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We study a multivariate Markov chain on the symmetric group
with remarkable enumerative properties. We conjecture that the
stationary distribution of this Markov chain can be expressed
in terms of positive sums of Schubert polynomials. This Markov
chain is a multivariate generalization of a Markov chain intro-
duced by the first author in the study of random affine Weyl
group elements.

1. A MARKOV CHAIN ON THE SYMMETRIC GROUP

A recent trend in algebraic combinatorics is the study
of Markov chains whose stationary distributions have a
combinatorial description. For example, the Razumov–
Stroganov conjecture concerns a Markov chain on the set
of link patterns on 2n points around a circle; Razumov
and Stroganov conjectured that each component of the
stationary distribution could be described as a sum over
alternating-sign matrices [Razumov and Stroganov 04].
After intensive study (see [Di Francesco et al. 06] and
references therein), this conjecture was recently proved
in [Cantini and Sportiello 11]. To give another exam-
ple, the asymmetric exclusion process (ASEP) is a
Markov chain on the 2n words of length n in two let-
ters. Different variants of the ASEP were studied in
[Duchi and Schaeffer 05] and [Corteel and Williams 07,
Corteel and Williams 12], in which the stationary distri-
butions were described in terms of Dyck paths, permu-
tations, and staircase tableaux.

In this paper, we study a Markov chain on the symmet-
ric group whose stationary distribution appears to have
remarkable combinatorial properties. Let Sn , n ≥ 3, de-
note the symmetric group on n letters and let (i, j) denote
the transposition that swaps i and j. We use conventions
so that left multiplication acts on values and right mul-
tiplication acts on positions.
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Define a matrix P = (pw,v )w,v∈Sn
by

pw,v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xw−1 (i+1) if v = (i, i + 1)w < w,

xw−1 (1) if v = (1, n)w > w,

∗ if w = v,

0 otherwise,

where ∗ is chosen so that
∑

v∈Sn
pw,v = 1 for each w ∈

Sn . If the xi are nonnegative real numbers summing to
at most 1, then we can think of P as defining a Markov
chain on Sn .

When we set xi = 1/n, we obtain the Markov chain
defined in [Lam 11, Section 3]. This specialized Markov
chain P |1/n was introduced to study the asymptotic be-
havior of random elements in the affine symmetric group,
or equivalently, random walks in the affine braid arrange-
ment. The stationary distribution of P |1/n was shown to
control the asymptotic “shapes” of random affine sym-
metric group elements. In particular, a detailed under-
standing of the Markov chain P would have applications
to the problem studied in [Lam 11]—our conjectures here
imply [Lam 11, Conjecture 1].

Proposition 1.1. The matrix PT − I has a one-
dimensional nullspace for generic values of x. In partic-
ular, when the xi are nonnegative real numbers summing
to at most 1, the Markov chain defined by P has a unique
stationary distribution.

Proof. When all xi are positive and sum to at most 1,
then it follows from [Lam 11, Proposition 1] that we
have an irreducible and aperiodic Markov chain on Sn ,
and thus we have a unique invariant distribution. If we
treat x1 , . . . , xn−2 , xn−1 as variables, then a basis of the
nullspace of PT − I can be written as a rational function
in the xi . This nullspace must be one-dimensional.

Let {ζ(w) ∈ Q(x1 , x2 , . . . , xn−1) | w ∈ W} denote a
vector spanning the nullspace of Proposition 1.1, which
we normalize by setting

ζ(w0) = x1+2+ ···+n−2
1 x1+2+ ···+n−3

2 · · ·xn−2 .

Suppose w = w1w2 · · ·wn ∈ Sn . Let

χ(w) = (w1 + 1)(w2 + 1) · · · (wn + 1) ∈ Sn

be the cyclic shift of w, where the letters of χ(w) are in-
terpreted modulo n. The following is derived immediately
from the definitions.

Proposition 1.2. For each w ∈ W , we have ζ(χ(w)) =
ζ(w).

2. SCHUBERT POLYNOMIALS

We fix notation concerning Schubert polynomials. Let ∂i

denote the divided difference operator on polynomials in
x1 , x2 , . . . , defined by

∂if(x1 , x2 , . . . )

=
f(x1 , . . . , xi , xi+1 , . . . ) − f(x1 , . . . , xi+1 , xi , . . . )

xi − xi+1
.

For the longest permutation w0 ∈ Sn , we first define

Sw 0 (x1 , x2 , . . . ) := xn−1
1 xn−2

2 · · ·xn−1 .

Next for w ∈ Sn , we let w−1w0 = si1 si2 · · · si�
be a re-

duced expression. Then

Sw := ∂i1 ∂i2 · · · ∂i�
Sw 0 .

The polynomial Sw does not depend on the choice of the
reduced expression. Furthermore, Sw does not depend on
the symmetric group to which w is considered to belong.

3. CONJECTURES

Our main conjecture is the following.

Conjecture 3.1. In increasing strength:

1. Each ζ(w) is a polynomial.

2. Each ζ(w) is a polynomial with nonnegative in-
teger coefficients.

3. Each ζ(w) is a nonnegative integral sum of Schu-
bert polynomials Su (x1 , x2 , . . . ).

Let η(w) denote the largest monomial that can be fac-
tored out of ζ(w). By Proposition 1.2, η(w) = η(χ(w)).
Write [m] to denote {0, 1, 2, . . . ,m}.

Conjecture 3.2. (Monomial factor.) Assume Conjecture
3.1(1). The map w �→ η(w) is an n-to-1 map from Sn to
{

xa1 +a2 + ···+an −2
1 xa2 + ···+an −2

2 · · ·xan −2
n−2 | (a1 , a2 , . . . , an−2)

∈ [n − 2] × [n − 3] × · · · × [1]
}

.

Moreover, η(w) = xa1 +a2 + ···+an −2
1 xa2 + ···+an −2

2 · · ·xan −2
n−2 is

given by

ai = #{k ∈ [i + 2, n] | wk ∈ [wi, wi+1]},

where [wi, wi+1] denotes a cyclic subinterval of [n].
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FIGURE 1. The transition matrix on S3 (in normal font)
with the transitions from a vertex to itself removed and
the normalized stationary distribution ζ (in bold and
underlined).

Conjecture 3.3. (Special value.) We have the following
special value:

ζ(id)
= S123···nS1n23···(n−1)S1(n−1)n23···(n−2) · · ·S134···n2 .

Conjecture 3.4. (Special Schubert factors.) Consider the
letters of w ∈ Sn in (cyclic) order. If there is an adja-
cent string of letters 1, 2, then ζ(w) is a multiple of the
Schubert polynomial S1345...n2 . More generally, if there is
an adjacent string of letters 1, 2, 3, . . . , k, then ζ(w) is a
multiple of the Schubert polynomial S1(k+1)(k+2)...n23...k .

4. DATA

We provide experimental data supporting these conjec-
tures.

4.1. The Case n = 3

See Figure 1.

w ζ(w)
4123 (a2 + ab + b2 )(ab + ac + bc) S1423S1342

4132 (a2 + ab + b2 )ab S1423S231

4213 (a + b + c)a2 b S1243S321

4231 (a2 b + a2 c + ab2 + abc + b2c)a S1432S21

4312 (ab + ac + bc)a2 S1342S312

4321 a3 b S4213

TABLE 1. The case n = 4.

w ζ(w)
51234 S15234S14523S13452

51243 S15234S14523abc

51324 S15234S12453a
2 b2c

51342 S15234S14532ab

51423 S15234S13452a
2 b2

51432 S15234a
3 b3c

52134 S12534S13452a
3 b2

52143 S12534a
4 b3c

52314 (S15432 + S164235 )a2 bc

52341 (S1753246 + S265314 + S2743156

+S356214 + S364215 + S365124 )a
52413 (S164325 + S25431 )a2 b

52431 S15243a
3 b2c

53124 (S146325 + S24531 )a3 b

53142 S12543a
4 b2c

53214 S12354a
5 b3c

53241 S13542a
4 b2

53412 S15423S13452a
2

53421 S15423a
3 bc

54123 S14523S13452a
3

54132 S14523a
4 bc

54213 S12453a
5 b2c

54231 S14532a
4 b

54312 S13452a
5 b2

54321 a6 b3c

TABLE 2. The case n = 5.

4.2. The Case n = 4

Using Proposition 1.2, we see that we need to provide
data only for permutations w for which w1 = n. In Ta-
ble 1, we use a = x1 , b = x2 , and c = x3 . We also write
the answers as products of Schubert polynomials. Since
a product of Schubert polynomials is also a nonnegative
linear combination of Schubert polynomials, this sup-
ports Conjecture 3.1(3).

Note that a2b + a2c + ab2 + abc + b2c is the only non-
trivial factor that is not a symmetric polynomial.

4.3. The Case n = 5

For n = 5, we write our answers as products and sums of
Schubert polynomials, multiplied by the monomial factor
η(w). See Table 2.
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