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We study the collection of group structures that can be realized
as a group of rational points on an elliptic curve over a finite field
(such groups are well known to be of rank at most two). We also
study various subsets of this collection that correspond to curves
over prime fields or to curves with a prescribed torsion. Some
of our results are rigorous and are based on recent advances
in analytic number theory; some are conditional under certain
widely believed conjectures; and others are purely heuristic in
nature.

1. INTRODUCTION

Let F q denote the finite field with q elements. It is well
known that the group E(F q ) of points on an elliptic curve
E defined over F q has rank at most two, and therefore,

E(F q ) ∼= Zn × Zkn (1–1)

for some natural numbers n and k, where Zm de-
notes the ring of congruence classes modulo m for each
natural number m; see [Howe 93, Rück 87, Voloch 88,
Waterhouse 69]. On the other hand, little is known about
the structure of the set of groups Zn × Zkn that can be
realized as the group of points on an elliptic curve defined
over a finite field. Besides being of intrinsic interest, var-
ious questions about the existence and frequency of var-
ious group structures of elliptic curves over finite fields
are of primary importance for elliptic curve cryptogra-
phy; see [Avanzi et al. 05] for a comprehensive treatise
on such applications.

Our aim in the present paper is to introduce and in-
vestigate the set

SΠ =
{
(n, k) ∈ N 2 : ∃prime power q and E/F q

with E(F q ) ∼= Zn × Zkn

}
.

Since we are interested in groups Zn × Zkn with a real-
ization (1–1) in which q = p is a prime number, we also
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study the subset Sπ ⊂ SΠ defined by

Sπ =
{
(n, k) ∈ N 2 : ∃prime p and E/F p

with E(F p) ∼= Zn × Zkn

}
.

Although one can expect Sπ and SΠ to be reasonably
“dense” in N 2 , the complementary sets also appear to be
rather large. For example, here is the list of pairs (n, k) �∈
SΠ with n, k ≤ 25:

(11, 1), (11, 14), (13, 6), (13, 25), (15, 4), (19, 7),
(19, 10), (19, 14), (19, 15), (19, 18), (21, 18), (23, 1),
(23, 5), (23, 8), (23, 19), (25, 5), (25, 14). (1–2)

To investigate the distribution in N 2 of the elements of
Sπ and of SΠ, for natural numbers N and K we introduce
the sets

Sπ (N,K) =
{
(n, k) ∈ Sπ : n ≤ N, k ≤ K

}
,

SΠ(N,K) =
{
(n, k) ∈ SΠ : n ≤ N, k ≤ K

}
.

These sets are the main objects of study in this note.
For natural numbers n and k, we also put

P(n, k)
=
{
primes p : ∃E/F p for which E(F p) ∼= Zn × Zkn

}
.

The set P(n, k) parameterizes the set of finite fields of
prime cardinality over which Zn × Zkn can be realized
as the group of points on an elliptic curve. For natural
numbers N and K we study the double sum

NP(N,K) =
∑
n≤N

∑
k≤K

#P(n, k),

for which we obtain an asymptotic formula in certain
ranges.

Finally, for natural numbers m, k we introduce and
compare the sets

Nm,k =
{
n ∈ N : ∃ p prime and E/F pm

with E(F pm ) ∼= Zn × Zkn

}
,

Ñm,k =
{
n ∈ N : ∃ p prime, � ∈ Z

with pm = kn2 + �n+ 1, |�| ≤ 2
√
k
}
.

We remark that the distribution of group structures
generated by elliptic curves over a fixed finite field F q has
been studied in [Rezaeian Farashahi and Shparlinski 12].

2. NOTATIONAL CONVENTIONS

Throughout the paper, the letter p always denotes a
prime number, and q always denotes a prime power. As
usual, we use π(x) to denote the number of primes less
than or equal to x. For coprime integers a and m ≥ 1, we

put

π(x;m,a) = #
{
p ≤ x : p ≡ a (mod m)

}
,

Π(x;m,a) = #
{
q ≤ x : q ≡ a (mod m)

}
.

We also set

ψ(x;m,a) =
∑
n≤x

n≡a(mod m )

Λ(n),

where Λ(n) is the von Mangoldt function.
For any set A ⊆ N and real x > 0, we define A(x) ={
a ∈ A : a ≤ x

}
.

For functions F and G > 0, the notations F = O(G),
F � G, and G F are all equivalent to the assertion
that the inequality |F | ≤ cG holds with some constant
c > 0. In what follows, all constants implied by the sym-
bols O, �, and  may depend (where obvious) on the
small real parameter ε but are absolute otherwise; we
write Oρ , �ρ , and ρ to indicate that the implied con-
stant depends on a given parameter ρ.

3. PRELIMINARIES

Lemma 3.1. If q is a prime power, and E is an elliptic
curve defined over F q such that E(F q ) ∼= Zn × Zkn , then
q = kn2 + �n+ 1 for some integer � that satisfies |�| ≤
2
√
k.

Proof. By the Hasse bound, we can write kn2 = q + 1 − a

for some integer a that satisfies the bound a2 ≤ 4q. Using
the Weil pairing, one also sees that q ≡ 1 (mod n); hence
a = �n+ 2 for some integer �, and we have q = kn2 +
�n+ 1. Since

�2n2 + 4�n+ 4 = (�n+ 2)2 = a2 ≤ 4q = 4kn2 + 4�n+ 4,

it follows that |�| ≤ 2
√
k as required.

The following result from [Waterhouse 69] (see also
[Washington 08, Theorem 4.3]) is a characterization of
the natural numbers N that can be realized as the car-
dinality of the group of F q -rational points on an elliptic
curve E defined over F q .

Lemma 3.2. Let q = pm be a prime power, and suppose
that N = q + 1 − a for some integer a. Then there is an
elliptic curve E defined over F q such that #E(F q ) = N if
and only if |a| ≤ 2

√
q and one of the following conditions

is met:

(i) gcd(a, p) = 1;
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(ii) m even and a = ±2
√
q;

(iii) m is even, p �≡ 1 (mod 3), and a = ±√
q;

(iv) m is odd, p = 2 or 3, and a = ±p(m+1)/2 ;

(v) m is even, p �≡ 1 (mod 4), and a = 0;

(vi) m is odd and a = 0.

For every admissible cardinality N , the following re-
sult from [Rück 87] (see also [Washington 08, Theo-
rem 4.4]) describes the group structures that are possible
for E(F q ) given that #E(F q ) = N ; see also [Howe 93,
Voloch 88].

Lemma 3.3. Let q = pm be a prime power, and suppose
that N is an integer such that #E(F q ) = N for some
elliptic curve E defined over F q . Write N = pen1n2 with
p � n1n2 and n1 | n2 (possibly n1 = 1). Then there is an
elliptic curve E over F q for which

E(F q ) ∼= Zpe × Zn1 × Zn2

if and only if

(i) n1 = n2 in case (ii) of Lemma 3.2;

(ii) n1 | q − 1 in all other cases of Lemma 3.2.

Combining Lemmas 3.2 and 3.3, we get the following
corollary.

Corollary 3.4. If p is prime and N ∈ N with |p+ 1 −
N | ≤ 2

√
p, then there is an elliptic curve E defined over

F p with #E(F p) = N . In this case, if we write N = n1n3

with p � n1 and n1 | n3 (possibly n1 = 1), then n1 | p− 1
and E(F p) ∼= Zn1 × Zn3 .

Lemma 3.5. A prime p lies in P(n, k) if and only if p =
kn2 + �n+ 1 for some integer � such that |�| ≤ 2

√
k.

Proof. By definition, if p lies in P(n, k), then there is an
elliptic curve E/F p such that E(F p) ∼= Zn × Zkn . Ac-
cording to Lemma 3.1, p = kn2 + �n+ 1 with some inte-
ger � such that |�| ≤ 2

√
k.

Conversely, suppose that p = kn2 + �n+ 1 and |�| ≤
2
√
k. Taking N = kn2 , we have

|p+ 1 −N |2 = (�n+ 2)2 = �2n2 + 4�n+ 4
≤ 4kn2 + 4�n+ 4 = 4p ;

hence |p+ 1 −N | ≤ 2
√
p . Applying Corollary 3.4 with

n1 = n and n3 = kn, we see that there is an elliptic

curve E/F p such that E(F p) ∼= Zn × Zkn , and thus p ∈
P(n, k).

Next, we relate NP(N,K) to the distribution of primes
in short arithmetic progressions.

Lemma 3.6. For all N,K ∈ N , we have

NP(N,K) =
∑
n≤N

|�|≤2
√
K

(
π(Kn2 + �n+ 1;n2 , �n+ 1)

− π

(
1
4
�2n2 + �n+ 1;n2 , �n+ 1

))
.

Proof. Fix n ≤ N , and let T1(n) be the collection of pairs
(�, p) such that:

(i) |�| ≤ 2
√
K;

(ii) p is a prime congruent to �n+ 1 (mod n2);

(iii) 1
4 �

2n2 + �n+ 1 ≤ p ≤ Kn2 + �n+ 1.

Since 1
4 �

2n2 + �n+ 1 =
( 1

2 �n+ 1
)2 cannot be prime, it is

easy to see that

#T1(n) =
∑

|�|≤2
√
K

(
π(Kn2 + �n+ 1;n2 , �n+ 1)

− π

(
1
4
�2n2 + �n+ 1;n2 , �n+ 1

))
.

Let T2(n) be the collection of pairs (k, p) such that

(iv) k ≤ K;

(v) p is prime and p = kn2 + �n+ 1 for some integer
� such that |�| ≤ 2

√
k .

By Lemma 3.5, condition (v) is equivalent to the asser-
tion that p ∈ P(n, k), whence

#T2(n) =
∑
k≤K

#P(n, k).

Since∑
n≤N

#T1(n)

=
∑
n≤N

|�|≤2
√
K

(
π(Kn2 + �n+ 1;n2 , �n+ 1)

− π

(
1
4
�2n2 + �n;n2 , �n+ 1

))
and ∑

n≤N
#T2(n) =

∑
n≤N

∑
k≤K

#P(n, k) = NP(N,K),

to prove the lemma it suffices to show that #T1(n) =
#T2(n) for each n ≤ N .
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First, let (�, p) ∈ T1(n). By (ii), we can write p =
kn2 + �n+ 1 for some integer k. Substituting into (iii),
we have

1
4
�2n2 + �n+ 1 ≤ kn2 + �n+ 1 ≤ Kn2 + �n+ 1,

whence k ≤ K and |�| ≤ 2
√
k. This shows that the pair

(k, p) lies in T2(n). Since the map T1(n) → T2(n) given
by (�, p) �→ (k, p) is clearly injective, we have #T1(n) ≤
#T2(n).

Next, suppose that (k, p) ∈ T2(n), and let � be as in
(v). By (iv), we have |�| ≤ 2

√
k ≤ 2

√
K, and p ≡ �n+ 1

(mod n2) by (v). Furthermore, since 1
4 �

2 ≤ k ≤ K, the
prime p = kn2 + �n+ 1 satisfies (iii). This shows that the
pair (�, p) lies in T1(n). Since the map T2(n) → T1(n)
given by (k, p) �→ (�, p) is injective, we have #T2(n) ≤
#T1(n), and the proof is complete.

4. PRIMES IN SPARSE PROGRESSIONS

Below, we use the following result of [Baker 10] (see also
[Baier and Zhao 06, Baier and Zhao 08]), which is a vari-
ant of the Bombieri–Vinogradov theorem, which deals
with primes in arithmetic progressions to square moduli.
In fact, we present it in a slightly modified (but equiva-
lent) form that suits better our purpose.

Lemma 4.1. For fixed ε > 0 and C > 0, we have∑
m≤x4 3 / 1 8 0−ε

mmax
y≤x

max
gcd(a,m )=1

∣∣∣∣ψ(y;m2 , a) − y

ϕ(m2)

∣∣∣∣
� x

(log x)C
,

where the implied constant depends only on ε and C.

By partial summation one obtains the following corol-
lary.

Corollary 4.2. For fixed ε > 0 and C > 0, we have∑
m≤x4 3 / 1 8 0−ε

mmax
y≤x

max
gcd(a,m )=1

∣∣∣∣π(y;m2 , a) − π(y)
ϕ(m2)

∣∣∣∣
� x

(log x)C
,

where the implied constant depends only on ε and C.

Furthermore, it is shown in [Baker 10] that for pro-
gressions modulo squares of primes, the range can be
extended to the same level as in the classical Bombieri–
Vinogradov theorem.

Lemma 4.3. For fixed ε > 0 and C > 0, we have∑
p≤x1 / 4−ε

pmax
y≤x

max
gcd(a,p)=1

∣∣∣∣ψ(y; p2 , a) − y

p(p− 1)

∣∣∣∣
� x

(log x)C
,

where the implied constant depends only on ε and C.

For our applications of Corollary 4.2, we also need the
well-known asymptotic formula∑

n≤X

n

ϕ(n)
=

315 ζ(3)
2π4 X +O(logX) ; (4–1)

for more precise results, we refer the reader to [Nowak 89,
Sitaramachandra 82, Sitaramachandra 85].

For any sequence of integers A = (an )∞n=1 and any pos-
itive real numbers λ and X, we define the sum

P(A;λ,X) =
∑
n≤X

π(λn2 ;n2 , an ). (4–2)

Lemma 4.4. Fix ε ∈ (0, 43/94). For any sequence of in-
tegers A = (an )∞n=1 such that gcd(an , n) = 1 for all n,
and for any real numbers λ and X such that 3 ≤ X ≤
λ43/94−ε , the estimate

P(A;λ,X) =
315 ζ(3)

2π4

λX

log(λX2)
+O

(
λX(log logX)2

(logX)2

)
holds, where the implied constant depends only on ε.

Proof. Let

J =
⌊

2 log logX
log 2

⌋
.

Put

Xj = X2j−J (j = 0, 1, . . . , J).

Note that
X

(logX)2 ≤ X0 ≤ 2X
(logX)2 ,

and we have

logXj  logX.

Using the trivial bound π(λn2 ;n2 , an ) ≤ λ for all n ≤
X0 , we derive that

P(A;λ,X) =
J−1∑
j=0

Sj +O

(
λX

(logX)2

)
, (4–3)

where

Sj =
∑

Xj <n≤Xj + 1

π(λn2 ;n2 , an ) (j = 0, 1, . . . , J).
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In view of the hypothesis 3 ≤ X ≤ λ43/94−ε , we can apply
Corollary 4.2 with C = 2 to derive the bound∣∣∣∣∣∣Sj −

∑
Xj <n≤Xj + 1

π(λn2)
ϕ(n2)

∣∣∣∣∣∣� λX

(logX)2 . (4–4)

Using the prime number theorem (see [Tenenbaum 95,
Chapter II.4, Theorem 1], the well-known lower bound
on the Euler function (see [Tenenbaum 95, Chapter I.5,
Theorem 4]), and the trivial inequalities

log(λX2) ≥ log(λn2) ≥ log(λX2
0 )

= log(λX2) +O(log logX),

which hold for any integer n ∈ [X0 ,X], we derive that∑
Xj <n≤Xj + 1

π(λn2)
ϕ(n2)

= λ
∑

Xj <n≤Xj + 1

n2

ϕ(n2) log(λn2)
+O

(
λXj

(logX)2

)

=
λ

log(λX2)

∑
Xj <n≤Xj + 1

n

ϕ(n)
+O

(
λXj (log logX)2

(logX)2

)
.

Combining this result with (4–4), we see that

Sj −
λ

log(λX2)

∑
Xj <n≤Xj + 1

n

ϕ(n)
� λXj (log logX)2

(logX)2 .

We insert this estimate in (4–3) and deduce that

P(A;λ,X) − λ

log(λX2)

∑
X 0<n≤X

n

ϕ(n)

� λ(log logX)2

(logX)2

J−1∑
j=0

Xj +
λX

(logX)2 � λ(log logX)2

(logX)2 .

Recalling (4–1), we conclude the proof.

We are certain that the error term of Lemma 4.4
can be improved easily, but we have not attempted to
do so, since we require only the asymptotic behavior of
P(A;λ,X) stated in the next corollary.

Corollary 4.5. Fix ε ∈ (0, 43/94). For any sequence of in-
tegers A = (an )∞n=1 such that gcd(an , n) = 1 for all n,
and for any real numbers λ and X such that λε ≤ X ≤
λ43/94−ε , the estimate

P(A;λ,X) =
(

315 ζ(3)
2π4 + o(1)

)
λX

log(λX2)

holds, where the function implied by o(1) depends only
on ε.

5. THE SETS Sπ (N, K ) AND S�(N, K )

We begin with the observation that

#Sπ (N,K) ≥
∑
n≤N

π(Kn2 ;n2 , 1). (5–1)

Indeed, if p = kn2 + 1 is a prime that does not exceed
Kn2 , then the pair (n, (p− 1)/n2) lies in Sπ (N,K).
Clearly, Corollary 4.5 can be applied to the sum on the
right-hand side of (5–1) to derive the lower bound

#Sπ (N,K) ≥
(

315 ζ(3)
2π4 + o(1)

)
KN

log(KN 2)
,

provided that Kε ≤ N ≤ K43/94−ε . Moreover, even with-
out the condition N ≥ Kε , we are able to get a lower
bound of the same strength.

Theorem 5.1. Fix ε ∈ (0, 43/94), and suppose that N ≤
K43/94−ε . Then the following bound holds:

#Sπ (N,K)  KN

logK
.

Proof. Using (5–1) together with the elementary bound

ψ(x;m,a)
log x

≤ Π(x;m,a) = π(x;m,a) +O
(
x1/2 log x

)
,

we have

#Sπ (N,K) ≥
∑

N/2≤n≤N
π(Kn2 ;n2 , 1)

≥
∑

N/2≤n≤N

(
ψ(Kn2 ;n2 , 1)

log(Kn2)
+O

(
K1/2n log(Kn2)

))

 1
logK

∑
N/2≤n≤N

ψ

(
1
4
KN 2 ;n2 , 1

)
+O

(
K1/2N 2 logK

)
=

1
logK

∑
N/2≤n≤N

KN 2

4ϕ(n2)
+ E(N,K)

+O
(
K1/2N 2 logK

)
,

where∣∣E(N,K)
∣∣

≤ 1
logK

∑
N/2≤n≤N

∣∣∣∣ψ(
1
4
KN 2 ;n2 , 1) − KN 2

4ϕ(n2)

∣∣∣∣
≤ 2
N logK

∑
N/2≤n≤N

n

∣∣∣∣ψ(1
4
KN 2 ;n2 , 1

)
− KN 2

4ϕ(n2)

∣∣∣∣ .
Applying Lemma 4.1 with x = 1

4KN
2 and C = 1 (which

is permissible, since our assumption N ≤ K43/94−ε
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implies that N ≤ ( 1
4KN

2)43/180−δ for a suitable δ > 0
that depends only on ε), we see that

E(N,K) � KN

(logK)2 ,

and therefore,

#Sπ (N,K)  KN 2

logK

∑
N/2≤n≤N

1
ϕ(n2)

+O

(
K1/2N 2 logK +

KN

(logK)2

)
.

Since ∑
N/2≤n≤N

1
ϕ(n2)

≥
∑

N/2≤n≤N

1
n2  1

N
,

the result follows.

It is also clear that considering only prime values of n
and using Lemma 4.1 instead of Lemma 4.3, we obtain a
slightly weaker estimate but in a wider range.

Theorem 5.2. Fix ε ∈ (0, 1/2), and suppose that N ≤
K1/2−ε . Then the following bound holds:

#Sπ (N,K)  KN

(logK)2 .

We now turn to upper bounds on #Sπ (N,K).

Theorem 5.3. For any fixed K ∈ N , we have

#Sπ (N,K) �K
N

logN
.

Proof. The Selberg sieve provides the following upper
bound on the number of primes represented by an irre-
ducible polynomial F (n) = an2 + bn+ 1 with integer co-
efficients (see [Halberstam and Richert 74, Theorem 5.3]
for a more general statement):

#
{
n ≤ x : F (n) is prime

}
≤ 2

∏
p

(
1 − χp(b2 − 4a)

p− 1

)
× x

log x

(
1 +OF

(
log log 3x

log x

))
, (5–2)

where χp is the quadratic character modulo p, that is,
the Dirichlet character afforded by the Legendre symbol.
The constant implied by OF depends on F , and this is the
reason that K is fixed in the statement of the theorem.

Trivially, we have

#Sπ (N,K)

≤
∑
k≤K

∑
|�|<2

√
k

#
{
n ≤ N : kn2 + �n+ 1 is prime

}
.

Applying (5–2) with F (n) = kn2 + �n+ 1, the result is
immediate.

Corollary 5.4. For any fixed K ∈ N we have

#SΠ(N,K) �K
N

logN
.

Proof. We have

#SΠ(N,K) ≤ #Sπ (N,K) +
∞∑
j=2

#S(j )
Π (N,K), (5–3)

where for each j ≥ 2, we use S(j )
Π (N,K) to denote the set

of pairs (n, k) in SΠ(N,K) associated with prime powers
of the form q = pj with p prime. It is easy to see that

#S(j )
Π (N,K) � K3/2π

((
KN 2 + 2K1/2N + 1

)1/j
)

�
{
K2N/ logN if j = 2,

K11/6N 2/3 if j ≥ 3.

Indeed, for fixed k and p there are only O(K1/2) possibil-
ities for �. Thus, for fixed p there are O(K3/2) possibil-
ities for (n, k), where the implied constant is absolute.
Furthermore, S(j )

Π (N,K) = ∅ for all but O (log(KN))
choices of j. Thus from (5–3), we deduce that

#SΠ(N,K) ≤ #Sπ (N,K) +OK (N/ logN),

and the result follows from Theorem 5.3.

An immediate consequence of Corollary 5.4 is that
there are infinitely many pairs (n, k) that do not lie in
SΠ. In fact, if k ∈ N is fixed, then we see that (n, k) �∈ SΠ

for almost all n ∈ N .
The situation is very different when n ∈ N is fixed,

for in this case we expect that the pair (n, k) lies in the
smaller set Sπ for all but finitely many k ∈ N . To prove
this, one needs to show that

π

((
k1/2n+ 1

)2
;n, 1

)
− π

((
k1/2n− 1

)2
;n, 1

)
> 0

for all sufficiently large k. Although this problem is in-
tractable at present, the probabilistic model of Cramér
(see, for example, [Granville 95, Soundararajan 07])
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predicts that

π

((
k1/2n+ 1

)2
;n, 1

)
− π

((
k1/2n− 1

)2
;n, 1

)
n

k1/2

log k

for all large k. Unconditionally, it may be possible to
answer the following questions:

� If n ∈ N is fixed, is it true that (n, k) ∈ SΠ for al-
most all k ∈ N?

� Is it true that for almost all n ∈ N , there are only
finitely many pairs (n, k) that do not lie in SΠ?

We conclude this section with the following theorem.

Theorem 5.5. The set SΠ \ Sπ is infinite. In fact, we have

#
{
n ≤ N : (n, 1) ∈ SΠ \ Sπ

}
≥ (2 + o(1))

N

logN
(N → ∞).

Proof. For fixed j ∈ {±1}, let S̃j (N) be the set of nat-
ural numbers n ≤ N such that n+ j is prime, but
n2 + 1, n2 + n+ 1, and n2 − n+ 1 are all compos-
ite. Using the prime number theorem together with
a standard upper bound from sieve theory such as
[Halberstam and Richert 74, Theorem 5.3], one has

#S̃j (N) ≥ (1 + o(1))N/ logN (j ∈ {±1}, N → ∞),

whereas

#
(
S̃+1(N) ∩ S̃−1(N)

)
� N/(logN)2 .

For each n ∈ S̃j (N), (n+ j)2 is a prime power, and thus
(n, 1) ∈ SΠ; on the other hand, n2 + �n+ 1 is clearly
composite for −2 ≤ � ≤ 2, and thus (n, 1) �∈ Sπ . There-
fore,

#
{
n ≤ N : (n, 1) ∈ SΠ \ Sπ

}
≥ #S̃+1(N) + #S̃−1(N) − #

(
S̃+1(N) ∩ S̃−1(N)

)
,

and the result follows from the bounds above.

6. THE DOUBLE SUM NP (N, K )

Here we study the double sum NP(N,K) using the for-
mula of Lemma 3.6. Our main result is the following.

Theorem 6.1. Fix ε ∈ (0, 43/94), and suppose that Kε ≤
N ≤ K43/94−ε . Then the estimate

NP(N,K) =
(

210 ζ(3)
π4 + o(1)

)
K3/2N

log(KN 2)

holds, where the function implied by o(1) depends only
on ε.

Proof. Using the trivial estimate

π(x+ y; k, a) = π(x; k, a) +O(y/k + 1),

we see from Lemma 3.6 that NP(N,K) is equal to

∑
n≤N

|�|≤2
√
K

(
π
(
Kn2 ;n2 , �n+ 1

)
− π

(
1
4
�2n2 ;n2 , �n+ 1

)

+O

(
�

n
+ 1
))

=
∑
n≤N

|�|≤2
√
K

(
π
(
Kn2 ;n2 , �n+ 1

)
− π

(
1
4
�2n2 ;n2 , �n+ 1

))

+O(K logN +K1/2N)

=
∑

|�|≤2
√
K

(
P(A� ;K,N) − P

(
A� ;

1
4
�2 , N

))
+O(K logN),

where A� = (n�+ 1)∞n=1 for each �, and the sum
P(A� ;λ,X) is defined by (4–2). Note that we have used
the boundK1/2N � K logN , which follows from our hy-
pothesis that N ≤ K43/94−ε .

We now put L = 2
√
K/ logK and write

NP(N,K) = S1 + S2 +O(K logN), (6–1)

where

S1 =
∑
|�|≤L

(
P(A� ;K,N) − P

(
A� ;

1
4
�2 , N

))
,

S2 =
∑

L< |�|≤2
√
K

(
P(A� ;K,N) − P

(
A� ;

1
4
�2 , N

))
.

For S1 we use the trivial estimate

S1 ≤
∑
|�|≤L

P(A� ;K,N)

together with Corollary 4.5 to derive the bound

S1 � LKN

logK
� K3/2N

(logK)2 . (6–2)

For S2 we apply Corollary 4.5 to both terms in the
summation. Writing Θ = 315 ζ(3)/(2π4), and taking into
account that

log(�2N 2/4) = (1 + o(1)) log(KN 2) (L < |�| ≤ 2
√
K),
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we see that

S2 =
∑

L< |�|≤2
√
K

(
(Θ + o(1))

KN

log(KN 2)

− (Θ + o(1))
�2N

4 log(�2N 2/4)

)
= (Θ + o(1))

N

log(KN 2)

∑
L< |�|≤2

√
K

(
K − �2

4

)

=
(

4
3
Θ + o(1)

)
K3/2N

log(KN 2)
.

Using this bound and (6–2) in (6–1), we finish the proof.

7. THE SETS Nm,k AND ˜Nm,k

7.1. A General Observation

In this section, we study the sets Nm,k and Ñm,k intro-
duced in Section 1. We begin with a lemma.

Lemma 7.1. For all m, k ∈ N we have Nm,k ⊆ Ñm,k .

Proof. For every n ∈ Nm,k , there exist a prime p and an
elliptic curve E defined over F pm such that E(F pm ) ∼=
Zn × Zkn . By Lemma 3.1, pm = kn2 + �n+ 1 for some
integer � that satisfies |�| ≤ 2

√
k, that is, n ∈ Ñm,k .

7.2. Results with Fixed Values of m

In the case that m = 1, the set inclusion of Lemma 7.1 is
an equality.

Theorem 7.2. For all k ∈ N we have N1,k = Ñ1,k .

Proof. In view of Lemma 7.1, it suffices to show that
Ñ1,k ⊆ N1,k . For every n ∈ Ñ1,k , there is a prime p such
that p = kn2 + �n+ 1. Put a = n�+ 2, and note that
|a| ≤ 2

√
p, since

a2 = n2�2 + 4n�+ 4 ≤ 4
(
n2k + n�+ 1

)
= 4p.

If gcd(a, p) = 1, then by Lemma 3.2 (i), there is an el-
liptic curve E/F p such that #E(F p) = p+ 1 − a = kn2 .
On the other hand, if p | a, then the inequality |a| ≤ 2

√
p

implies that either p ≤ 3 and a = ±p, or a = 0. Applying
Lemma 3.2 (vi) in the former case and Lemma 3.2 (iv) in
the latter, we again conclude that there is an elliptic curve
E/F p such that #E(F p) = kn2 . In all cases, since p ≡ 1
(mod n), Lemma 3.3 (ii) guarantees that there is an ellip-
tic curve E defined over F p such that E(F p) ∼= Zn × Zkn .
Therefore, n ∈ N1,k .

Lemma 7.3. For natural numbers n, k the set

P̃(n, k) =
{
primes p : p2 = kn2 + �n+ 1 for some � ∈ Z

with |�| ≤ 2
√
k
}

contains at most one prime except for the following cases:

(i) P̃(n, k) = {2, 3} if n = 1 and 4 ≤ k ≤ 9;

(ii) P̃(n, k) = {hn± 1} if k = h2 for some h ∈ N , and
both hn− 1 and hn+ 1 are prime.

Proof. It is easy to see that

P̃(n, k) =
{
primes p ∈

[
n
√
k − 1, n

√
k + 1

]
: (7–1)

p2 ≡ 1 (mod n)
}
.

Since the interval
[
n
√
k − 1, n

√
k + 1

]
has length two,

the result follows immediately.

When m = 2, the inclusion of Lemma 7.1 can be
proper. Fortunately, we are able to classify those natural
numbers k for which this happens.

Theorem 7.4. For all k ∈ N we have N2,k = Ñ2,k except
for the following disjoint cases:

(i) k = p2 + 1 for some prime p ≡ 1 (mod 4);

(ii) k = p2 ± p+ 1 for some prime p ≡ 1 (mod 3);

(iii) k = h2 for some integer h > 1.

In cases (i) and (ii), we have Ñ2,k \ N2,k = {1}, and in
case (iii), we have

Ñ2,k \ N2,k =
{
n ∈ N : hn− 1 or hn+ 1 is prime

}
.

(7–2)

Proof. Let k be fixed, and suppose that n ∈ Ñ2,k . Let
p and � be such that p2 = kn2 + �n+ 1, |�| ≤ 2

√
k, and

put a = �n+ 2. Then |a| ≤ 2p, and using Lemmas 3.2 and
3.3, it is easy to see that n lies in N2,k except possibly in
the following cases:

(1) a = 0 and p ≡ 1 (mod 4);

(2) a = ±p and p ≡ 1 (mod 3);

(3) a = ±2p and k is not of the form pj for any j ≥ 0.

In case (1) we have �n = −2, which implies either that
(n, �) = (2,−1) and p2 = 4k − 1, which is impossible, or
that (n, �) = (1,−2) and p2 = k − 1. This shows that
Ñ2,k \ N2,k ⊆ {1} and that k satisfies condition (i). Since
k ≥ 26 and k �= h2 for any h > 1, we have P̃(n, k) = {p}
by Lemma 7.3. It remains to show that 1 �∈ N2,k in
this case. Suppose to the contrary that 1 ∈ N2,k . Then
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there exist a prime p0 and an elliptic curve E defined
over F p2

0
such that E(F p2

0
) ∼= Z1 × Zk . By Lemma 3.1,

we see that p2
0 = k + �+ 1 for some integer � such that

|�| ≤ 2
√
k; that is, p0 ∈ P̃(n, k). Therefore, p0 = p and

#E(F p2 ) = k. But this is impossible by Lemma 3.2 (v),
since p ≡ 1 (mod 4).

In case (2), we have p = ±(�n+ 2) ≡ ±2 (mod n),
whence p2 ≡ 4 (mod n). Since p2 = kn2 + �n+ 1 ≡ 1
(mod n) as well, it follows that n | 3. We claim that n �=
3. Indeed, if n = 3, then p2 = 9k + 3�+ 1 = 9k ± p− 1,
and therefore p2 ∓ p+ 1 ≡ 0 (mod 9). But this is impos-
sible, because neither X2 +X + 1 nor X2 −X + 1 has
a root in Z9 . If n = 1, then p2 = k + �+ 1 = k ± p− 1.
This shows that Ñ2,k \ N2,k ⊆ {1} and that k satisfies
condition (ii). The proof that 1 �∈ N2,k is similar to that
of the preceding case.

In case (3), we have p2 = kn2 ± 2p− 1 or kn2 = (p∓
1)2; it follows that n | p∓ 1, and k = h2 with h = (p∓
1)/n. Since k �= p0 , we see that k satisfies condition (iii).
It remains to establish (7–2).

Fix h > 1, and suppose that n ∈ Ñ2,h2 . Then
P̃(n, h2) �= ∅, where by (7–1) we have

P̃(n, h2)
=
{
primes p ∈ [hn− 1, hn+ 1] : p2 ≡ 1 (mod n)

}
.

First, suppose P̃(n, h2) contains a prime p in the open
interval (hn− 1, hn+ 1). Then, using Lemma 7.3, we de-
duce that P̃(n, h2) = {p}, and thus case (3) does not oc-
cur for any prime in P̃(n, h2). Also, cases (1) and (2) can-
not occur, for otherwise k = h2 would satisfy (i) or (ii),
respectively, rather than (iii). Consequently, n ∈ N2,h2 in
this case.

Next, suppose P̃(n, h2) does not contain a prime p in
the open interval (hn− 1, hn+ 1). If p ∈ P̃(n, h2), then
p = hn± 1 for some choice of sign, and we have p2 + 1 −
h2n2 = ±2hn+ 2 = ±2p. If there were an elliptic curve
E defined over F p2 such that E(F p2 ) ∼= Zn × Zh2 n , then
by Lemma 3.2 (ii) and Lemma 3.3 (i), it would follow that
n = h2n, which is impossible since h > 1. This argument
shows that n �∈ N2,h2 in this case.

Corollary 7.5. Suppose that k is not a perfect square.
Then

#N2,k (T ) �k log T.

Proof. In view of Lemma 7.1, it is enough to show that
#Ñ2,k (T ) �k log T .

Suppose that n ∈ Ñ2,k with n ≤ T . Then there exist
a prime p and an integer � such that p2 = kn2 + �n+ 1,

|�| ≤ 2
√
k, and we have

max{2kn+ �, 2p} �k T. (7–3)

Since

(2kn+ �)2 − k(2p)2 = �2 − 4k,

the pair (2kn+ �, 2p) is a solution of the Pell equation

X2 − kY 2 = �2 − 4k. (7–4)

Note that �2 − 4k �= 0, since k is not a perfect square.
It is well known (and easy to verify) that every solution
(x, y) ∈ Z2 to an equation such as (7–4) has the form

x+ y
√
k =

(
x0 + y0

√
k
)
ωt (t ∈ Z),

where (x0 , y0) is an arbitrary fixed solution, and ω is a
fixed unit in Q

(√
k
)
; therefore,

t�k log max{|x|, |y|}.

In view of (7–3) we have t�k log T for every solution
(x, y) = (2kn+ �, 2p) to (7–4), and the result follows.

We remark that Theorem 7.4 implies

#N2,1(T ) = π(T − 1) + π(T + 1)
− #

{
p ≤ T − 1 : p+ 2 is prime

}
∼ 2T

log T
.

For m ≥ 3, the situation is more complicated. For ex-
ample, it is easy to see that 3 ∈ Ñ3,237 \ N3,237 . Indeed,
since 133 = 32 · 237 + 3 · 21 + 1, we have 3 ∈ Ñ3,237 . On
the other hand, direct computation shows that there is
no elliptic curve over any finite field F p3 whose group
of points E(F p3 ) is isomorphic to Z3 × Z3·237 . In fact,
the equation p3 = 32 · 237 + 3 �+ 1 with |�| < 2

√
237 =

30.79 . . . admits only one solution (p, �) = (13, 21), and
133 + 1 − 9 · 237 = 5 · 13 is not a value for the parameter
a that is permitted by Lemma 3.2.

7.3. Results with k = 1

Here we focus on the problem of bounding #Nm,1(T ). We
begin by quoting three results on Diophantine equations
due respectively to Lebesgue, Nagell, and Ljunggren.

Lemma 7.6. [Lebesgue 50] For any m ∈ N , the Diophan-
tine equation ym = x2 + 1 has only the trivial solutions
(0,±1).

Lemma 7.7. [Nagell 21] For any m ∈ N that is not a
power of three, the Diophantine equations ym = x2 + x+
1 and ym = x2 − x+ 1 have only trivial solutions from
the set {(0,±1), (±1,±1)}.
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Lemma 7.8. [Ljunggren 43] The only solutions of the
Diophantine equation y3 = x2 + x+ 1 are the following:
{(0,±1), (−1,±1), (18, 7), (−19, 7)}.

The main result here is the following:

Theorem 7.9. If m is even, then

#Nm,1(T ) = (m+ o(1))
T 2/m

log T
(T → ∞).

If m ≥ 5 and m is odd, then Nm,1 = ∅. Also, N3,1 =
{18, 19}, and

#N1,1(T ) � T

log T
.

Proof. First, suppose that m = 2r ≥ 2 and n ∈ Nm,1 .
Then there exists a prime p such that

p2r = n2 + �n+ 1 for some � ∈ {0,±1,±2}.

However, the cases � ∈ {0,±1} can be excluded in view
of Lemmas 7.6 and 7.7. Since the numbers n for which
this relation holds with � ∈ {±2} are those of the form
n = pr ± 1, by the prime number theorem it follows that

#{n ≤ T : n = pr ± 1} = (2 + o(1))
T 1/r

log T 1/r

= (m+ o(1))
T 2/m

log T
,

and the proof is complete when m is even.
Next suppose that m = 2r + 1 ≥ 5. Combining Lem-

mas 7.6, 7.7, and 7.8, one sees that there is no integer
n for which any one of the numbers n2 + 1, n2 + n+ 1,
n2 − n+ 1 is the mth power of a prime. Since the rela-
tion (n± 1)2 = p2r+1 is also impossible, it follows that
Nm,1 = ∅, as stated.

When m = 3 we are led to consider the three Diophan-
tine equations

y3 = x2 + 1, y3 = x2 + x+ 1, y3 = x2 − x+ 1.

The first equation has no nontrivial solution by Lemma
7.6, the second only the nontrivial solution (18, 7) by
Lemma 7.8, and the third only the nontrivial solution
(19, 7) by Lemma 7.8. Since gcd(7, 20) = gcd(7,−17) =
1, we conclude using Lemmas 3.2 and 3.3 that N3,1 =
{18, 19}.

As an application of Theorem 7.2, we deduce that

N1,1(T ) ={n ≤ T : n2 + 1, n2 + n+ 1,
or n2 − n+ 1 is prime}.

Using the Brun sieve (see [Tenenbaum 95, Chapter I.4,
Theorem 3]) or the Selberg sieve (see (5–2)), we see that
#N1,1(T ) � T/ log T as required.

Remark 7.10. The asymptotic version of Schinzel’s
Hypothesis H (see [Schinzel and Sierpiński 58]) given
in [Bateman and Horn 62], leads us to conjecture
that

#N1,1(T ) = (C + o(1))
T

log T
(T → ∞),

where

C =
1
2

∏
p≥3

(
1 −

(−1
p

)
p− 1

)
+
∏
p≥3

(
1 −

(−3
p

)
p− 1

)

and
( ·
p

)
is the Legendre symbol modulo p. We note that

two distinct polynomials are simultaneously prime for
O(T/(log T )2) arguments n ≤ T , so we simply estimate
the number of prime values for each of the above poly-
nomials independently.

7.4. Finiteness of Nm,k When m ≥ 3

In this section, we set

Kk =
⋃
m≥3

Nm,k and Mm =
⋃
k≥1

Nm,k .

We show that there are only finitely many prime
powers pm with m ≥ 3 for which there is an elliptic
curve E defined over F pm with E(F pm ) ∼= Zn × Zkn

for some n ∈ N . In other words, we have the following
result.

Theorem 7.11. For every k ≥ 2, the set Kk is finite.

Proof. For any n ∈ Kk , there exist a prime p and integers
m, � with m ≥ 3 and |�| ≤ 2

√
k such that pm = kn2 +

�n+ 1.
For values of � with |�| < 2

√
k, the polynomial kX2 +

�X + 1 has distinct roots. Thus we apply a result from
[Schinzel and Tijdeman 76] that asserts that if a polyno-
mial f with rational coefficients has at least two distinct
zeros, then the equation ym = f(x), where x and y are in-
tegers with y �= 0, implies that m ≤ c(f), where c(f) is a
computable constant that depends only on f ; see also
[Shorey and Tijdeman 86, Theorem 10.2]. Hence there
are only finitely many possibilities for the number m. For
any fixed pair (m, �), using a classical result in the theory
of Diophantine equations (see [Shorey and Tijdeman 86,
Theorem 6.1]), we conclude that there are only finitely
many possibilities for the pair (n, p).
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k Kk Elements in Kk

2 {3, 11, 45, 119, 120} 24 = 2 · 32 − 3 + 1, 35 = 2 · 112 + 1, 212 = 2 · 452 + 45 + 1, 134 = 2 · 1192 + 2 · 119 + 1,
134 = 2 · 1202 − 2 · 120 + 1

3 {5, 72, 555} 34 = 3 · 52 + 5 + 1, 56 = 3 · 722 + 72 + 1, 314 = 3 · 5552 − 555 + 1
4 {1, 9, 23} 23 = 4 · 12 + 3 · 1 + 1, 73 = 4 · 92 + 2 · 9 + 1, 211 = 4 · 232 − 3 · 23 + 1
5 {1, 2, 4, 56, 126} 23 = 5 · 12 + 2 · 1 + 1, 33 = 5 · 22 + 3 · 2 + 1, 34 = 5 · 42 + 1, 56 = 5 · 562 − 56 + 1, 433 =

5 · 1262 + 126 + 1

TABLE 1. The elements in Kk for 2 ≤ k ≤ 5 found by computer search.

If � = ±2
√
k, then k = h2 is a perfect square, and

we have pm = (hn± 1)2. Thus m is even, and h2n2 =
pm + 1 − a, where a = ±2pm/2 . Applying Lemma 3.3 (i),
it follows that kn = h2n = n; this contradicts our hy-
pothesis that k ≥ 2 and shows that the case � = ±2

√
k

does not occur.

Remark 7.12. All of the underlying ingredients in the
proof of Theorem 7.11 are effective, so one can easily ob-
tain explicit bounds on #Kk and max{n ∈ Kk}. Using
the explicit estimates of [Bugeaud 96, Theorem 2], it can
be shown that Nm,k = ∅ for any m > 2137k3/2(log2 4k)6 .
Furthermore, the result [Bugeaud 97, Theorem 2] on
solutions of superelliptic equations implies the bound
max{n ∈ Nm,k} ≤ exp

(
c(m)k14m (log k)8m

)
, where c(m)

is an effectively computable constant that depends
only on m.

A computer search suggests that Table 1 lists com-
pletely the elements in Kk for 2 ≤ k ≤ 5.

Theorem 7.13. For every natural number m we have
Mm = N . In other words, for any n,m ∈ N there ex-
ist a prime p and an elliptic curve E defined over F pm

such that E(F pm ) ∼= Zn × Zkn for some k ∈ N .

Proof. Let m ∈ N be fixed. If m ≥ 2, then we have the
identity

Xm =
(
Xm−2 + 2Xm−3 + · · · + (m− 2)X +m− 1

)
× (X − 1)2 +m(X − 1) + 1.

For any n ∈ N , let p be a prime in the arithmetic pro-
gression 1 mod n that does not divide m, and put d =
(p− 1)/n. Applying the above identity with X = p, we
have pm = kn2 + �n+ 1, where

k =
(
pm−2 + 2pm−3 + · · · + (m− 2)p+m− 1

)
d2

and � = md. The condition |�| ≤ 2
√
k is easily verified,

since

4k ≥ 2m(m− 1)d2 ≥ m2d2 = �2 (m ≥ 2).

Furthermore, a = pm + 1 − kn2 = �n+ 2 = m(p− 1) is
not divisible by p. Hence, Lemma 3.3 shows that n ∈
Mm .

If m = 1, then for any n ∈ N , let p be an odd prime in
the arithmetic progression 1 mod n2 . Then p = dn2 + 1
for some natural number d, and since a = p+ 1 − dn2 =
2 is not divisible by p, Lemma 3.3 shows that n ∈ M1 .

8. MISSED GROUP STRUCTURES

We have already given in (1–2) several examples of pairs
(n, k) for which the group Zn × Zkn cannot be realized
as the group of points on an elliptic curve defined over a
finite field.

Here we present more extensive numerical results. In
Figure 1 we plot the counting function

f(D) = D2 − #SΠ(D,D)

of “missed” pairs (n, k) with max{n, k} ≤ D for values of
D up to 37,550. We immediately derive from Corollary
5.4 that

lim
D→∞

f(D)/D = ∞.

But this statement seems weak in view of our computa-
tions.

In Figure 2 we plot the counting function

F (N,K) = NK − #SΠ(N,K)

of “missed” pairs (n, k) with n ≤ N and k ≤ K for val-
ues of N and K up to 1000. For each fixed N = N0 ,
the function GN0 (K) = F (N0 ,K) appears to be linear
and increasing for modest values of K. Clearly, Corollary
5.4 implies that when K = K0 is fixed, then HK 0 (N) =
F (N,K0) ∼ K0N grows asymptotically linearly with the
coefficient K0 .
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FIGURE 1. Plot of f (D) for D ≤ 37550 (color figure available online).
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FIGURE 2. 3D plot of F (N,K) for N,K ≤ 1000 (color figure available online).
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FIGURE 3. 3D plot of β(N,K) for N,K ≤ 1000 (color figure available online).

We now give some heuristic arguments to predict
the behavior of F (N,K). We note that a pair (n, k)
contributes to F (N,K) if kn2 + �n+ 1 is not a prime
power for every � such that |�| ≤ 2k1/2 (and in some
other exceptional cases). Following the standard heuris-
tic, kn2 + �n+ 1 is a prime power with “probability”
about

ρ(n, k, �)

=

⎧⎨⎩
n

ϕ(n) log(kn2 + �n+ 1)
if kn2 + �n+ 1 > 1,

0 otherwise

(where the ratio n/ϕ(n) accounts for the fact that we seek
prime powers in the arithmetic progression 1 mod n).
So (n, k) ∈ [1, N ] × [1,K] contributes to F (N,K) with
“probability” about

ϑ(n, k) =
∏

|�|≤2k 1 / 2

(1 − ρ(n, k, �)) . (8–1)

Thus, we expect that F (N,K) is close to

B(N,K) =
∑
n≤N

∑
k≤K

ϑ(n, k).

Above, we have considered the primality events in the se-
quence kn2 + �n+ 1, |�| ≤ 2k1/2 , to be independent. This
is not quite correct, however, so both the formula (8–1)
and the expression for B(N,K) should contain a correc-
tion factor to reflect such local dependencies. Neverthe-
less, we do believe that B(N,K) is of the same order of
magnitude as F (N,K).

We have not studied the function B(N,K) analyti-
cally, but we note that for any fixed ε > 0, we have

ϑ(n, k) ≈
{

1 if k ≤ (log n)2−ε ,

0 if k ≥ (log n)2+ε .

Thus, it seems reasonable to expect that

F (N,K) ≈ B(N,K) ≈
{
NK if K ≤ (logN)2−ε ,

o(NK) if K ≥ (logN)2+ε .

One can see in Figure 3 that the ratio

β(N,K) =
F (N,K)
B(N,K)

seems to stabilize at around 0.71 . . . when N and K are
large enough.

We also leave as an open problem the task of deriving
an analytic expression for the adjustment factor in (8–1)
that may explain the limiting behavior of β(N,K).
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