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A numerical process to approximate optimal partitions in any
dimension is reported. The key idea of the method is to relax the
problem into a functional framework based on the famous result
of �-convergence obtained by Modica and Mortolla.

1. INTRODUCTION

The aim of our work is to investigate the problem of
dividing a region C ⊂ R

N into pieces of equal volume
so as to minimize the surface of the boundary of the
partition. Physically, this problem can be reformulated
thus: what is the most efficient soap-bubble foam of C

(see [Thomson 87])?
If C = R

2 , Hales proved in 1999 that any partition of
the plane consisting of regions of equal area has a perime-
ter at least equal to that of the regular hexagonal hon-
eycomb tiling (see [Hales 01] or [Morgan 09]).

The problem when C = R
3 was first raised by Lord

Kelvin in 1894. He conjectured that a tiling mode
truncated octahedra is optimal. This conjecture was
motivated by the fact that such a tiling satisfies
Plateau’s first-order optimality conditions (see, for in-
stance, [Plateau 73]. Ten years ago, the two physicists D.
Weaire and P. Phelan found a better tiling than Kelvin’s
(see [Weaire and Phelan 94]). This tiling includes two
kinds of cells: 14-sided cells and 12-sided cells. This last
structure is up to now the best candidate for solving
Kelvin’s problem.

In this paper, we propose a numerical process to
approximate optimal partitions in any dimension. The
key idea of our method is to relax the problem into
a functional framework based on the famous result of
Γ-convergence obtained by Modica and Mortolla (see
[Modica and Mortola 77, Modica 87], or see [Alberti 00]
for a different approach).

In the next section, we provide a rigorous mathemati-
cal framework for the problem of dividing a bounded set
C into pieces of equal volume with the smallest boundary
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measure. In the next section we extend this framework
to the case C = R

3 . In both situations, we prove by a di-
rect approach the well-posedness of our problems. Then
we describe how the result of Modica and Mortolla on
phase transitions leads to a numerical algorithm to ap-
proximate optimal partitions. To conclude, we illustrate
the efficiency of our numerical process on different ge-
ometrical situations. In our experiments, we were able
to recover both Kelvin’s and Weaire and Phelan’s tilings
starting with a uniform random distribution of densities.

2. DIVIDING A BOUNDED SUBSET OF R
N

Let n ∈ N and let C be a compact regular subset of R
N .

First, we provide a rigorous mathematical framework for
the question of dividing C into n pieces of equal volume
such that the boundary of the partition has the smallest
measure. Let us consider the following natural partition-
ing problem:

inf
(Ω i )n

i = 1 ∈On

Jn (Ω1 , . . . ,Ωn ) (2–1)

with

Jn (Ω1 , . . . ,Ωn ) =
n∑

i=1

HN −1(∂Ωi), (2–2)

where HN −1 stands for the (N − 1)-dimensional Haus-
dorff measure and On is defined by

On = {(Ωi) measurable | ∪n
i=1Ωi = C, Ωi ∩ Ωj = ∅

if i �= j and |Ωi | =
|C|
n

for i = 1, . . . , n}, (2–3)

where |Ωi | is the Lebesgue measure of the set Ωi . Notice
that the first two equalities in (2–3) have to be under-
stood up to a set of measure zero. We claim that the
problem (2–1) is well posed:

Theorem 2.1. There exists at least one family (Ω∗
i )

n
i=1 ∈

On such that

Jn (Ω∗
1 , . . . ,Ω

∗
n ) = inf

(Ω i )n
i = 1 ∈On

Jn (Ω1 , . . . ,Ωn ).

Proof: We observe first that it suffices to show that the
problem of minimizing

Ĵn (Ω1 , . . . ,Ωn ) =
n∑

i=1

HN −1(∂Ωi \ ∂C) (2–4)

among sets of On has a solution, since Ĵn − Jn is equal
to the constant HN −1(∂C). We apply the standard direct

method of the calculus of variations: Consider a minimiz-
ing sequence ((Ωk

i )n
i=1)k of partitions. That is,

lim
k→+∞

Ĵn (Ωk
1 , . . . ,Ωk

n ) = inf
(Ω i )n

i = 1 ∈On

Ĵn (Ω1 , . . . ,Ωn ).

It is clear from the previous limit that for k large
enough, every set Ωk

i has a finite perimeter with re-
spect to the N − 1 Hausdorff measure. This implies clas-
sically that every such set Ωk

i is a set of Cacciopoli type.
More precisely, the characteristic function χΩk

i
is in the

space BV(C), the normed space of functions of bounded
variations in C (for a precise definition of BV(C)
and its main properties, see [Evans and Gariepy 92] and
[Ambrosio et al. 00]). Additionally, we have

‖χΩk
i
‖BV(C ) = HN −1(∂Ωk

i \ ∂C).

According to a standard compactness argument (see,
for instance, [Evans and Gariepy 92, p. 176]), there exists
a subsequence of (Ωk

i )n
i=1 (still denoted using the same

index) that converges in L1(C)n to an n-tuple (Ω∗
i )

n
i=1.

By the L1(C)n convergence, every limit set Ω∗
i is still of

volume |C|/n.
Let us prove that (Ω∗

i )
n
i=1 is optimal for our problem.

The convergence in L1(C) implies the convergence al-
most everywhere in C of each χΩk

i
. As a consequence,

the following constraints are still satisfied at the limit:

∪n
i=1Ω

∗
i = C, Ω∗

i ∩ Ω∗
j = ∅ if i �= j. (2–5)

Moreover, the norm of BV(C) is lower semicontinuous.
That is, for all i = 1, . . . , n,

HN −1(∂Ω∗
i \ ∂C) ≤ lim inf

k
HN −1(∂Ωk

i \ ∂C). (2–6)

Equations (2–5) and (2–6) prove the theorem.

From the previous proof, we deduce that problem
(2–1) is equivalent to the functional optimization prob-
lem

inf
(ui )n

i = 1 ∈Xn

Jn (u1 , . . . , un ), (2–7)

where

Jn (u1 , . . . , un ) =
n∑

i=1

∫
C

|Dui | (2–8)

is the sum of all the BV norms of each function ui and

Xn =
{

(ui) | ∀i = 1, . . . , n, ui ∈ BV(C, {0, 1}),∫
C

ui =
|C|
n

,

n∑
i=1

ui(x) = 1 a.e. in C
}

.
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In Section 4 we establish a relaxed functional formu-
lation also based on BV spaces that will be the key point
of our numerical approach.

3. DIVIDING A TORUS: A SUBPROBLEM OF
KELVIN’S CONJECTURE

In this section, we extend the previous optimization
problem restricted to bounded domains to partitions of
all R

N . We first recall an existence result obtained in
[Morgan 08] that gives a rigorous mathematical formula-
tion of Kelvin’s problem in R

N :

Theorem 3.1. Consider the partitions of R
N into count-

able measurable sets (Ωi) of unit volume. For all such
partitions, we define

F ((Ωi)) = lim sup
r→+∞

HN −1(B(0, r) ∩ (∪i∂Ωi))
|B(0, r)| , (3–1)

where |B(0, r)| is the volume of the ball of radius r cen-
tered at the origin. Then there exists a partition that min-
imizes F among all admissible partitions.

As observed by Morgan, such a partition is not unique:
a compact perturbation around the origin does not
change the previous limit superior. We describe below
how to parameterize partitions of R

N . In order to ap-
proximate numerically a solution of Kelvin’s problem, we
will focus on a subproblem involving only a finite number
of sets having some property of periodicity. Consider the
unit cube C = [0, 1]N , and (Ωi)n

i=1 a finite partition of C

into n measurable sets that satisfy

∀i = 1, . . . , n, ∀x ∈ ∂C, χΩ i
(x) = χΩ i

(x̂) (3–2)

where x̂ is, roughly speaking, x modulo 1. More formally,
x̂ is by definition the unique element of [0, 1[N that is in
the class of x in (R/Z)N . To every family (Ωi)n

i=1 having
the property (3–2) we associate the set

E = R
N \

( ⋃
l∈ZN

τl

(
n⋃

i=1

∂Ωi

))
, (3–3)

where τl is the translation of the vector l. If we assume
that every connected component of E is of volume |C|/n,
we obtain up to an homothety an admissible partition for
Kelvin’s problem. Moreover, the cost F introduced by
Morgan of this homothetic partition (Oi) can be easily
computed, and we have

F ((Oi)) =
J per

n (Ω1 , . . . ,Ωn )
n1/3 ,

where

J per
n (Ω1 , . . . ,Ωn ) = HN −1(∂E ∩ C). (3–4)

Let us point out some crucial features. First, not every
partition of R

N can be described in the previous way.
Nevertheless, it is clear that if we let n tend to infinity, it
is possible to approximate (in the sense of Morgan’s cost
functional) every partition by the previous construction.
Second, it is not true that every family (Ωi)n

i=1 of sets
of volume |C|/n that satisfies (3–2) always produces by
(3–3) a set all of whose connected components are of vol-
ume |C|/n. A family of parallel strips may satisfy (3–2)
and produce a set E with unbounded connected compo-
nents. It is intuitively clear that this kind of partition
would not be optimal for J per

n , at least for n large. We
will not consider this difficulty in the following, and we
will observe in Section 6 that those cases do not appear
numerically.

Noteworthy in the definition (3–4) is that the pieces
of ∂E that are included in ∂C are counted. This detail
makes an important distinction from that presented in
the previous section, where the standard norm of the
space BV was sufficient to compute the perimeter as-
sociated with each set (Ωi)n

i=1. This technical aspect will
have major importance regarding the relaxed formula-
tions that will be introduced in the next section.

As in the previous section, we provide a rigorous math-
ematical formulation in a functional context of the pre-
vious construction. Let Ĉ = [−1, 2]N , and consider the
space

X per
n =

{
(ui) | ∀i = 1, . . . , n, ui ∈ BVper(Ĉ, {0, 1}),∫

C

ui =
|C|
n

,

n∑
i=1

ui(x) = 1 a.e. x in C
}

,

where

BVper(Ĉ) = {u ∈ BV(Ĉ) | u(x) = u(x̂), a.e. x in Ĉ}

and x̂ is defined as before. In order to optimize an energy
similar to (3–4), we define

Jper
n (u1 , . . . , un ) =

n∑
i=1

∫
C

|Dui |. (3–5)

Since C is a closed set, observe that the jumps of ui

that are on the boundary of C are counted in the cost
(3–5). Based on the same arguments as in the proof of
Theorem 2.1, we have the following existence result.
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Theorem 3.2. There exists at least one family (u∗
i )

n
i=1 ∈

X per
n such that

J per
n (u∗

1 , . . . , u
∗
n ) = inf

(ui )n
i = 1 ∈X p e r

n

Jn (u1 , . . . , un ).

4. RELAXATION OF THE PERIMETER AND
�-CONVERGENCE

The main difficulty in solving numerically problems (2–7)
and (3–5) is related to the approximation of irregular
functions that are characteristic functions. In order to
tackle this point, we introduce a relaxation of those prob-
lems based on the famous Γ-convergence result of Mod-
ica and Mortola. The main feature of this relaxation is
to make it possible to approximate optimal “true parti-
tions” in n pieces by an n-tuple of regular functions opti-
mal for some relaxed functionals. We report here Modica
and Mortola’s theorem, which will be used to establish
our relaxed formulations.

Theorem 4.1. [Modica 87, Modica and Mortola 77] Let
0 < V < |C|, let W be a continuous positive function that
vanishes only at 0 and 1, and set σ = 2

∫ 1
0

√
(W (u)) du.

For all ε > 0, consider

Fε(u) :=

{
ε
∫

C |∇u|2 + 1
ε

∫
C W (u) if u ∈ W 1,2(C) ∩ X,

+∞ otherwise,
(4–1)

and

F (u) :=

{
σHN −1(Su) if u ∈ BV(C, {0, 1}) ∩ X,
+∞ otherwise,

(4–2)
where X is the set of functions u ∈ L1(C) that satisfy∫

C u = V , and Su is the set of essential singularities of
u (see [Evans and Gariepy 92] or [Ambrosio et al. 00]).
Then the functionals Fε Γ-converge to F in X, and every
sequence of minimizers (uε) is precompact in X (endowed
with the L1 norm).

We establish below a simple relaxation of problem
(2–7) that is easily obtained from the previous theorem
and [Baldo 90]. Let us point out that in [Baldo 90] there
was already proposed a vectorial formulation of Modica
and Mortola’s result very close to our setting. The main
difference between his approach and our formulation is
that we consider only scalar potentials w under the ad-
ditional linear constraint

∑n
i=1 ui(x) = 1 almost every-

where. So we avoid dealing with polynomials of high de-
gree, which could create important difficulties from the
numerical point of view.

Theorem 4.2. (Relaxation of problem (2–7)) Consider
a bounded open set C of R

n and W a continuous posi-
tive function that vanishes only at 0 and 1, and set σ =
2
∫ 1

0

√
(W (u)) du. For n ∈ N

∗, let X be the space of func-
tions u = (ui) ∈ L1(C)n that satisfy

∫
C ui = |C |

n , ∀i =
1, . . . , n, and

∑n
i=1 ui(x) = 1 for almost all x in C. For

all ε > 0, consider

Fε(u) :=

⎧⎪⎨
⎪⎩

ε
∑n

i=1

∫
C |∇ui |2 + 1

ε

∑n
i=1

∫
C W (ui)

if u ∈ (W 1,2(C))n ∩ X,
+∞ otherwise,

(4–3)
and

F (u) :=

⎧⎪⎨
⎪⎩

σ
∑n

i=1 HN −1(Sui)
if u ∈ BV(C, {0, 1})n ∩ X,

+∞ otherwise,

where Sui is the set of essential singularities of ui. Then
the functionals Fε Γ-converge to F in X and every se-
quence of minimizers uε is precompact in X (endowed
with the L1 norm).

Proof: Following the classical proof of Modica and Mor-
tola, we first establish the compactness part of the theo-
rem: Let us hypothesize that (uε) is a sequence of min-
imizers of the functionals Fε . For each i = 1, . . . , n, we
apply the compactness result of Theorem 4.1 to the se-
quence uε

i . Classically, the precompactness of each com-
ponent of the sequence uε implies the precompactness of
the sequence (uε) by a diagonal argument.

As in the standard proof, we decompose the Γ-
convergence results into two steps: Let (uε) converge in
X to u. First, it has to be shown that

lim inf Fε(uε) ≥ F (u).

Again we apply Theorem 4.1 to each sequence uε
i for

i = 1, . . . , n. Since the lim inf of a finite sum is greater
than the sum of the lim inf of each sequence, we have

lim inf Fε(uε)

= lim inf
n∑

i=1

(
ε

∫
C

|∇ui |2 +
1
ε

n∑
i=1

∫
C

W (ui)

)
(4–4)

≥
n∑

i=1

lim inf ε

∫
C

|∇ui |2 +
1
ε

n∑
i=1

∫
C

W (ui) ≥ F (u).

(4–5)

Finally, let us prove that every value obtained by the
Γ-limit can be approximated by a sequence of values ob-
tained by Fε . Let u ∈ BV(C, {0, 1})n ∩ X. We look for a
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sequence (uε) ⊂ (W 1,2(C))n ∩ X such that

lim sup Fε(uε) ≤ F (u).

This nontrivial regularization of a partition can be con-
structed with the same ideas as those in [Baldo 90]. The
main point is to restrict the study to polygonal parti-
tions of finite perimeter that satisfy the same volume con-
straints. More precisely, for all u ∈ BV(C, {0, 1})n and
for all i = 1, . . . , n, we define Si = u−1

i (1/2). The fam-
ily Si is sometimes called a Caccioppoli partition, which
is a partition of C into sets (Si) of finite perimeters.
From [Baldo 90, Lemma 3.1], we deduce that there ex-
ists a sequence of polygonal partitions (Sε

i ) such that
∀i = 1, . . . , n, the following hold:

� |Sε
i | = |C |

n ,

� HN −1(∂Sε
i ∩ ∂C) = 0,

� HN −1(∂Sε
i ∩ ∂C) → HN −1(∂Si ∩ ∂C) when ε → 0.

Now, for a given polygonal partition we can use a stan-
dard regularization process (see [Modica and Mortola 77]
or [Baldo 90]) to construct a sequence (uε) that satisfies
the volume constraints, the equality

∑n
i=1 uε

i (x) = 1 for
almost all x in C, and also the inequality

lim sup Fε(uε) ≤ F (u). (4–6)

The inequalities (4–5) and (4–6) prove the Γ-convergence.

Now let us give a relaxation result for the periodic
case:

Theorem 4.3. (Relaxation of problem (3–5).) Consider
C = [0, 1]n , Ĉ = [−1, 2]n , and W a continuous positive
function that vanishes only at 0 and 1, and set σ =
2
∫ 1

0

√
(W (u)) du. For n ∈ N

∗, let X be the space of func-
tions u = (ui) ∈ L1(C)n that satisfy

∫
C ui = |C |

n , ∀i =
1, . . . , n, and

∑n
i=1 ui(x) = 1 for almost all x in C. For

all ε > 0, consider

Fε(u) :=

⎧⎪⎨
⎪⎩

ε
∑n

i=1

∫
C |∇ui |2 + 1

ε

∑n
i=1

∫
C W (ui)

if u ∈ (W 1,2(C))n ∩ X, û ∈ (W 1,2(Ĉ))n ,
+∞ otherwise,

(4–7)
and

F (u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ
∑n

i=1

∫
C |Dui |

if u ∈ BV(C, {0, 1})n ∩ X,
û ∈ BV(Ĉ, {0, 1})n ,

+∞ otherwise,

where Sui is the set of essential singularities of ui and
û is the 1-periodic extension of u to Ĉ. Then the func-
tionals Fε Γ-converge to F in X, and every sequence of
minimizers (uε) is precompact in X (endowed with the
L1 norm).

Proof: Let (uε) be a sequence of minimizers for func-
tionals Fε . As in the previous theorem, we use the com-
pactness part of Theorem 4.1 applied to the sequence of
1-periodic extensions (ûε) to obtain the precompactness
in X. Now we consider (uε) converging in X to u. We
want to prove that

lim inf Fε(uε) ≥ F (u).

Notice that this fact is not an immediate consequence
of Theorem 4.1. The main difference originates from the
fact that the jumps of u on ∂C are counted in the cost
functional F .

The idea is to move slightly the set C in order to
avoid this “bad” situation and then apply the standard
Modica–Mortola theorem. We first establish that up to
a small translation of vector a, the measure Dû has a
support intersecting with a + ∂C that is negligible with
respect to the HN −1 measure. Since u is a characteristic
function of a set of finite perimeter, the structure theo-
rem on the reduced boundary (which is exactly the jump
set of u) claims that the measure Dû has a support that
is contained (up to a set of HN −1 measure zero) in a
union of countable C1 compact hypersurfaces.

Let δ > 0, Fa a face of the cube C with normal vec-
tor a, and E one of the smooth hypersurfaces. Since Fa

and E are both manifolds of dimension N − 1, we can
apply a classical consequence of Thom’s transversality
theorem that asserts that for almost all δ, the two mani-
folds Fa + δna and E are transverse (see [Demazure 89],
for instance). As a consequence, (Fa + δna) ∩ E is the
empty set or a smooth manifold of dimension exactly
N − 2. Then (Fa + δna) ∩ E is negligible with respect to
the measure HN −1 for almost all δ > 0.

Previous arguments can be applied to each hypersur-
face that covers the support of Dû and to all the faces of
C. So we have proved that there exists a vector a such
that

(C + a) ⊂ Ĉ,

∫
∂ (C +a)

|Du| = 0. (4–8)
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Now setting Ca = C + a, we have

lim inf Fε(uε)

= lim inf ε
n∑

i=1

∫
C

|∇uε
i |2 +

1
ε

n∑
i=1

∫
C

W (uε
i )

= lim inf ε
n∑

i=1

∫
Ca

|∇uε
i |2 +

1
ε

n∑
i=1

∫
Ca

W (uε
i )

≥
n∑

i=1

∫
Ca

|Dui | =
n∑

i=1

∫
C̄a

|Dui | =
n∑

i=1

∫
C̄

|Dui |,

where the second and the last equalities are a conse-
quence of the periodicity of the functions (uε) and u. The
inequality is obtained using the lim sup part of Theorem
4.1 applied to the open set Ca , and the third equality
comes from (4–8).

The lim sup part of the proof can be established with
exactly the same ideas as in the aperiodic case. The only
difference is that the elements of the sequence must be in
W 1,2(Ĉ)n , which can be achieved with very small modifi-
cations of the energy Fε associated with the element.

5. THE MINIMIZATION ALGORITHM

The two previous theorems exhibit two major advantages
to approximate optimal partitions. First, they make it
possible to work with regular functions under linear con-
straints. Additionally, they give us the opportunity to
replace a strongly nonconvex problem by a smooth se-
quence of optimization problems depending on ε that are
close to being convex for ε � 1. Our optimization strat-
egy is based on the latter observation. First solve the re-
laxed problems (4–3) and (4–7) with ε large. Since in this
case those problems are almost convex, we can expect to
find by a standard descent method a good approximation
uε of the solution.

Then the value of ε is increased step by step and the
new optimization problem is solved by starting the op-
timization process with the previous numerical solution.
Note that our strategy does not give any guarantee that
at the end of the process we can identify a global opti-
mum of the original problem, since branching in a wrong
direction may occur as ε tends to 0. Nevertheless, we
observe in our experiments that this approach is surpris-
ingly efficient for our problems.

Relying on the above strategy, we can now describe our
optimization algorithm. In order to simplify the notation,
we restrict our description to the dimension N = 2 and
C = [0, 1]2 . It is straightforward to adapt our method
to the case N = 3. We decompose the domain C into

an M × M grid with spacing h = 1/(M − 1). Consider
a renumbering operator K : (0,M − 1) × (0,M − 1) �→
(0,M 2 − 1) such that K(k, l) = lM + k. Our unknowns
are the components of the discrete fields (Uε

i )k,l or
(Uε

i )K (k,l) (which we abbreviate as (Uε
i )K when there is

no risk of confusion) depending on whether we insist on
the spatial relation between the components. We approx-
imate the gradient of functions uε

i by standard first-order
finite difference operators δx and δy , defined for any dis-
crete vector field U by

[δxU ]k,l =
Uk+1,l − Uk,l

h
, [δyU ]k,l =

Uk,l+1 − Uk,l

h
.

(5–1)

If the index (k, l) corresponds to a boundary point, the
previous gradient is computed by considering the bound-
ary conditions of the problem. In the case of a bounded
domain, we simply use Dirichlet conditions, whereas in
the torus case we use the periodicity of the grid. The
discretization of the cost functionals (4–3) and (4–7) are
directly deduced from the expression (5–1). Let us call
that discrete cost functional Fε

d .
To complete the description of our discretization, we

describe now the linear constraints imposed on the dis-
crete values (Uε

i )k,l . On the one hand, we have the volume
constraints imposed on the functions uε

i :∑
k,l

(Uε
i )K (k,l) =

M 2

n
, ∀i = 1, . . . , n, (5–2)

and the pointwise nonoverlapping constraints∑
i

(Uε
i )K (k,l) = 1, ∀k, l = 0, . . . , M − 1. (5–3)

Let us denote by Π the linear projection operator on the
constraints (5–2) and (5–3). More precisely, regarding the
unknown as an array of size M 2 × n, the constraints on
that array (ai,j ) may be written∑

j

ai,j = ci ∀i = 1, . . . , n, (5–4)

∑
i

ai,j = dj ∀j = 0, . . . , M 2 − 1,

where ci = 1 for all i = 1, . . . , n and dj = M 2

n for all j =
1, . . . , M 2 . Let us note that the previous constraints must
satisfy the compatibility condition∑

i

ci =
∑

j

dj , (5–5)

which is true in our case, since∑
i

ci = M 2 and
∑

j

dj = n
M 2

n
= M 2 .
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FIGURE 1. Switching from a density representation to a boundary description.

One consequence of the previous compatibility condition
is that the set of all n + M 2 constraints of (5–4) is not
of maximal rank. It is not difficult to see that keeping
the first n + (M 2 − 1) constraints gives a free system of
constraints.

Notice that it is straightforward to compute the pro-
jected array (bi,j ) := Π((ai,j )) in an efficient way when
n � M 2 for any fixed vectors (ci), (dj ) that satisfy (5–5).
In all the experiments that we carried out, n was always
less than 100, which leads to a fast projection step.

Finally, we describe the successive steps of our opti-
mization in Algorithm 5 (we refer to [Kelley 99] for tech-
nical details on the conjugated gradient algorithm and
the choice of the line search methods).

Algorithm 1 Numerical optimization by Γ-convergence.
Require: εinitial , εfinal, (Uε i n i t i a l

i ), ω, δ > 1 (tolerance)
1: ε := εinitial , (Uε

i ) := (Uε i n i t i a l
i )

2: repeat
3: Compute (V ε

i ) the solution of minFε
d ((Vi)) among

arrays (Vi) that satisfy constraints (5–2) and (5–3)
(up to a tolerance δ). This step is carried out by a
standard projected conjugated gradient algorithm
(based on the previous projection algorithm) start-
ing from (Uε

i ).
4: (Uε/ω

i ) := (V ε
i ), ε:=ε/ω

5: until ε > εfinal

Finally, if the domain C is not a square or a cube, we
simply consider a square or cubic domain that contains
C and impose the additional Dirichlet constraints

(Ui)K = 0, ∀i = 1, . . . , n,

if K corresponds to a grid point that is outside of C.
The previous algorithms are easily adapted to this more
general situation.

6. NUMERICAL RESULTS

We were able to run a series of large computations on 2D
and 3D problems. We first address problem (2–1) when
C is a disk (see Figure 2) and a triangle (Figure 3). All
the 2D computations were done on a grid of dimension
(253 × 253). We set εinitial = 1, εfinal = 10−3 , the toler-
ance parameter δ = 10−6 and ω = 1.1. We always start
our optimization process with an array (Uε in i t i a l

i ) con-
sisting of uniform random values in [0, 1]. As expected,
our numerical solutions consist of local patches satisfy-
ing the 120-degree angular conditions. Moreover, some
symmetries of the set C are preserved for small values
of n.

We performed 3D computations for problem (3–4)
with n from 8 to 21 (see Figure 4) on grids of dimen-
sion (128 × 128 × 128). As a posttreatment, we used the
very efficient local optimization software Evolver (see
[Brakke 92]) developed by Ken Brakke to obtain a finer
description of optimal tilings. Let us point out that most
of the geometric structure was already contained in the
parameterization of the tiling given by the density func-
tions (Ui) at the end of our algorithm. In Figure 1, we
represent in the first picture the level sets {Ui = 1

2 } for
i = 1, . . . , n. In the second picture we draw the periodic
reconstruction of the densities without any surface opti-
mization. Notice that a small gap remains between the
level sets. In the last picture, we display the result of the
optimization performed by Evolver.

With n = 16 we observe that we obtain Kelvin’s tiling,
only made of truncated octahedra. With n = 8, starting
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FIGURE 2. Tiling of the disk with 2, 3, 4, 5, 8, 16, 24, 32 cells.

again from a complete random array, we recover the fa-
mous tiling obtained by D. Weaire and P. Phelan con-
sisting of exactly two kinds of cells. We give below the
values corresponding to the cost functional for n = 8 to

21. No better tiling than the one reported by D. Weaire
and P. Phelan was suggested.

Finally, we tried to outperform Weaire and Phelan’s
tiling by considering an optimal cutting of sets C that

n Morgan’s Cost; see (3–1) n Bounded Convex Polyhedra C Morgan’s Cost

8 2.644175 6 truncated octahedron 2.852505
16 2.653171 10 truncated octahedron 2.924930
20 2.655404 6 rhombic dodecahedron 2.934629
21 2.657727 8 truncated octahedron 2.942078
22 2.666318 8 rhombic dodecahedron 2.945360
12 2.671376 10 rhombic dodecahedron 2.956432
17 2.675445 4 rhombic dodecahedron 2.984274
19 2.680236 2 rhombic dodecahedron 2.987346
18 2.681586 2 truncated octahedron 3.004914
13 2.683315 3 truncated octahedron 3.009927
15 2.689541 4 truncated octahedron 3.014228
10 2.692954 4 hexagonal prism 3.021674
9 2.693281 6 hexagonal prism 3.051920
14 2.694757 8 triangular prism 3.061425
11 2.695891 2 hexagonal prism 3.078461

TABLE 1. Optimal values for the periodic case (first two columns) and different polyhedral cuttings (last three columns).
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FIGURE 3. Tiling of the triangle with 2, 3, 4, 5, 8, 16, 24, 32 cells.

FIGURE 4. Periodic tilings of the space by 8, 10, 12, 13, 14, 15, 16, 17, 18, 19 20, 21 cells.
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FIGURE 5. Aperiodic tilings.

already tile the space. Namely, we approximated op-
timal cuttings of a truncated octahedron, a triangu-
lar prism, a rhombic dodecahedron, and one hexago-
nal prism (see Figure 5). We then computed the cost
(3–4) associated with the tiling deduced from the previ-
ous optimal cutting. The array below sums up the op-
timal values in the periodic and aperiodic cases of the
functional.

Our results are summarized in Table 1. The first col-
umn provides different values of Morgan’s cost functional

obtained by the periodic tilings, and the second column
gives the values obtained by the optimal cutting of sets
that already tile the space. We observe that no tiling gave
a better cost than those obtained by periodic boundary
conditions.
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