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Bounded Apollonian circle packings (ACPs) are constructed by
repeatedly inscribing circles into the triangular interstices of a
Descartes configuration of four mutually tangent circles, one of
which is internally tangent to the other three. If the original four
circles have integer curvature, all of the circles in the packing will
have integer curvature as well. In [Sarnak 07], Sarnak proves that
there are infinitely many circles of prime curvature and infinitely
many pairs of tangent circles of prime curvature in a primitive
integral ACP. (A primitive integral ACP is one in which no integer
greater than 1 divides the curvatures of all of the circles in the
packing.) In this paper, we give a heuristic backed up by numer-
ical data for the number of circles of prime curvature less than x
and the number of “kissing primes,” or pairs of circles of prime
curvature less than x , in a primitive integral ACP. We also provide
experimental evidence toward a local-to-global principle for the
curvatures in a primitive integral ACP.

1. INTRODUCTION

Start with four mutually tangent circles, one of them in-
ternally tangent to the other three as in Figure 1. One
can inscribe into each of the curvilinear triangles in this
picture a unique circle (the uniqueness follows from an
old theorem of Apollonius of Perga, ca. 200 bce). If one
continues inscribing the circles in this way, the result-
ing picture is called an Apollonian circle packing (ACP).
A key aspect of studying such packings is to consider
the radii of the circles that arise in a given ACP. How-
ever, since these radii become small very quickly, it is
more convenient to study the curvatures of the circles,
or the reciprocals of the radii. Studied in this way, ACPs
possess the beautiful number-theoretic property that all
of the circles in an ACP have integer curvature if the
initial four have integer curvature. The number theory
associated with these integral ACPs has been investi-
gated extensively in [Graham et al. 03], [Fuchs 10], and
[Kontorovich and Oh 11].

A central theorem to any of the results in these papers
is Descartes’s theorem, which says that the curvatures
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FIGURE 1. Packing circles.

(v1 , v2 , v3 , v4) of any four mutually tangent circles satisfy
what is called the Descartes equation,

F (v1 , v2 , v3 , v4) (1–1)
= 2(v2

1 + v2
2 + v2

3 + v2
4 ) − (v1 + v2 + v3 + v4)2 = 0,

where a circle that is internally tangent to the other three
is defined to have negative curvature (see [Coxeter 05]
for a proof). Given this formula, we may assign to every
set of four mutually tangent circles in an integral pack-
ing P a vector v ∈ Z4 of the circles’ curvatures. We use
Descartes’s equation to express any integral ACP as an
orbit of a subgroup of the orthogonal group OF (Z) act-
ing on v. This subgroup, called the Apollonian group, is
specified in [Graham et al. 03], and we denote it by A. It
is a group on the four generators

S1 =

⎛
⎜⎜⎝

−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , S2 =

⎛
⎜⎜⎝

1 0 0 0
2 −1 2 2
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (1–2)

S3 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
2 2 −1 2
0 0 0 1

⎞
⎟⎠ , S4 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
2 2 2 −1

⎞
⎟⎠ ,

derived by fixing three of the coordinates of v and solv-
ing F (v) = 0 for the fourth. Note that each Si is of order
2 and determinant −1. Also, Si fixes all but the ith co-
ordinate of v ∈ Z4 , producing a new curvature in the ith
coordinate.

In their paper [Graham et al. 03], the five authors
Graham, Lagarias, Mallows, Wilks, and Yan ask sev-
eral fundamental questions about the curvatures in a
given integer ACP, which have mostly been resolved
in [Fuchs 10], [Fuchs 11], [Bourgain and Fuchs 11], and
[Kontorovich and Oh 11]. In particular, they make some
observations about the congruence classes of curvatures
that occur in any given ACP, proving that every con-
gruence class modulo d for integers d relatively prime to

30 should be represented in the curvatures in any given
primitive ACP (this is shown for d relatively prime to
6 in [Fuchs 11]). Based on a few computer experiments,
they also suggest a “strong density” conjecture, that
every sufficiently large integer satisfying some congru-
ence conditions modulo 2a3b for some a, b > 0 (possibly
a = 3, b = 1) should appear as a curvature in the pack-
ing. In [Bourgain and Fuchs 11], the authors prove a
weaker conjecture than that in [Graham et al. 03] of this
flavor, that the integers appearing as curvatures in a
given ACP make up a positive fraction of N . Proving the
strong density conjecture would be significantly more
difficult. In this paper, we use the p-adic description of
the Apollonian orbit from [Fuchs 11] to formulate this
conjecture precisely and provide strong experimental
evidence in Section 3 in support of it. Our conjecture
is specified further in the case of two different ACPs in
Section 3. It is stated generally here.

Conjecture 1.1. (Local-to-global principle for ACPs.) Let
P be an integral ACP and let P24 be the set of residue
classes modulo 24 of curvatures in P . Then there ex-
ists XP ∈ Z such that any integer x > XP whose residue
modulo 24 lies in P24 is in fact a curvature of a cir-
cle in P .

We note that X above depends on the packing P

under consideration. In this paper, we investigate two
ACPs that we call the bugeye packing PB and the
coins packing PC . These packings are represented by
right action of the Apollonian group on (−1, 2, 2, 3) and
(−11, 21, 24, 28), respectively (see Figure 2 for a picture).
In the case of PB , our data suggest that XPB = 97287,
since we find no integers 97287 < x < 5 · 108 that violate
the above conjecture. The data for PC , however, sug-
gest that XPC exists, but that it is greater than 108.
Namely, there are integers x > 108 in certain residue
classes in the set S24 that do not appear as curvatures
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FIGURE 2. Bugeye and coins packings. The picture of the bugeye packing was made by the second author. We thank
Alex Kontorovich for the picture of the coins packing.

in the packing we consider. We explain this further in
Section 3.

Another interesting problem regarding ACPs is count-
ing circles of prime curvature in a given packing. In
[Sarnak 07], it is proved that there are infinitely many
circles of prime curvature in any packing. In light of this,
we give a heuristic in Section 2 for the weighted prime
count ψP (x):

ψP (x) =
∑

a(C )≤x
a(C ) prime

log
(
a(C)

)
, (1–3)

where C is a circle in the packing P and a(C) is its cur-
vature. This count is closely related to the number πP (x)
of prime curvatures less than x in a packing P (see Re-
mark 2.6). We confirm experimentally that our heuristic
holds for the packings PB and PC . We note that our
heuristic does not depend on the chosen packing P ; in
fact, it yields the correct count of prime curvatures for
all of the packings we checked. We summarize all this in
the following conjecture:

Conjecture 1.2. Let NP (x) be the number of circles in a
packing P of curvature less than x, and let ψP (x) be as
in (1–3). Then as x→ ∞,

ψP (x) ∼ L(2, χ4) ·NP (x),

where L(2, χ4) = 0.9159 . . . is the value of the Dirichlet
L-series at 2 with character χ4(p) = 1 for p ≡ 1 (4) and
χ4(p) = −1 for p ≡ 3 (4).

The elegant form of the constant L(2, χ4) in this con-
jecture is quite striking, and it is the same as the constant
in the denominator of [Graham et al. 03, Theorem 2.2]

regarding the number of integer Descartes quadruples
of Euclidean height at most T . However, this similarity
seems to be a coincidence coming from the Euler prod-
ucts that are featured both in our heuristic and Graham
et al.’s proof of the above-cited theorem.

It is shown in [Sarnak 11] that there are infinitely
many pairs of tangent circles of prime curvature (we call
these kissing primes). We address the question of count-
ing kissing primes in P via the weighted sum ψ

(2)
P (x):

ψ
(2)
P (x) =

∑
(C, C ′)∈S

a(C ), a(C ′)<x

log(a(C)) · log(a(C ′)), (1–4)

where S is the set of unordered pairs of tangent circles
(C,C ′) of prime curvature in a packing P , and a(C) and
a(C ′) denote their respective curvatures. In this case, it
is less obvious what the relation is between ψ

(2)
P (x) and

the number π2
P (x) of kissing prime circles in a packing P

both of whose curvatures are less than x. We therefore
stick with ψ(2)

P (x) in our computation:

Conjecture 1.3. Let ψ(2)
P (x) be as in (1–4), and let NP (x)

be the number of circles in a packing P of curvature less
than x. Then

ψ
(2)
P (x) ∼ c · L2(2, χ4) ·NP (x),

where NP (x) is as above and c = 1.646 . . . is given by

2 ·
∏

p≡3 (4)

(
1 − 2

p(p− 1)2

)
.

These heuristics are computed by counting primes in
orbits of the Apollonian group, which is possible due
to recent results of Bourgain, Gamburd, and Sarnak
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in [Bourgain et al. 10], as well as the recent asymptotic
count in [Kontorovich and Oh 11] for the number NP (x).
Our computer experiments were conducted using Java
and Matlab.1 A brief description of our algorithm and a
discussion of its running time can be found in Section 4.

1.1. Arithmetic Structure of the Apollonian Group and
Its Orbit

Since all of the computations and claims in this paper
concern the orbit O of the Apollonian group A acting
on a vector v ∈ Z4 , we recall the description of the orbit
modulo d for any integer d from [Fuchs 11]. We use this
description throughout Sections 2 and 3.

Theorem 1.4. (Fuchs.) Let O be an orbit of A acting on a
root quadruple2 of a packing, and let Od be the reduction
of this orbit modulo an integer d > 1. Let C = {v 	= 0 |
F (v) = 0} denote the cone without the origin, and let Cd
be C over Z/dZ:

Cd = {v ∈ Z/dZ | v 	≡ 0 (d), F (v) ≡ 0 (d)}.
Write d = d1d2 with (d2 , 6) = 1 and d1 = 2n3m , where
n,m ≥ 0. Write d1 = v1v2 , where v1 = gcd(24, d1).
Then:

(i) The natural projection Od −→ Od1 ×Od2 is surjec-
tive.

(ii) Let π : Cd1 → Cv1 be the natural projection. Then
Od1 = π−1(Ov1 ).

(iii) The natural projection Od2 −→∏
pr ‖d2

Opr is sur-
jective and Opr = Cpr .

This result is obtained by analyzing the reduction
modulo d of the inverse image of the Apollonian group
A in the spin double cover of SOF . We note that Theo-
rem 1.4 implies that the orbit O of A has multiplicative
structure in reduction modulo d =

∏
pr ‖d p

r and that it
is completely characterized by its reduction modulo 24,
or by O24 in our notation. This explains the dependence
on P24 in Conjecture 1.1.

2. PRIME NUMBER THEOREMS FOR ACPS

In [Bourgain et al. 10], the authors construct an affine
linear sieve that gives lower and upper bounds for prime

1 The programs are available at http://www.math.princeton.edu/
∼ksanden/ElenaKatCode.html.
2 A root quadruple of a packing P is essentially the 4-tuple of the
curvatures of the largest four circles in P . It is well defined, and its
properties are discussed in [Graham et al. 03].

and almost-prime points in the orbits of certain groups.
In this section, we use their analysis to predict precise
asymptotics on the number of prime curvatures less than
x, as well as the number of pairs of tangent circles of
prime curvature less than x in a given primitive Apollo-
nian packing P . The conditions associated with the affine
linear sieve for A are verified in [Bourgain et al. 10]. We
recall the setup below.

Let an denote the number of circles of positive cur-
vature n in a bounded packing P , and note that an is
finite, since the number of circles of any given radius can
be bounded in terms of the area of the outermost circle.
We consider 1 ≤ n ≤ x and note that∑

n

an = NP (x),

where NP (x) is the number of circles of curvature less
than x and is determined by the asymptotic formula in
[Kontorovich and Oh 11] (see Lemma 2.2). Key to ob-
taining our asymptotics is computing the averages of pro-
gressions modulo d of curvatures less than x, where d > 1
ranges over positive square-free integers of suitable size.
To this end, we define

Xd =
∑

n≡0 (d)

an

and introduce a multiplicative density function β(d) for
which

Xd = β(d) ·NP (x) + r(A, d), (2–1)

where the remainder r(A, d) is small according to the
results in [Bourgain et al. 10].

In the case of orbits of the Apollonian group, we first
define a coordinatewise function β and then relate it to
the desired density function in (2–1). Let O be an integral
orbit of A, and let Od be the reduction of O modulo d
for a square-free positive integer d. Then

βj (d) =
#{v ∈ Od | vj = 0}

#{v ∈ Od} , (2–2)

where vj is the jth coordinate of v. We recall from The-
orem 1.4 that the orbit Od has a multiplicative structure
that carries over to the function βj , so that

βj (d) =
∏
p |d

βj (p).

Thus in order to evaluate βj (d) for arbitrary square-free
d, we have only to determine βj (p) for p prime. This is
summarized in the following lemma.
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Lemma 2.1. Let d =
∏
pi be the prime factorization of a

square-free integer d > 1. Then:

(i) βj (d) =
∏
βj (pi) for 1 ≤ j ≤ 4.

(ii) For p 	= 2, we have

βj (p) = βk (p) for 1 ≤ j, k ≤ 4.

(iii) For any orbit O, there exist two coordinates, i and
j, such that

βi(2) = βj (2) = 1,
βk (2) = 0, for k 	= i, j.

We say that the ith and jth coordinates are even
throughout the orbit, while the other two coordinates
are odd throughout the orbit.

(iv) For p 	= 2, let β(p) = βi(p) for 1 ≤ i ≤ 4. Then

β(p) =

{
1

p+1 for p ≡ 1 mod 4,
p+1
p2 +1 for p ≡ 3 mod 4.

(2–3)

Note that given part (ii) of Lemma 2.1, our defini-
tion β(p) = βi(p) for p 	= 2 and 1 ≤ i ≤ 4 in part (iv) is
a natural one.

Proof. The statements in (i) and (ii) follow from The-
orem 1.4. Let v be the root quadruple (the quadruple
of the smallest curvatures) of the packing P . To prove
(iii), note that any quadruple in a primitive integral
ACP consists of two even and two odd curvatures (see
[Sanden 09] for a discussion). Without loss of generality,
assume that v = (1, 1, 0, 0) mod 2, so i = 1 and j = 2 in
this case. Since the Apollonian group is trivial modulo
2, we have that every vector in the orbit is of the form
(1, 1, 0, 0) mod 2, so we have what we want.

To prove (iv), we use results in [Fuchs 11] and recall
from Theorem 1.4 that Op is the cone Cp for p ≥ 5. Thus
the numerator of β(p) is

#{v ∈ Op | vj = 0}
= #{(v1 , v2 , v3) ∈ F 3

p − {0} | F (v1 , v2 , v3 , 0) = 0},
where F is the Descartes quadratic form and p ≥ 5. So
the numerator counts the number of nontrivial solutions
to the ternary quadratic form obtained by setting one of
the vi in the Descartes form F (v) to 0. Similarly, we have
that the denominator of β(p) is

#{v ∈ Op}
= #{(v1 , v2 , v3 , v4) ∈ F 4

p − {0} | F (v1 , v2 , v3 , v4) = 0},
where p ≥ 5. So the denominator counts the number of
nontrivial solutions to the Descartes form. The number of

FIGURE 3. Orbit I modulo 3.

nontrivial solutions to ternary and quaternary quadratic
forms over finite fields is well known (see [Cassels 78], for
example). Namely,

#{(v1 , v2 , v3 , v4) ∈ F 4
p − {0} |F (v1 , v2 , v3 , v4) = 0}

=

{
p3 + p2 − p− 1 for p ≡ 1 mod 4,

p3 − p2 + p− 1 for p ≡ 3 mod 4,
(2–4)

for p ≥ 5, and

#{(v1 , v2 , v3) ∈ F 3
p − {0} | F (v1 , v2 , v3 , 0) = 0}

= p2 − 1 for all odd primes p. (2–5)

Combining (2–4) and (2–5), we obtain the expression in
(2–3) for p ≥ 5. For p = 3, we compute Pp explicitly and
find that there are two possible orbits of A modulo 3,
which are illustrated via finite graphs in Figures 3 and
4. Each of these orbits consists of ten vectors v ∈ Z4 . In
both orbits, four of the vectors v have vi = 0 for every
1 ≤ i ≤ 4. Thus β(3) = 2

5 as desired.

In the following two sections, we use this setup to pro-
duce a precise heuristic for the number of circles of prime
curvature as well as the number of pairs of tangent circles
of prime curvature less than x in a given ACP.

2.1. Predicting the Prime Number Theorem for ACPs

In order to compute the number of prime curvatures in
an ACP as proposed in Conjecture 1.2, we use the setup
above paired with properties of the Möbius function to
pick out primes in the orbit of A (see (2–8)). We use the
asymptotic in [Kontorovich and Oh 11] for the number
NP (x) of curvatures less than x in a given packing P :
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FIGURE 4. Orbit II modulo 3.

Theorem 2.2. (Kontorovich, Oh.) Given a bounded Apol-
lonian circle packing P , there exists a constant cP > 0,
which depends on the packing, such that as x→ ∞,

NP (x) ∼ cP · xδ ,
where δ = 1.30568 . . . is the Hausdorff dimension of the
limit set of A acting on hyperbolic space.

For the purpose of our computations, we will need a
slightly stronger statement of Theorem 2.2, since we will
sum over each coordinate of the points in the orbit of A
separately. Namely, each circle in the packing is uniquely
represented in the orbit O as a maximal coordinate of a
vector v in Z4 . We would like to know how many circles
there are of curvature less than x that are represented in
this way in the ith coordinate of a vector in the orbit.
We denote this by N (i)

P (x):

N
(i)
P (x) =

∑
v ∈O
v ∗i≤x

1, (2–6)

where v∗i denotes the ith coordinate of v ∈ Z4 , which is
also a maximal coordinate of v.3 To this end, we have
the following lemma.

Lemma 2.3. Let N (i)
P (x) and NP (x) be as above. Then

N
(1)
P (x) ∼ N

(2)
P (x) ∼ N

(3)
P (x) ∼ N

(4)
P (x) ∼ NP (x)

4
(2–7)

as x approaches infinity.

3 It is possible that there is more than one i for which the ith
coordinate is maximal.

Proof. The computation in [Kontorovich and Oh 11] of
the main term in the asymptotics in Theorem 2.2 relies
on the Patterson–Sullivan measure on the limit set of
the Apollonian group A. In order to prove Lemma 2.3,
we show that this measure is invariant under transforma-
tions on the coordinates of a vector v in an orbit O of A.

To this end, let G be the group of permutations of the
coordinates v1 , . . . , v4 of a vector v ∈ O. The group G is
finite, and its elements can be realized as 4 × 4 integer
matrices. For example, the matrix

M =

⎛
⎜⎜⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠

switches the first and second coordinates by left action
on vT. Let

L = (G,A)

be the group of 4 × 4 matrices generated by the Apollo-
nian group A together with G, and note that each ele-
ment of G normalizes A. For example, if M is as above,
we have M−1S1M = S2 , where S1 and S2 are as in (1–2).
Similarly, any element of G switching the ith and jth co-
ordinates of v conjugates Si to Sj in this way. Thus L/A
is finite, and so L is a finite extension of A. In particu-
lar, this implies that the Patterson–Sullivan measure for
L is the same as for A. Since L is precisely an exten-
sion of A by the permutations of the coordinates of v,
we have that the Patterson–Sullivan measure is invari-
ant under G. Together with Theorem 2.2 and its proof in
[Kontorovich and Oh 11], this proves the lemma.

Since we are interested in counting the points in O
for which v∗i is prime, we sum over points for which v∗i
is 0 modulo some square-free d. It is convenient to count
primes in the orbit of A with a logarithmic weight. To
this end, we consider the function

Λ(n) =

{
log p if n = pl ,

0 otherwise,

for which it is well known that

Λ(n) = −
∑
d|n

µ(d) log d, (2–8)

where µ(d) is the Möbius function. Using this, we write
down a concrete expression for the number of prime cur-
vatures less than x in a packing P counted with a loga-
rithmic weight:
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Lemma 2.4. Let v∗i be the ith coordinate of a vector v in
O such that v∗i is the maximal coordinate of v, and let
ψP (x) be is as in (1–3). Then

ψP (x) = −
∑

1≤i≤4

∑
v ∈O
v ∗i≤x

Λ(v∗i ) +O(x). (2–9)

The sum in (2–9) is a count of all circles whose cur-
vatures are powers of primes. Including powers of primes
in our count will not affect the final answer significantly.
Namely, let N�

P (x) be the number of circles in a pack-
ing P whose curvatures are less than x and are perfect
squares. Note that

N�
P (x) = O(x).

This is insignificant compared to the count of all curva-
tures in Theorem 2.2, so the sum in (2–9) is the correct
one to consider. Denote by D < NP (x) the level distri-
bution from the analysis in [Bourgain et al. 10]. That is,
our moduli d are taken to be less than D. We combine
Lemma 2.4, Lemma 2.3, and the expression for Λ(n) in
(2–8) to get

ψP (x) = −
∑

1≤i≤4

∑
v ∈O
v ∗i≤x

∑
d|v ∗1

µ(d) log d+O(x)

= −
∑

1≤i≤4

∑
v ∈O
v ∗i≤x

∑
d≤D

µ(d) log d
∑

v ∗i≡0 (d)

1 (2–10)

−
∑

1≤i≤4

∑
v ∈O
v ∗i≤x

∑
d>D

µ(d) log d
∑

v ∗i≡0 (d)

1 +O(x).

Assuming that the Möbius function µ(d) above becomes
random as d grows, the sum over d > D in (2–10) is negli-
gible, and we omit it below. We proceed by rewriting the
sum over d ≤ D in (2–10) using the density function β(d)
in (2–2). Recall that the analysis in [Bourgain et al. 10]
and [Kontorovich and Oh 11] gives us that

∑
n≡0 (d)

an = β(d) · cP xδ + r(A, d),

where r(A, d) is small on average. In particular,

∑
d≤D

r(A, d) = O(xδ−ε0 )

for some ε0 > 0. Paired with the assumption that µ is
random, this evaluation of the remainder term implies

that the expression in (2–10) is asymptotic to

−
∑

1≤i≤4

Ni
P (x)
4

∑
d≤D

βi(d)µ(d) log d

∼ −NP (x)
4

∑
1≤i≤4

∑
d≤D

βi(d)µ(d) log d. (2–11)

To compute the innermost sum in the final expression
above, note that∑

d≤D
βi(d)µ(d) log d (2–12)

=
∑
d>0

βi(d)µ(d) log d−
∑
d>D

βi(d)µ(d) log d.

Assuming once again that the sum over d > D is insignif-
icant due to the conjectured randomness of the Möbius
function, we have that the sum over d ≤ D in (2–12) can
be approximated by the sum over all d. With this in
mind, the following lemma yields the heuristic in Con-
jecture 1.2.

Lemma 2.5. Let βi(d) be as before. We have∑
1≤i≤4

∑
d>0

βi(d)µ(d) log d = 4 · L(2, χ4),

where L(2, χ4) = 0.91597 . . . is the value of the Dirichlet
L-function at 2 with character

χ4(p) =

{
1 if p ≡ 1 mod 4,
−1 if p ≡ 3 mod 4.

Proof. We introduce a function

fi(s) =
∑
d

βi(d)µ(d)d−s ,

and note that its derivative at 0 is precisely what we
want:

f ′i(0) = −
∑
d

βi(d)µ(d) log d.

Since the functions β, µ, and ds are all multiplicative, we
may rewrite fi(s) as an Euler product and obtain

fi(s) =
∏
p

(
1 − βi(p)p−s

)

=
∏
p

(1 − p−s−1) · 1 − βi(p)p−s

1 − p−s−1

= ζ−1(s+ 1) ·
∏
p

1 − βi(p)p−s

1 − p−s−1

= ζ−1(s+ 1) ·Hi(s),
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where Hi(s) =
∏

p(1 − βi(p)p−s)(1 − p−s−1)−1 is holo-
morphic in 
(s) > 1/2. Differentiating, we obtain

f ′i(0) = −ζ ′(1)ζ−2(1) ·Hi(0) + ζ−1(1) ·H ′
i(0) = H(i0),

since −ζ ′(1)ζ−2(1) = 1 and ζ−1(1) = 0. Thus it remains
to compute

Hi(0) =
∏
p

1 − βi(p)
1 − p−1 .

From part (iii) of Lemma 2.1, we have βj (2) = βk (2) = 1
for two coordinates 1 ≤ j, k ≤ 4. Therefore 1 − βi(2) = 0
and Hi(0) = 0 for i = j, k. For i 	= j, k we have βi(2) = 0
and

Hi(0) =
1

1 − 1
2

·
∏

p≡1 (4)

(
1 − 1

p+ 1

)
1

1 − p−1

×
∏

p≡3 (4)

(
1 − p+ 1

p2 + 1

)
1

1 − p−1

= 2 ·
∏

p≡1 (4)

p2

p2 − 1

∏
p≡3 (4)

p2

p2 + 1

= 2 · L(2, χ4).

Thus the sum we wish to compute is 4 · L(2, χ4), as de-
sired.

Lemma 2.5 implies that the contribution to the sum
in (2–11) of the two of the coordinates that are even
throughout the orbit is 0, and the contribution of the
other two coordinates is

NP (x)
4

· 4 · L(2, χ4) = NP (x) · L(2, χ4),

yielding the predicted result in Conjecture 1.2.

Remark 2.6. It is well known that πP (x) ∼ ψP (x)
log x as x→

∞. Thus Conjecture 1.2 can also be stated in terms of
πP (x):

πP (x) ∼ L(2, χ4) ·NP (x)
log x

.

Since our computations rely on the multiplicativity in-
herent in the reduction modulo d of the Apollonian group
A, our heuristic is independent of the chosen packing P
in which we count prime curvatures. This is confirmed by
our data: Figures 5 and 6 show the graphs of

y =
ψP (x)
NP (x)

, (2–13)

where P = PC and PB are as in Section 1, and x ≤ 108. In
both cases, (2–13) converges to y = L(2, χ4) as predicted
in Conjecture 1.2.

FIGURE 5. Prime number heuristic for PC .

2.2. Predicting a Prime Number Theorem for
Kissing Primes

In this section, we use the analysis in [Bourgain et al. 10],
as well as the conjectured randomness of the Möbius
function, to arrive at the heuristic in Conjecture 1.3 for
the number of kissing primes, i.e., pairs of tangent cir-
cles both of prime curvature less than x. With the same
notation as in Section 2.1, we would now like to count
the points in O for which v∗i and vj are prime for some
j 	= i, so we sum over points for which either v∗i or vj is 0
modulo some square-free d. To do this, we need the total
number of pairs of mutually tangent circles of curvature
less than x in a packing P . If NP (x) is the number of
circles of curvature up to x as specified by Theorem 2.2,

FIGURE 6. Prime number heuristic for PB .
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it is shown in [Kontorovich and Oh 11] that

#{pairs of mutually tangent circles of curvature a ≤ x}
= 3 ·NP (x) + 3.

We again employ the function Λ(n) in order to write
down a concrete expression for the number of kissing
primes less than x in a packing P .

Lemma 2.7. Let v∗i and vj be two distinct coordinates of a
vector v in O, where v∗i denotes the maximum coordinate
of v, and let ψ(2)

P (x) be as in (1–4). Then

ψ
(2)
P (x) =

∑
v ∈O
v ∗i≤x

∑
j 	=i

Λ(v∗i )Λ(vj ) +O(x). (2–14)

Again, the sum in (2–14) is a count of all mutually
tangent pairs of circles whose curvatures are powers of
primes, but by a similar argument to that in Section 2.1,
we have that including powers of primes in our count does
not affect the final answer significantly. Note that in order
to evaluate (2–14), we introduce in (2–17) a function that
counts points in O for which two of the coordinates are
0 modulo p. Denote by D < x the level distribution from
the analysis in [Bourgain et al. 10]; that is, the moduli
d > 1 in the computations below may be taken to be less
than D. We rewrite the expression in (2–14) using (2–8)
and get

∑
1≤i , j ≤4
i 	=j

∑
v ∈O
v ∗i≤x

(∑
di |v ∗i

µ(di) log di
∑
dj |vj

µ(dj ) log dj

)

=
∑

1≤i , j ≤4
i 	=j

∑
v ∈O
v ∗i≤x

(
Σ− + Σ+)+O(x), (2–15)

where

Σ− =

⎛
⎝∑
di≤D

µ(di) log di
∑

v ∗i≡0 (di )

1

⎞
⎠

×
⎛
⎝∑
dj ≤D

µ(dj ) log dj
∑

vj ≡0 (dj )

1

⎞
⎠

and

Σ+ =
∑
di |v ∗i

µ(di) log di
∑
dj |vj

µ(dj ) log dj − Σ−.

As in Section 2.1, we omit Σ+, or the terms con-
taining di > D, in (2–15) under the assumption that
µ behaves randomly for large values of d. Along with
the results about the remainder term in the sieve in
[Bourgain et al. 10], the expression in (2–15) is asymp-

totic to

NP (x)
∑

1≤i , j ≤4
i 	=j

∑
[di ,dj ]≤D ′

βi

(
di

(di, dj )

)
βj

(
dj

(di, dj )

)

× g((di, dj ))µ(di)µ(dj ) log di log dj , (2–16)

where βi(d) is as before, [di, dj ] is the least common mul-
tiple of di and dj , and (di, dj ) is their greatest common
divisor. The function g above is the ratio

g((di, dj )) =
1

#{v ∈ O(di ,dj )} (2–17)

· #{v ∈ O(di ,dj ) | vi ≡ 0 ((di, dj )), vj ≡ 0 ((di, dj ))},
where (di, dj ) is square-free in our case. Note that g(d)
is multiplicative outside of the primes 2 and 3 by Theo-
rem 1.4, so

g(d) =
∏
p |d

p,

and we have only to compute g(p) for p prime in evalu-
ating the sum above.

Lemma 2.8. Let g(p) be as before, where p is a prime.
Then

(i)

g(2) =

{
1 if both vi and vj are even,
0 if at least one of vi and vj is odd.

(ii)

g(p) =

{
1

(p+1)2 for p ≡ 1 mod 4,
1

p2 +1 for p ≡ 3 mod 4.

Proof. To prove (ii), we note that Theorem 1.4 implies
that the numerator of g(p) is

#{v ∈ Od | v1 ≡ 0 (d) and v2 ≡ 0 (d)}
= #{(v1 , v2) ∈ F 2

p − {0} | F (v1 , v2 , 0, 0) = 0}
for p ≥ 5. Thus it is the number of nontrivial solutions
to a binary quadratic form with determinant 0 (the
Descartes form in (1–1) with two of the vi , vj set to 0),
and so

#{v ∈ Op | v1 ≡ 0 mod p and v2 ≡ 0 mod p} = p− 1

for all p ≥ 5 (see [Cassels 78], for example). In the case
p = 3, we observe that in both of the possible orbits of
A mod 3 in Figures 3 and 4 we have g(3) = 1

10 , as desired.
Part (i) follows from the structure of the orbit O2 as
observed in the proof of Lemma 2.1.
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Denote by ν(di, dj ) the greatest common divisor of di
and dj (we write just ν from now on and keep in mind
that ν depends on di and dj ). Note that

β

(
[di, dj ]
ν

)
= βi

(
di
ν

)
βj

(
dj
ν

)
,

where di
ν and dj

ν are relatively prime, so we rewrite the
expression in (2–16):

NP (x)
4

∑
1≤i , j ≤4
i 	=j

∑
[di ,dj ]≤D ′

βi

(
di
ν

)
βj

(
dj
ν

)
(2–18)

× g(ν)µ(di)µ(dj ) log di log dj .

To compute the sum in (2–18), we use a similar argument
to that in Section 2.1. We note that the inner sum in the
expression above is equal to

∑
di >0

∑
dj >0

βi

(
di
ν

)
βj

(
dj
ν

)
g(ν)µ(di)µ(dj ) log di log dj

(2–19)

−
∑

[di ,dj ]>D ′
βi

(
di
ν

)
βj

(
dj
ν

)
g(ν)µ(di)µ(dj ) log di log djm,

where we assume that the sum over [di, dj ] > D′ is in-
significant by the conjectured randomness of the Möbius
function, and thus the sum over all di and dj is a good
heuristic for the sum in (2–18). We compute the infinite
sum in the following lemma and obtain the heuristic in
Conjecture 1.3.

Lemma 2.9. Let βi(d), βj (d), and g(ν) be as before. We
have

∑
1≤i , j ≤4
i 	=j

∑
di >0

∑
dj >0

βi

(
di
ν

)
βj

(
dj
ν

)

× g(ν)µ(di)µ(dj ) log di log dj

= 8 · L2(2, χ4) ·
∏

p≡3 (4)

(
1 − 2

p(p− 1)2

)
.

Proof. We introduce the function

f(si, sj )

=
∑
di

∑
dj

βi

(
di
ν

)
βj

(
dj
ν

)
g(ν)µ(di)µ(dj )dsii d

sj
j ,

and note that

∂2f(si, sj )
∂si∂sj

∣∣∣∣
(0,0)

=
∑
di

∑
dj

β

(
di
ν

)
β

(
dj
ν

)
g(ν)µ(di)µ(dj ) log di log dj ,

which is a good heuristic for the sum in (2–18) as x tends
to infinity. The difficulty in computing this is the interac-
tion of di and dj in g(ν). To this end, write di = νei and
dj = νej , where (ei, ej ) = 1. This gives us the following
formula for f(si, sj ):

f(si, sj )

=
∑
ν

g(ν)

×
∑

(ei ,ej )=1

βi(ei)βj (ej )µ(νei)µ(νej )(νei)si (νej )sj

=
∑
ν

g(ν)ν−(si +sj )

×
∑
ei ,ej

∑
m |(ei ,ej )

µ(m)βi(ei)βj (ej )µ(νei)µ(νej )esii e
sj
j

=
∑
ν

g(ν)ν−(si +sj )
∑
m

µ(m)µ2(νm)m−(si +sj )

×
∑

( b i , ν m )= 1

(bj ,νm )=1

βi(mbi)βj (mbj )µ(bi)µ(bj )bsii b
sj
j

=
∑
ν

g(ν)µ2(ν)ν−(si +sj )

×
∑

(m,ν )=1

µ(m)βi(m)βj (m)m−(si +sj ) A(ν,m, si, sj ),

where

A(ν,m, si, sj )

=
∑

( b i , ν m )= 1

(bj ,νm )=1

βi(bi)βj (bj )µ(bi)µ(bj )b−sii b
−sj
j

=
∏
p i |ν m
pj |νm

(
(1 − βi(pi)p−sii )(1 − βj (pj )p

−sj
j )

)−1

×
∏
pi ,pj

(1 − βi(pi)p−sii )(1 − βj (pj )p
−sj
j )

= Pν (si, sj ) · Pm (si, sj ) · ζ−1(si + 1)

×
∏
pi

1 − βi(pi)p−sii

1 − p−si−1
i

ζ−1(sj + 1)
∏
pj

1 − βj (pj )p
−sj
j

1 − p
−sj −1
j

= Pν (si, sj ) · Pm (si, sj ) · ζ−1(si + 1)ζ−1(sj + 1)
×B(si, sj ),
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where

Pν (si, sj ) =
∏
p i |ν
pj |ν

(
(1 − βi(pi)p−sii )(1 − βj (pj )p

−sj
j )

)−1
,

Pm (si, sj ) =
∏
p i |m
pj |m

(
(1 − βi(pi)p−sii )(1 − βj (pj )p

−sj
j )

)−1
,

B(si, sj ) =
∏
pi

1 − βi(pi)p−sii

1 − p−si−1
i

∏
pj

1 − βj (pj )p
−sj
j

1 − p
−sj −1
j

.

We write

C(ν, si , sj ) = g(ν)ν−(si +sj ) ,

D(m, si, sj ) = µ(m)βi(m)βj (m)m−(si +sj ) ,

which gives us

f(si, sj ) =
∑
ν

C(ν, si , sj ) · Pν (si, sj )

×
∑

(m,ν )=1

D(m, si, sj ) · Pm (si, sj )

×B(si, sj ) · ζ−1(si + 1)ζ−1(sj + 1).

Note that the sums over ν and m, as well as B(si, sj ),
converge and are holomorphic. We now compute the de-
sired derivative. Write

Gi,j (ν,m, si, sj ) =
∑
ν

C(ν, si , sj ) · Pν (si, sj )

×
∑

(m,ν )=1

D(m, si, sj ) · Pm (si, sj ).

Then we have

∂2f(si, sj )
∂si∂sj

∣∣∣∣
(0,0)

= ζ−2(1)
∂2(Gi,j (ν,m, si, sj ))

∂si∂sj

∣∣∣∣
(0,0)

+Gi,j (ν,m, 0, 0) ·B(0, 0)
(
ζ ′(1)
ζ2(1)

)2

.

Since ζ−2(1) = 0, we need not compute the partial
derivative of G. If βi(2) = βj (2) = 0 in the expression
for B, we have B(0, 0) = 4 · L2(2, χ4), since ζ ′(1)

ζ 2 (1) =
2 · L(2, χ4) as in Section 2.1. This holds for the
sums in (2–18) over (v∗i , vj ) and (v∗j , vi), where the
ith and jth coordinates in our orbit are everywhere
odd.

The contribution to (2–18) from the terms where v∗i
or vj is even is 0:

Lemma 2.10. Let O be an orbit of the Apollonian group.
Given that the ith or jth coordinate of each vector v ∈ O
is even, we have

Gi,j (ν,m, 0, 0) ·B(0, 0) = 0.

Proof. Recall that two of the coordinates of the vectors
in O are always even, and two are odd. We write

Gi,j (ν,m, 0, 0) ·B(0, 0) (2–20)

= B(0, 0)
(∑

2|ν
C(ν, 0, 0) · Pν (0, 0)

×
∑

(m,ν )=1

D(m, 0, 0) · Pm (0, 0)

+
∑

(ν,2)=1

C(ν, 0, 0) · Pν (0, 0)

×
∑

(m,ν )=1

D(m, 0, 0) · Pm (0, 0)
)
.

Case 1: Only one of the ith and jth coordinates is odd
throughout the orbit. Recall from Lemma 2.8 that g(2) =
0 in the case that only one of the coordinates (i, j) is
even throughout the orbit, and g(2) = 1 if both coordi-
nates are even throughout the orbit. So if only one of the
coordinates (i, j) is even throughout the orbit, we have

B(0, 0)·
(∑

2|ν
C(ν, 0, 0) · Pν (0, 0)

×
∑

(m,ν )=1

D(m, 0, 0) · Pm (0, 0)
)

= 0.

Recalling that βi(p) = βj (p) for p > 2 from Lemma 2.1,
we have

B(0, 0)
( ∑

(ν,2)=1

C(ν, 0, 0) · Pν (0, 0) (2–21)

( ∑
(m,ν )=1

D(m, 0, 0) · Pm (0, 0)
))

=
∏
pi ,pj

(
(1 − βi(pi))(1 − βj (pj ))

(1 − p−1
i )(1 − p−1

j )

)

×
( ∑

(ν,2)=1

C(ν, 0, 0) · Pν (0, 0)

×
( ∑

(m , ν )= 1
(m,2)=1

D(m, 0, 0)
∏
p |m

(1 − βi(p))−2
))

+B(0, 0) ·
( ∑

(ν,2)=1

C(ν, 0, 0) · Pν (0, 0)

×
( ∑

(2m,ν )=1

µ(2m)βi(2m)βj (2m) · Pm (0, 0)
))

= 0 + 0
= 0,

since Lemma 2.1 implies either 1 − βi(2) = 0 or 1 −
βj (2) = 0 in the first term, and either βi(2m) = 0 or
βj (2m) = 0 in the second term in (2–21). We now
compute the expression in (2–20) in the case that both
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the ith and jth coordinates are even throughout the or-
bit.

Case 2: The ith and jth coordinates are both even
throughout the orbit. In this case, Lemma 2.8 implies that
g(2ν) = g(ν) and that C(2ν, 0, 0) = C(ν, 0, 0) for odd ν.
Also, we again have that βi(p) = βj (p) for p > 2, so the
first sum in (2–20) is

B(0, 0) ·
(∑

2|ν
C(ν, 0, 0) · Pν (0, 0) (2–22)

×
( ∑

(m,ν )=1

D(m, 0, 0) · Pm (0, 0)

))

=

( ∑
(ν,2)=1

(
C(2ν, 0, 0)

∏
p |ν

(1 − βi(p))−2)

×
( ∑

(m,2ν )=1

(
D(m, 0, 0)

∏
p |m

(1 − βi(p))−2)))

×
∏
p 	=2

(
1 − βi(p)
1 − p−1

)2

=

( ∑
(ν,2)=1

(
C(ν, 0, 0)

∏
p |ν

(1 − βi(p))−2)

×
( ∑

(m,2ν )=1

(
D(m, 0, 0)

∏
p |m

(1 − βi(p))−2)))

× L2(2, χ4).

To compute the second sum in (2–20), we note that
βi(2m) = βj (2m) = βi(m) by Lemma 2.1 and write

B(0, 0)

( ∑
(ν,2)=1

C(ν, 0, 0) · Pν (0, 0)

×
( ∑

(m,ν )=1

D(m, 0, 0) · Pm (0, 0)

))

= M1(ν, 0, 0) +M2(ν, 0, 0),

where

M1(ν, 0, 0)

=

( ∑
(ν,2)=1

C(ν, 0, 0) · Pν (0, 0)

×
( ∑

(m,2ν )=1

µ(m)β2
i (m) ·

∏
p |m

(1 − βi(p))−2

))

×B(0, 0)

and

M2(ν, 0, 0)

=

( ∑
(ν,2)=1

C(ν, 0, 0) · Pν (0, 0)

×
( ∑

(m,2ν )=1

µ(2m)β2
i (m) ·

∏
p |m

(1 − βi(p))−2

))

×B′(0, 0),

where

B′(0, 0) =
∏
p 	=2

(
1 − βi(p)
1 − p−1

)2

.

Note that since 1 − βi(2) = 1 − βj (2) = 0, we have
B(0, 0) = 0 in this case, so

M1(ν, 0, 0) = 0.

On the other hand,

M2(ν, 0, 0) (2–23)

=

( ∑
(ν,2)=1

C(ν, 0, 0) · Pν (0, 0)

( ∑
(m,2ν )=1

−µ(m)β2
i (m) ·

∏
p |m

(1 − βi(p))−2

))

×B′(0, 0)

= −
( ∑

(ν,2)=1

(
C(ν, 0, 0)

∏
p |ν

(1 − βi(p))−2)

×
( ∑

(m,2ν )=1

(
D(m, 0, 0)

∏
p |m

(1 − βi(p))−2)))

× L2(2, χ4).

Combining (2–22) and (2–23), we have that the expres-
sion in (2–20) is 0, as desired.

Therefore, we have that in the contributing terms of
(2–18), both v∗i and vj are odd. This makes up two of
the terms in (2–18), so we have that the sum we wish to
compute is equal to

2 ·Gi,j (ν,m, 0, 0) · 4 · L2(2, χ4) (2–24)
= 8 · L2(2, χ4) ·Gi,j (ν,m, 0, 0).

It remains to compute Gi,j (ν,m, 0, 0) in this case. Re-
call that βi(2) = βj (2) = 0 in this case, and that βi(p) =
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βj (p) for p > 2. We have∑
(m,ν )=1

µ(m)β2
i (m)

∏
p |m

(1 − βi(p))−2 (2–25)

=
∏
p

1 − β2
i (p)

(1 − βi(p))2

∏
p |ν

(
1 − β2

i (p)
(1 − βi(p))2

)−1

=
∏

p≡1 (4)

(
1 − 1

p2

)

×
∏

p≡3 (4)

(
1 − (p+ 1)2

(p2 − p)2

)∏
p |ν

(
1 − β2

i (p)
(1 − βi(p))2

)−1

.

We write

σ =
∏

p≡1 (4)

1 − 1
p2

∏
p≡3 (4)

1 − (p+ 1)2

(p2 − p)2

and get

Gi,j (ν,m, 0, 0) (2–26)

= σ ·
∑
ν

C(ν, 0, 0)Pν (0, 0) ·
∏
p |ν

(
1 − β2(p)

(1 − β(p))2

)−1

= σ ·
∑
ν

∏
p |ν

g(p)
(1 − β2(p)(1 − β(p))−2)(1 − β(p))2

= σ ·
∏
p

1 +
g(p)

(1 − β2(p)(1 − β(p))−2)(1 − β(p))2

= σ ·
∏

p≡1 (4)

(
1 − 1

p2

)−1 ∏
p≡3 (4)

1 +
p2 + 1

p4 − 2p3 − 2p− 1

=
∏

p≡3 (4)

(
1 − (p+ 1)2

(p2 − p)2

)(
1 +

p2 + 1
p4 − 2p3 − 2p− 1

)
.

Therefore our infinite sum is equal to

8 · L2(2, χ4) ·
∏

p≡3 (4)

1 − 2
p(p− 1)2 , (2–27)

as desired.

Conjecture 1.3 follows from our assumption that the
Möbius function is random and from Lemma 2.5. Namely,
we predict

ψ
(2)
P (x) ≈ 8 · NP (x)

4
· L2(2, χ4) ·

∏
p≡3 (4)

1 − 2
p(p− 1)2

= c · L2(2, χ4),

where c = 1.646 . . . as in Conjecture 1.3.
As with our heuristic for the number of prime curva-

tures less than x in a packing, this count does not depend

FIGURE 7. Prime number theorem for kissing primes
for the packing PB .

on the packing P . Figures 7 and 8 show graphs of

y =
ψ

(2)
P (x)

N
(2)
P (x)

for P = PB and PC , and x ≤ 108. The convergence to
α = c · L2(2, χ4)/3 in these graphs (especially in the case
of the first graph) is not as striking as that of Figures 5
and 6. This is because we are unable to compute to a large
enough value of x for which our kissing prime heuristic
would be most precise. This phenomenon of slower con-
vergence in the case of k-tuples of primes for k ≥ 2 can
be observed even in the setting of the integers, and it is
certainly the case here.

FIGURE 8. Prime number theorem for kissing primes
for the packing PC .
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3. LOCAL-TO-GLOBAL PRINCIPLE FOR ACPS

In this section we present numerical evidence in support
of Conjecture 1.1, which predicts a local-to-global princi-
ple for the curvatures in a given integral ACP. Since the
Apollonian group A is a thin group—it is of infinite index
in OF (Z)—it is remarkable that its orbit should eventu-
ally cover all the integers outside of the local obstruction
modulo 24 as specified in Theorem 1.4. Proving this rigor-
ously, however, appears to be very difficult. An analogous
problem over Z would be to show that all large integers
satisfying certain local conditions are represented by a
general ternary quadratic form; this analogy is realized by
fixing one of the curvatures in Descartes form and solv-
ing the problem for the resulting ternary form. While this
problem was recently resolved in general in [Cogdell 03]
and [Duke and Schulze-Pillot 90], even there the local-to-
global principle comes in a much more complicated form,
relying on congruence obstructions specified in the spin
double cover. Our conjecture, which therefore has the fla-
vor of Hilbert’s 11th problem for an indefinite form, pre-
dicts a local-to-global principle of a more straightforward
nature.

Our computations suggest that this conjecture is true,
and we predict the value XP in the examples we check.
We consider the packings PB and PC introduced in Sec-
tion 1. Recall that PB corresponds to the orbit of A act-
ing on (−1, 2, 2, 3), and PC corresponds to the orbit of A
acting on (−11, 21, 24, 28).

In order to explain the data we obtain in both cases,
we use Theorem 1.4 to determine the congruence classes
(mod 24) in the given packing. Recall that the Apollo-
nian group A is generated by the four generators Si in
(1–2). We can view an orbit of A modulo 24 as a finite
graph G24 in which each vertex corresponds to a distinct
(mod 24) quadruple of curvatures, and two vertices v and
v′ are joined by an edge iff Siv = v′ for some 1 ≤ i ≤ 4.

Recall from Theorem 1.4 that for any orbit O of the Apol-
lonian group,

O24 = O8 ×O3 , (3–1)

so the graph G24 is completely determined by the struc-
ture of O3 and O8 . There are only two possible orbits
modulo 3, pictured in Figures 3 and 4. There are many
more possible orbits modulo 8, and we provide the graphs
for these orbits in the case of PB and PC in Figure 9.

Note that each vertex in G8 and G3 is connected to its
neighboring vertices via all of the generators Si . There-
fore the curvatures of circles in a packing modulo 24 are
equally distributed among the coordinates of the vertices
in G24 . Combined with Theorem 1.4, this lets us compute
the ratio of curvatures in a packing that fall into a spe-
cific congruence class modulo 24. Namely, let O24(P ) be
the orbit modulo 24 corresponding to a given packing P .
For w ∈ O24(P ) let wi be the ith coordinate of w. We
define γ(n, P ) as the proportion of coordinates in O24(P )
congruent to n modulo 24. That is,

γ(n, P ) =
∑4

i=1 #{w ∈ O24(P ) | wi = n}
4 · #{w ∈ O24(P )} . (3–2)

With this notation, a packing P contains a circle of cur-
vature congruent to n modulo 24 iff γ(n, P ) > 0. Given
(3–1), we express γ as follows:

γ(n, P ) =
∑4

i=1 #{w ∈ O24(P ) | wi = n}
4 · #{w ∈ O24} (3–3)

=
1
4

∑4
i=1 #{w ∈ O8 | wi ≡ n (3)}

#{w ∈ O8}
× #{w ∈ O3 | wi ≡ n (8)}

#{w ∈ O3} .

The significance of γ in the case of any packing (not only
the two we consider) is explained in the following lemma.

FIGURE 9. Orbits of PB and PC modulo 8.
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FIGURE 10. Histograms for integers occuring in PB . (Continued on next page)
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FIGURE 10. (Continued).

Lemma 3.1. Let NP (x) be as before, let C be a circle in
an integral Apollonian packing P , and let a(C) be the
curvature of C. Then∑

C ∈P
a (C )< x

a(C )≡n (24)

1 ∼ γ(n, P ) ·NP (x).

This follows from Theorem 1.4. Note that in general,
the orbits O8(P ) and O3(P ) have respectively four and
ten vertices in the corresponding finite graphs.4 Therefore
G24 always has 40 vertices, and the ratio in (3–3) is easily
computed using this graph. With this in mind, we observe
the following about the packing PB .

Lemma 3.2. Let PB,24 denote the possible congruence
classes of curvatures modulo 24 in the packing PB , and
let NPB (x) be as in Theorem 2.2. Then we have the fol-
lowing:

(i) NPB (x) ∼ cPB · xδ , where cPB = 0.402 . . . .

(ii) PB,24 = {2, 3, 6, 11, 14, 15, 18, 23}.
(iii)

γ(2, PB ) =
3
20
, γ(14, PB ) =

3
20
,

γ(3, PB ) =
1
10
, γ(15, PB ) =

1
10
,

γ(6, PB ) =
1
10
, γ(18, PB ) =

1
10
,

γ(11, PB ) =
3
20
, γ(23, PB ) =

3
20
.

4 There are only two possible orbits modulo 3, but many more mod-
ulo 8. We examine just two such orbits here.

(iv) For 106 < x < 5 · 108 , let x24 denote x mod 24. If
x24 ∈ PB,24 , then x is a curvature in the packing
PB .

Part (iv) is an observation based solely on our com-
putations using the algorithm described in Section 4;
these are illustrated in the histograms in Figure 10. The
first three parts follow from computations combined with
Theorem 2.2 and Lemma 3.1.

Note that γ(n, PB ) = γ(n+ 12, PB ). For this particu-
lar packing, one can therefore express the local obstruc-
tions modulo 12 rather than modulo 24. Whenever this is
the case for an integral ACP, we will find that there are
eight congruence classes modulo 24 in the curvatures of
the circles. This is observed in [Graham et al. 03], where
the authors compute which integers less than 106 are “ex-
ceptions” for PB ; they find integers that satisfy these
local conditions for PB modulo 12 but do not occur as
curvatures in the packing.5 Our data extend the findings
in [Graham et al. 03] (we consider integers up to 5 · 108),
and show that all integers between 106 and 107 belonging
to one of the congruence classes in part (ii) of Remark
3.2 appear as curvatures in the packing PB .

The histograms depicted in Figure 10 illustrate the
distribution of the frequencies with which each integer in
the given range satisfying the specified congruence condi-
tion occurs as a curvature in the packing PB . The means
of the distributions of these frequencies can be computed,

5 There is a small error in the computations in [Graham et al. 03];
we have found that the integer 13806 ≡ 6 (12) does not appear as
a curvature in PB . The authors’ results do not reflect this.
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as we do in (3–6). The variance, however, is much more
difficult to predict at this time; explaining the behavior
of the variance as we consider larger integers would shed
more light on our local-to-global conjecture. Note that
there are no exceptions to the local-to-global principle
in this range whenever 0 is not a frequency represented
in the histogram (i.e., each integer occurs at least once).
There are several other frequencies not represented in the
histograms for both PB and PC (these show up as gaps
in the graphs), and an explanation of this aspect would
be interesting.

We do the same analysis for the packing PC . In this
case, we must consider much larger integers than in the
case of PB in order to get comparable results. This can
be explained partially by the fact that the constant cP
in Kontorovich and Oh’s formula

NP (x) ∼ cP · xδ (3–4)

is much smaller for the packing PC than for the packing
PB , since the initial four circles in PC are much larger
than the initial four in PB (See part (i) of Lemmas 3.2 and
3.3). Specifically, cPC = 0.0176 . . . and cPB = 0.402 . . . .
However, our data suggest that the proposed local-to-
global principle should hold for this packing as well.

Lemma 3.3. Let PC,24 denote the possible congruence
classes modulo 24 in the packing PC , and let NPC (x) be
as in Theorem 2.2. Then we have the following:

(i) NPC (x) ∼ cPC · xδ , where cPC = 0.0176 . . . .

(ii) PC,24 = {0, 4, 12, 13, 16, 21}.
(iii)

γ(0, PC ) =
1
10
, γ(13, PC ) =

3
10
,

γ(4, PC ) =
3
20
, γ(16, PC ) =

3
20
,

γ(12, PC ) =
1
10
, γ(21, PC ) =

4
20
.

(iv) For 108 < x < 5 · 108 , let x24 denote x mod 24. If
x24 = 13 or x24 = 21, then x is a curvature in the
packing PC .

Again, note that part (iv) is an observation based
solely on our computations, while the first three parts
in Lemma 3.3 rely on Lemma 3.1 and Theorem 2.2. The
histograms in Figure 11 illustrate the distribution of the
frequencies with which each integer in the given range
satisfying the specified congruence condition occurs as
a curvature in the packing PC . Note that as with PB ,

the frequencies with which integers are represented in
the packing seem to have a normal distribution. How-
ever, since the mean of this distribution is much smaller
for PC than for PB , we find that 0 is often a frequency
represented in the histograms, and so there are still some
exceptions to the proposed local-to-global principle in the
range we consider.

As we mentioned before, the mean in each of these his-
tograms is easily computable: Let C denote a circle in an
Apollonian packing P and let a(C) denote the curvature
of C. Let I = [k, k +K] be an interval of length K and
let x ∈ I be an integer. Let

ν(x) = #{C ∈ P | a(C) = x}

be the number of times x is a curvature of a circle in P .
For an integer m ≥ 0, let

δ(m,n) = #{x ∈ I | x ≡ n (24), ν(x) = m}.

Then by Lemma 3.1,

∑
x ∈I

x≡n (24)

ν(x) =
∑
m≥0

δ(m,n) ·m. (3–5)

The equivalence of the two sums above is easy to ob-
serve: one counts the same set of curvatures, but par-
titions them differently. In particular, the expression in
(3–5) allows us to determine the mean of the distribu-
tions in the histograms above. Namely, denote by x ∈ I

an integer in some interval I = [k, k +K] of length K.
Let 1 ≤ n ≤ 24, and let µ(n, P ) denote the mean of the
number of times x ≡ n mod 24 is represented as a cur-
vature in the packing P . Note that there are precisely
K/24 integers congruent to n mod 24 in the interval I.
Combined with (3–5), this gives us

µ(n, P ) ≈ 24 · γ(n, P ) · (NP (k +K) −NP (k))
K

. (3–6)

This formula predicts the following values for the means
in PB in the range [106 , 108), and PC in the range
[4 · 108 , 5 · 108):

µ(2, PB ) = µ(11, PB ) = µ(14, PB ) = µ(14, PB )
= µ(23, PB ) = 406.70 . . . ,

µ(3, PB ) = µ(6, PB ) = µ(15, PB ) = µ(18, PB )
= 271.13 . . . ,

µ(0, PC ) = µ(12, PC ) = 24.35 . . . ,
µ(4, PC ) = µ(16, PC ) = 36.52 . . . ,
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FIGURE 11. Histograms for integers occuring in PC .
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Algorithm 1 Generating all curvatures of magnitude
less than x.

(1) Push the root quadruple onto the stack.

(2) Until the stack is empty, perform an iterative
process:
(a) Pop a quadruple off of the stack and gener-

ate its children.

(b) For each child, if the new curvature created
(i.e., the maximum entry of the quadruple)
is less than x, then push the child onto the
stack.

µ(13, PC ) = 73.05 . . . ,
µ(21, PC ) = 48.70 . . . ,

which coincides with the means observed in the his-
tograms. This clarifies why the mean is small for packings
for which the constant cP in the formula NP (x) ∼ cP · xδ
is small, and why one needs to consider very large integers
to see that the local-to-global principle for such packings
should hold.

This analysis can be carried out for any ACP, and will
likely yield similar results. In the direction of proving
Conjecture 1.1, one might investigate howXP depends on
the given packing. Can it perhaps be expressed in terms
of the constant cP in (3–4)? One might also ask how
the variance of the distributions above depends on the
packing, and how it changes with the size of the integers
we consider. Answering this would give further insight
into the local-to-global correspondence for curvatures in
integer ACPs.

4. A DESCRIPTION OF OUR ALGORITHM AND ITS
RUNNING TIME

We represent an ACP by a tree of quadruples. Figure 12
shows the first two generations of the tree correspond-
ing to PC . To generate all curvatures of magnitude less
than x, we use a LIFO (last-in–first-out) stack to gen-
erate and prune this tree. The algorithm is presented as
Algorithm 1.

By pushing a quadruple onto the stack only if its max-
imum entry is less than x, we effectively prune the tree.
Since we know that each quadruple has a larger maximum
entry than its parent, we use step 2b to avoid generat-

FIGURE 12. The tree of quadruples for PC , pictured up
to two generations.

ing branches whose quadruples are known to have entries
greater than x.

Although we use the concept of a tree to generate cur-
vatures, we note that the entire tree structure is not nec-
essary to store such curvatures. Instead, we store the cur-
vatures in a one-dimensional array of x elements, all ini-
tialized to zero. The ith element of the array contains the
number of curvatures with magnitude i. For instance, the
24th element of the array for PC is equal to 1, while the
25th element is equal to 0, since there are no curvatures
equal to 25 in PC .

We use these arrays to generate the histograms in Sec-
tion 3. Due to Matlab’s memory constraints, we limit our
Matlab arrays to 108 entries. So to check for exceptions in
the entire range [106 , 5 · 108), we check each of the inter-
vals [106 , 108), [108 , 2 · 108), . . . , [4 · 108 , 5 · 108) individu-
ally. We have chosen to display the interval [106 , 108) in
our figures in Section 3.

To count primes less than x, we simply increment a
sum whenever a prime curvature is produced. To count
kissing primes less than x, we increment a sum whenever
a prime curvature is produced and some other member
of the curvature’s quadruple is prime.

It takes our algorithm O(NP (x)) steps to compute
NP (x), which is optimal, since each node on the tree
must be visited; that is, it is not possible to skip any
quadruples.
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Our programs rely on Wayne and Sedgewicks’s
Stack data type and standard draw library
[Sedgewick and Wayne 07].
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