, [t + 1, t − 1] 2.683793 2.00000

420c1 13 [t + 3, 3t − 4], [4t2 + 10t + 3, 24t2 + 60t − 11] 1.546242 12.000000

TABLE 3. Algebraic L-values cubic case.

Conductor Minimal Polynomial Galois Action
11 x5 + x4 − 4x3 − 3x2 + 3x + 1 t → t2 − 2
31 x5 + x4 − 12x3 − 21x2 + x + 5 t → (3t4 − t3 − 33t2 − 24t + 15)/5

TABLE 4. Cyclic quintic fields.

Curve Coefficients fχ L′′(E, 1, χfχ
)/2 τ(χ)

L′′(E, 1, χγ
fχ

)/2 τ(χγ )

1299c1 [1, 0, 0,−10, 11] 31 −0.196900 + 13.286137i 4.55242 − 3.20554i

16.670545 + 0.629368i 5.22658 + 1.91908i

6355e1 [0, 0, 1,−17, 27] 11 12.724729 + 18.419497i 2.63611 + 2.01270i

10.288195 − 0.471113i 2.07016 + 2.59122i

13488c1 [0, 1, 0,−23, 36] 11 18.922505 − 5.654659i 2.63611 + 2.01270i

16.494633 + 10.867191i 2.07016 + 2.59122i

17747c1 [1,−1, 1,−15, 26] 11 7.594316 − 21.610790i 2.63611 + 2.01270i

29.627304 + 8.148574i 2.07016 + 2.59122i

25551b1 [0, 0, 1,−24, 43] 11 29.182911 − 8.720802i 2.63611 + 2.01270i

12.886158 + 8.489812i 2.07016 + 2.59122i

TABLE 5. Elliptic L-values quintic case.

Curve fχ Points δχ (P1 , P2 ) α+
χ (P1 , P2 )

δχγ (P1 , P2 ) α+
χγ (P1 , P2 )

1299c1 31 [−t, (2t4 + t3 − 22t2 − 31t)/5]∗ 1.776198 −16.180340
[t + 1,−t4 + t3 + 10t2 + 3t − 4] 3.608210 6.180340

6355e1 11 [t + 2, t4 − t3 − 2t2 + 4t − 1] 1.837063 5.000000
[−t2 − t + 2, 3t3 + 2t2 − 6t − 3]∗ 1.367420 5.000000

13488c1 11 [t3 − 2t + 1, 2t4 + 2t3 − 5t2 − 7t + 1] 1.065590 13.090170
[t3 + 2t2 + 2, 4t4 + 8t3 − 4t2 − 9t − 1]∗ 4.514680 1.909830

17747c1 11 [−t2 − 2t + 2,−t4 − 2t3 + 3t2 + 7t − 1]∗ 1.510702 −21.180340
[−t3 + t + 2,−2t4 + 3t3 + 7t2 − 4t − 5]∗ 13.889945 1.180340

25551b1 11 [3t + 1,−3t4 + 15t2 − 8] 2.671241 18.944272
[t3 − 2t + 3, 2t4 + t3 − 5t2 − 2t + 1]∗ 15.009137 1.055728

TABLE 6. Algebraic L-values quintic case.



Fearnley and Kisilevsky: Critical Values of Higher Derivatives of Twisted Elliptic L-Functions 221

Similarly, to fix the action of Gal(Q (χ)/Q ), let b de-
note the smallest positive primitive root modulo � and
define γ ∈ Gal(Q (χ)/Q ) by γ(ζ) = ζb for all �th roots
of unity ζ. Then χγ (σ) = γ(χ(σ)) for all χ ∈ Ĝ and all
σ ∈ G.

5.2. Cyclic Cubic Extensions

The number field corresponds to the Dirichlet character
of conductor 13 with the relevant properties shown in
Table 1.

Table 2 shows the basic properties of the elliptic
curves, the values of the derivatives of the critical L-
functions, and the value of the Gauss sums.

The data on the points are shown in Table 3, where t

is a root of the minimal polynomial indicated above. It
should be noted that the points are not necessarily the
generators of the Mordell–Weil group.

The values of α+
χ (P ) for the above two curves corre-

spond to at least 15 decimal places to integers and there-
fore appear to lie in the real subfield of the field of cube
roots of unity.

It should be noted that the point shown in Table 3
with an asterisk does not have zero trace. In this case, the
point was differenced with its Galois conjugate and the
modified point was then used in the subsequent analysis
to compute the alpha value.

5.3. Cyclic Quintic Extensions

The number fields correspond to Dirichlet characters of
conductors 11 and 31 with relevant properties as given
in Table 4.

Table 5 shows the basic properties of the elliptic
curves, the values of the derivatives of the critical L-
functions, and the value of the Gauss sums.

The data on the points are shown in Table 6, where
t is a root of the minimal polynomial indicated above.
It should be noted that the points are necessarily the
generators of the Mordell–Weil group.

The values of α+
χ (P1 , P2) for the five curves shown in

Table 6 correspond to at least 15 decimal places to the
roots of

x2 + 10x − 100 = 0 for 1299c1,

x2 − 10x + 25 = 0 for 6355e1,

x2 − 15x + 25 = 0 for 13488c1,

x2 + 20x − 25 = 0 for 17747c1,

x2 − 20x + 20 = 0 for 25551b1.

All these roots lie in the maximal real subfield of the
field of fifth roots of unity.

It should be noted that the points shown in the table
with an asterisk do not have zero trace. In these cases, the
points were differenced with their Galois conjugates, and
these modified points were then used in the subsequent
analysis to compute the alpha values.
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