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We study the number of rational points of bounded height on
a certain threefold. The accumulating subvarieties are Zariski
dense in this example. The computations support an extension
of a conjecture of Manin to this situation.

1. INTRODUCTION

The set of rational points on varieties is one of the central
objects in arithmetic geometry. For Fano varieties, many
rational points are expected (at least after an extension
of the ground field). So one could ask for the number of
such points of bounded height. This leads to the famous
conjecture of Yuri Manin [Franke et al. 89].

Conjecture 1.1. (Manin.) Let V be an arbitrary Fano
variety and H the anticanonical height. Then there exists
a dense Zariski-open subset V ◦ ⊂ V such that for each
number field K,

#{x ∈ V ◦(K) | H(x) < B} ∼ C · B logr B,

where r is expected to be rk Pic(V ) − 1.

To illustrate the choice of the Zariski-open subset
V ◦ ⊂ V , we give an example.

Example 1.2. A smooth cubic surface with 27 rational
lines has Picard rank 7. So we expect approximately C ·
B log6 B rational points of height at most B. But every
line has approximately CB2 rational points. In this case,
one chooses V ◦ as the complement of the lines.

Examples in which the rational points in the ex-
ceptional set have the same magnitude as the rational
points in V ◦ are given in [Elsenhans and Jahnel 06b] and
[Hooley 86].

The Manin conjecture is proven in a number of
special cases. In the case of high dimension and low
degree, this can be done using the circle method
[Birch 62]. Beyond this, there are many (theoretical
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and numerical) results supporting this conjecture. On
the other hand, we have the following counterexample
[Batyrev and Tschinkel 96]:

Example 1.3. Let V ⊂ P3 ×P3 be the Fano variety

{([a : b : c : d], [x : y : z : w]) |
ax3 + by3 + cz3 + dw3 = 0} .

The number of rational points over Q (ζ3) grows at
least as fast as B log3 B on each nonempty Zariski-
open subset, but the conjecture predicts approximately
C B log B.

The point is that the fibers with a, b, c, d cubes are
cubic surfaces with Picard rank 7. On these fibers,
C B log6 B rational points are expected. The lower bound
B log3 B is proven. Since these fibers form a Zariski-
dense subset, we get a counterexample to the Manin
conjecture.

At this point at least the following possibilities arise:

� The class of all Fano varieties is too big for a uniform
conjecture.

� The value of the constant r has to be modified.
� The requirement of V ◦ to be Zariski open is too

strong.

Remark 1.4. Aside from this counterexample, several peo-
ple have extended the conjecture. Most important is a
conjectural value of the constant C. This is expected
to be a Tamagawa-type number introduced by E. Peyre
[Peyre 95]. (See below for more details.)

Furthermore, attempts have been made to construct
a more precise asymptotic formula for the number
of rational points [Swinnerton-Dyer 05]. It is given by
BP (log B) + O(B

1
2 +ε). Here, P is a polynomial of de-

gree rkPic(V ) − 1 with leading coefficient C, and ε

is some value in (0, 1
2 ). See [de la Bretèche et al. 07]

for a proof in the case of a special singular cubic
surface.

In this note we focus on varieties of the form

ax2 + by2 + l1(a, b)z2 + l2(a, b)w2 = 0 ( 1–1)

in P1 ×P3 . Here l1 and l2 are two linear forms. This
example was suggested by Emmanuel Peyre and Yuri
Tschinkel during the arithmetic and algebraic geometry
conference of higher-dimensional varieties (Bristol 2009).
After a study of the geometry of these varieties we will

search for rational points and compare their number with
the predicted value.

For a numerical check of the Manin conjec-
ture in simpler cases, the reader might consult
[Peyre and Tschinkel 01], [Elsenhans and Jahnel 06b], or
[Elsenhans and Jahnel 09]. Arguments and computa-
tions carried out in great detail there are only sketched
in this note.

2. THE TAMAGAWA NUMBER

For an arbitrary Fano variety, a conjectural value of C

was introduced by E. Peyre. It is an infinite product of
Tamagawa type. We will recall this constant in a special
case, which is yet general enough for our situation.

More precisely, we will work over Q , and we assume
that the Galois action on the Picard group of the variety
is trivial. The latter implies that we do not have to care
about the Brauer–Manin obstruction. Furthermore, we
will restrict our attention to varieties given by a single
equation in a product of projective spaces. Then C is
given as the following product:

C = α
∏

p∈P∪{∞}
τp .

For a prime p ∈ P , the local factor τp is given by

τp =
(

1 − 1
p

)rk Pic(V )

· lim
k→∞

#V (Z/pk Z)
pk dim V

.

At the infinite place we have the following formula:

τ∞ =
(n − d + 1)(m − e + 1)

4

∫
CU ∩N

ωLeray ,

for a variety in Pn ×Pm given by a polynomial of bide-
gree (d, e). Here, CU is the affine cone given by the equa-
tion, and N is [−1, 1]n+m+2. Finally, α is given by

α = rkPic(V ) · vol{x ∈ Λ∨
eff | 〈x | −K〉 ≤ 1} .

Here Λ∨
eff is the dual cone of the cone of effective divisors

Λeff(V ) ⊂ Pic(V )∨ ⊗ R = R rk Pic(V ) , and vol denotes the
Lebesgue measure on Pic(V )∨ ⊗ R , normalized such that
the primitive cell of the lattice Pic(V )∨ is of measure 1.

3. COMPUTATION OF THE TAMAGAWA NUMBER

Now we consider a variety of the form (1–1). Note that
the Picard group is isomorphic to Z2 .
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3.1. One Local Factor

At a place of good reduction, the local factor is

τp =
(

1 − 1
p

)2 #V (F p)
p3 .

At a place of bad reduction, the sequence in the definition
becomes stationary after a finite number of steps.

At a place of good reduction, #V (F p) can be com-
puted as follows. The variety V is given by the equation
ax2 + by2 + l1(a, b)z2 + l2(a, b)w2 = 0. For a fixed point
[a : b] ∈ P1 we get a quadric in P3 . Since we are at a
place of good reduction, only the following three cases
are possible:

(i) The quadric is smooth and the discriminant is not
a square. Then it has p2 + 1 points.

(ii) The quadric is smooth and the discriminant is a
square. Then it has p2 + 2p + 1 points.

(iii) The quadric is singular. Exactly one coefficient is
zero. In this case, we get (p + 1)p + 1 points. This
happens exactly four times.

Summarizing, we get p2 + p + 1 +
(

F (a,b)
p

)
p points on a

fiber. Here we set F (a, b) := ab l1(a, b) l2(a, b).
We introduce the elliptic curve

E : u2 = F (a, b)

as a double cover of P1 . Points on E with u �= 0 corre-
spond to split quadrics. Thus we get the following for-
mula:

#V (F p) = 4(p2 + p + 1) + (p2 + 1)(p + 1 − 4)
+ (#E(F p) − 4)p

= p3 + 2p2 + 2p + 1 − pTp(E) .

Here Tp(E) denotes the trace of Frobenius on E at p.
Note that |Tp(E)| < 2

√
p by Hasse’s theorem. This leads

to

τp =
(

1 − 2
p

+
1
p2

)
p3 + 2p2 + 2p + 1 − pTp(E)

p3

= 1 − 1
p2 − 1

p3 +
1
p5 − Tp(E)

(
1
p2 − 2

p3 +
1
p4

)
.

3.2. The Infinite Product

The infinite product of the local factors calculated above
is absolutely convergent. The local factors have many
similarities with local factors of the L-series L of E and
the Riemann zeta function ζ. The local factor Lp(s) is
given by (1 − Tp(E)p−s + p1−2s)−1 at places of good re-
duction, and ζp(s) is simply (1 − p−s)−1 . Thus we have

ζ(s) =
∏

p ζp(s) and L(s) =
∏

p Lp(s). Extracting such
factors improves the convergence properties. We get

∏
p

τp =
L(3)2

ζ(2)ζ(3)2L(2)L(4)2

×
∏
p

ζp(2)ζp(3)2Lp(2)Lp(4)2

Lp(3)2 τp .

The factors of the new product are 1 + 2Tp (E )2

p5 +
O(p−9/2).

In this way, we can evaluate the Euler product with a
precision of 14 digits within a few minutes. Most of the
time is used for the evaluation of the L-series. Here we use
Magma. See [Dokchitser 04] for details of the algorithm.

3.3. The Infinite Place

The factor at the infinite place is a 5-dimensional integral
on a compact domain. Using homogeneity, we can reduce
to a or b equal to 1 and 1 ∈ {x, y, z, w}. This is a sum of
eight 3-dimensional integrals. The summand for a = x =
1 is given by∫∫∫

1
|y2 + l1(0, 1)z2 + l2(0, 1)w2 | dy dz dw .

The other seven cases are similar. The domain of inte-
gration for the case a = x = 1 is given by
{

(y, z, w) ∈ [0, 1]3 |
∣∣∣∣ 1 + l1(1, 0)z2 + l2(1, 0)w2

y2 + l1(0, 1)z2 + l2(0, 1)w2

∣∣∣∣ ≤ 1
}

.

The innermost integral can be evaluated by hand. The
remaining 2-dimensional integral can be evaluated using
standard methods from numerical analysis. Here we ap-
ply an adaptive version of the iterated Gauss–Legendre
method. We expect a precision of at least six decimal
places.

4. SOME SUBVARIETIES OF THE THREEFOLD

4.1. The Quadric Fibration

First recall the meaning of fibration into quadrics. A fixed
point [a : b] ∈ P1 leads to the quadric Va,b in P3 . This
quadric is singular if and only if one of a, b, l1(a, b), l2(a, b)
is zero.

The quadric is a split quadric (i.e., has Picard rank 2
over Q ) if and only if its discriminant is a square and it
has a rational point.

Thus, a necessary condition for a quadric to be split
is that it correspond to a point on the elliptic curve E

introduced above by the equation u2 = ab l1(a, b) l2(a, b).
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Furthermore, note that the map

[a : b ; u] �→
(

a

b
,
l1(a, b)

b
,
l2(a, b)

b

)
∈ (

Q /Q 2)3

for [a : b ; u] ∈ E(Q ) with u �= 0 extends to a homo-
morphism φ : E(Q ) → (

Q ∗/Q ∗2)3 with kernel 2E(Q )
[Silverman 86, Chapter X, Proposition 1.4].

This shows that if [a : b ; u] leads to a split quadric,
than all points in the coset [a : b ; u] + 2E(Q ) lead to
singular or split quadrics.

If E has positive rank and at least one split quadric
exists, then all split quadrics form a Zariski-dense subset
of the threefold. We will give examples for this below.

4.2. An Elliptic Cylinder

Another interesting subvariety of V is the following.
Rewrite the equation as aq1(x, y, z, w) + bq2(x, y, z, w) =
0. From this we get the subvariety

P1 ×{[x : y : z : w] ∈ P3 | q1(x, y, z, w)
= q2(x, y, z, w) = 0} .

This is the product of P1 and a genus-1 curve.
One could count the points on V (F p) by checking

whether [x : y : z : w] ∈ P3 leads to a point or a line on
V . This leads to the observation that this genus-1 curve
has the same Frobenius trace as the elliptic curve E given
above. Further one can check that both curves have the
same j-invariant. But it may happen that only one of the
curves has a rational point.

5. COUNTING RATIONAL POINTS

5.1. The Point-Counting Algorithm

Our variety V is given by the equation

ax2 + by2 + l1(a, b)z2 + l2(a, b)w2 = 0

in P1 ×P3 . Because of symmetry, we restrict to nonnega-
tive values for x, y, z, w. Points with one zero are counted
with weight 1

2 . Points with two or three zeros are counted
with weights 1

4 and 1
8 .

Recall that the anticanonical height is given by the
formula

H([a : b ; x : y : z : w])
= Hnaive([a : b])Hnaive([x : y : z : w])2 .

For a point of bounded height, at least one of the factors
is small. This observation leads to the following splitting.
Choose a search bound B and an auxiliary bound A.

For all [a : b] ∈ P1 with Hnaive([a : b]) < A, search for
rational points on the quadric Ca,b of naive height at
most

√
B/H([a : b]).

For all points [x : y : z : w] ∈ P3 with

Hnaive([x : y : z : w]) <

√
B

A
,

solve the linear Diophantine equation for [a : b]. If this is
the zero equation, we get a line on the elliptic cylinder.
If it is not the zero equation, we get a point. This point
leads to the solution [a : b;x : y : z : w]. We take it if |a|,
|b| is below B/H ([x : y : z : w])2 .

The optimal value of the auxiliary bound A de-
pends on details of the implementation and the ma-
chine. We took A = 400 for B = 108. Searching for
points on Ca,b is fast and easy. Just apply the ideas of
[Elsenhans and Jahnel 06a], [Elsenhans and Jahnel 06b],
and [Elsenhans and Jahnel 10]. Some optimizations are
possible using congruences.

5.2. Rational Points on Subvarieties

Recall that the Manin conjecture is proven for degree-2
surfaces. It leads to ∼ CB points of height at most B on
nonsplit and ∼ CB log B points on split quadrics.

The singular fibers lead to ∼ CB log B points of anti-
canonical height at most B on V .

Counting points on the elliptic cylinder means count-
ing points on the elliptic curve itself. Since the heights
of rational points on elliptic curves grow rapidly, we get
∼ CB2 rational points on the elliptic cylinder with anti-
canonical height at most B on V .

5.3. Numerical Results

To get an overview of the different phenomena, we list
all the data for three examples. Choosing examples is
always more or less random. Here we take examples with
a considerable proportion of points on the split and the
singular quadrics:

V1 : ax2 + by2 + (a − b)z2 + (a − 2b)w2 = 0,

V2 : ax2 + by2 + (2a − b)z2 + (−6a + b)w2 = 0,

V3 : ax2 + by2 + (−91a − 92b)z2 + (99a + 100b)w2 = 0.

We apply the point-search algorithm described above.
Points on the elliptic cylinder were excluded from the
count. We counted the points in each height interval of
length 105 up to 108. Some of the values are listed in
Tables 1 and 2.

We approximate the number of rational points
by functions of the form c1B log(B) + c2B using the
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Number of points V1 V2 V3

altogether 593147.75 910514 313622
on singular quadrics 262910.75 276816 111
on split quadrics 0 121182.5 263390
on nonsplit quadrics 330237 512515.5 50121

TABLE 1. Number of rational points of anticanonical height
below 105 .

least-squares method. The root-mean-square error of the
approximations is always below 0.03%. The results are
listed in Table 3.

The values of the Tamagawa numbers are listed in
Table 4.

5.4. Conclusion

We observe a good coincidence of Peyre’s constant and
the leading coefficient for the approximate formula for the
number of rational points outside the elliptic cylinder on
smooth nonsplit fibers.

5.5. The Split Quadrics

Now we take a closer look at the split quadrics.
The split quadrics for V2 are given by

(a, b) ∈ {(1,−2), (1,−48), (1,−6), (1, 3), (1, 4),
(4,−1), (9, 50), (25, 54), (49,−1058), (169, 867),
(289, 676), (529,−294), (3600,−36481),
(36481,−43200), (43681, 116162),
(58081, 262086), (8958049, 52911076),
(13227769, 26874147), (17497489,−837218),
. . . } .

Number of points of
Set of points height below B

on V1 altogether 0.477469B log(B)
+ 0.436195B

without singular quadrics 0.312111B log(B)
− 0.297472B

on nonsplit quadrics 0.312111B log(B)
− 0.297472B

on V2 altogether 0.925062B log(B)
− 1.588194B

without singular quadrics 0.742798B log(B)
− 2.272602B

on nonsplit quadrics 0.652422B log(B)
− 2.441540B

on split quadrics 0.090376B log(B)
+ 0.168938B

on V3 altogether 0.225190B log(B)
+ 0.538876B

without singular quadrics 0.225028B log(B)
+ 0.540088B

on nonsplit quadrics 0.054220B log(B)
− 0.125521B

on split quadrics 0.170809B log(B)
+ 0.665609B

TABLE 3. Experimental formulas for the number of rational
points.

The split quadrics for V3 are given by

(a, b) ∈ {(1,−1), (1,−25), (4900,−8019),
(96100,−107811), (101761,−198025),
(261121,−259081), (504100,−527571),
(2989441,−2961841), . . . } .

Since the coefficients of these quadrics grow rapidly, the
density of rational points decreases rapidly. In the search

Number of points V1 V2 V3

altogether 923032815.25 1545094531.75 468691343.75
on singular quadrics 377837495.25 404003678 173805
on split quadrics 0 183375308 381163936.5
on nonsplit quadrics 545195320 957715545.75 87353602.25

TABLE 2. Number of rational points of anticanonical height below 108 .
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V1 V2 V3

α 0.25 0.25 0.25
τ∞ 2.8331245 3.2014086 0.34700116∏

p τp 0.441828484431 0.819836740267 0.627048795633
CPeyre 0.3129388 0.6561581 0.05439666

TABLE 4. Approximate values of Tamagawa numbers.

range, only the first two split quadrics on V3 have rational
points.

We calculate
∑ τ (Ca , b )

Hn a iv e ([a :b]) . That is, we compute the
sum of the Tamagawa numbers of the split quadrics. The
convergence of the series is fast. The smallest contribu-
tion of a quadric listed above is of magnitude 10−16 .
The sum over these quadrics is very close to the limit.
For V2 and V3 these sums are respectively approximately
0.0903666 and 0.170788.

5.6. Conclusion

We observe a good coincidence of the sum of the Tam-
agawa numbers of the split quadrics and the leading co-
efficient of the experimental formula for the number of
rational points in these fibers.

6. DISCUSSION

The computations show that the Manin conjecture as
presented in the introduction does not hold for quadratic
bundles, since it allows only the exclusion of Zariski-
closed sets such as the singular fibers and the elliptic
cylinder. For this, the smooth split fibers contain too
many points, and the predicted number of points is too
small.

The examples suggest the following possibilities:

� Modify the formula for the expected number of ra-
tional points. That is, add a term for the contribu-
tion of the split fibers.

� Allow the exceptional set to be a thin Zariski-dense
part of the variety, for example, fibers given by ra-
tional points on an elliptic curve.

For a theoretical treatment, compare E. Peyre’s talk
“Freedom and Goodness,” given at the conference Arith-
metic and Algebraic Geometry of Higher-Dimensional
Varieties, Bristol, September 2009.
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Bayreuth, Germany (Stephan.Elsenhans@uni-bayreuth.de)

Received January 8, 2010; accepted March 29, 2010.


